清华大学有机化学

合集下载

清华大学李艳梅有机化学课件

清华大学李艳梅有机化学课件

烷烃名称的写出
A 将支链(取代基)写在主链名称的前面 B 取代基按“次序规则”小的基团优先列出
烷基的大小次序: 甲基<乙基<丙基<丁基<戊基<己基<异戊基<异丁基<异丙基。
C 相同基团合并写出,位置用2,3……标出, 取代基数目用二, 三……标出。
D 表示位置的数字间要用逗号隔开,位次和取代基名称之间要用 “半字线”隔开。
在烃分子中仅与一个碳相连的碳原子叫做伯碳原子(或一级碳原子,用1°表示) 与两个碳相连的碳原子叫做仲碳原子(或二级碳原子,用2°表示) 与三个碳相连的碳原子叫做叔碳原子(或三级碳原子,用3°表示) 与四个碳相连的碳原子叫做季碳原子(或四级碳原子,用4°表示)
与伯,仲,叔碳原子相连的H原子,分别称为 伯,仲,叔H原子
(3)同系物
烷烃的通式 CnH2n+2, 直链烃的通式可写为: H-(-CH2-)n-H
同系物—在组成上相差一个或多个 CH2,且结构和性质(官 能团种类和个数相同)相似的一系列化合物称为同系
列.同系列中的各化合物互称同系物.系差—同系列相邻的两 个分子式的差值 CH2 称为系差.
(4)烷烃中碳原子的分类:
CH 3CH 2CH CH 3
(CH3)3C—
• (1) 直链烷烃按碳原子数命名 • 10以内:依次用天干:甲乙丙丁戊己庚辛壬癸. • 10以上:用中文数字:十一....烷.
(2)带有支链的烷烃
•选择主链
(1)选择分子中最长的碳链作为主链,按这个链所含的 碳原子数称为某烷,并以此作为母体。
(2) 分子中有两条以上等长碳链时,则选择支链多的 一条为主链。
或: CnH2n+2
•同分异构体——由于分子式相同,但它们的构 造不同(分子中各原子相连的方式和次序不同). 又叫构造异构体。

有机化学清华大学李艳梅版课后题答案

有机化学清华大学李艳梅版课后题答案

第九章1.苯乙酮(1)(2) 2-(1-甲基)丙基苯甲醛(3)环己酮缩乙二醇(4)1,5,5-三甲基-2-氧代环己甲醛(5)1-苯基-2-甲基-3-羟基-1-丁酮(6)4-甲基-7-氧代-辛醛(7)5-乙基-6-庚烯醛(8)3-丁烯-2-酮(9)(E)-1,4-二苯基-2-丁烯-1,4-二酮苯基苯基甲酮肟(11)5-硝基-2-萘甲醛2.(1)CH=CHCHO (2)CH3OCH(CH3)2(10)对溴(12)1-环丙基-2-丙酮(3)OCH2CCH2CH3(4)OBrCCH2CHCH3(5)CH3CH3O (6)OCH3O(7)NCONH2CH3CH2CCH3(8)CH3CH=CHC=NNHC6H53.(1)乙醛丁醛环戊酮I2NaOH(-)(-)土伦试剂(+)黄色沉淀(+) 银镜反应(-)(2)CH 2CH 2CHO O CH 2CCH 3C 2H 5 CHO土伦试剂(-) (+) 银镜反应 (+) 银镜反应斐林试剂(+) 银镜反应(-)无变化(3)丙醛 丙酮 丙醇 异丙醇I 2 NaOH(-) (+) 黄色沉淀 (-) (+) 黄色沉淀土伦试剂(+) 银镜反应(-)白色固体丙酮饱和亚硫酸氢钠(-)异丙醇(4)戊醛 2-戊酮 环戊酮 (-) (+) 黄色沉淀I 2 NaOH(-)(+) 银镜反应 (-)斐林试剂饱和亚硫酸氢钠(+) 白色固体苯甲醛(-) (-) (-)4.(1)正丁醇>丁酮>乙醚>正戊烷OO H>OO CH 2CHO(2) (3)H> CH 3CHO >O CH 3CCH 3O CH 3CCH 3O CH 3CH 2CCH 3CHO >CHO >>(4)丙酮>丁酮>2-戊酮5.(CH 3)3CCOCH 3COCH 3CH 2CHCH 3 OH以上化合物能发生碘仿反应 6.O-CH 2CCH 2CH 3OCH 3CCH 2CH 3OH -O -CH 3CCH 2CH 3OH-优先进攻酸性强和立体位阻小的氢OHC CH 2CH 3 (I) OHC CH 2CH 3 (II) (I) 烯醇式结构更稳定OCH 2CCHCH 3 BrBr 2OBrCH 2CCH 2CH 3OCH 3CCH 2CH 3H ++ OHCH 3CCH 2CH 3CH 3Br 2CH 27.(1)CH 3CH=CH-CH 2CH 2CH(OCH 3)2 (3) OH C 6H 5COCHCN(4)NHOH CH 3CCH 2CH 3OH(5) CHO CHO(2)BrOCH 3(6)OMgBr Ph (8)OH OOPhPh (9) OH Ph(7)CH 3CH 2OHCH 3COOH(10)CH 2CH 3 OH O(11)OO CH3CH3(12)CH3BrO8.(1)BrOCCH3CH2OHCH2OHHClBrO OCH31) Mg, 无水乙醚2) CO23) H3O+OHOOOCH3H3O+HOO OCCH3CH3OHH2SO4 OCH3O OCCH3NaBH4CH3OO OHCHCH3(2)H2SO4, H2O C CHHgSO4OC CH3NaCNOHC CH3CNH3O+OHC CH3COOH (3)Br +CH3CH2CHO1) Mg, 无水乙醚2)H3O+OH48% HBrBr 1) Mg, 无水乙醚2)D2ODO(4)KMnO4H+OO1) NaOH2)(5)OCH3CH2CH2COClAlCl3Zn-HgHClBr(6)CH3CH2Br(7)HC CHNaNH2NH3H2SO4, H2O HgSO4OCH3CH2CH2CCH2CH2CH2CH3NaC CNaOBr2FeBr+PPh3Ph3P-CH2CH3Br-OPh C CH3CHCH3Ph C CH3CH3CH2CH2BrCH3CH2CH2 C C CH2CH2CH3(8)O3 Zn CHOCHO1) NaOH2)CHO9.(1)OCOOC2H5C2H5ONaOCOOC2H5-Na+CH2OCHCCH3COOC2H5C2H5OHMichael加成COOC2H5-H2OOCH3OC2H5ONa COOC2H5COOC2H5OH3C-O HOOO(2)OONaOH CH 3CCH 2CH 2CCH 3- OOCH 2CCH 2CH 2CCH 3O OH CH 3-H 2OO(3) CH 3HO CCH PhH + -H +CH 3H OH CCH Ph +重排CH 3HH C C OH + Ph重排CH 3H OH C C Ph H+-H + H +PhCOCH 2CH 310.CH 3 CH 3 (A)O CH 3CH 3+CH 3CHOOH CH 3CH 3 CH 3(B)O CH 3 CH 3 CH 3(C)CH 311.OCH 3 OCH 3 CH 3 (A)(B)CHO HClCH 3KMnO 4COOH COOH12.HO(I)HOCH 2CH 2CH 3 (III)O CH 2CCH 3HOOH CH 2CHCH 3 (II)CH 3OCH 2CH 2CH 3 (IV)13.CH3O (I)HOO(II)OCH314.(1)红外光谱,后者在1700 cm-1 附近有醛羰基的红外吸收峰。

清华大学有机化学实验乙酸正丁酯

清华大学有机化学实验乙酸正丁酯
• 干燥剂的用量:干燥剂的实际用量大大超过计算量。实际操作中, 主要通过现场判断,即观察法。
• 观察被干燥的液体:未加干燥剂之前,溶液是浑浊的。加入干燥 剂之后,溶液变为澄清透明状,这时即干燥合格。否则应补加适 量干燥剂继续干燥。(注:在加干燥剂时要少量多次地加)
• 观察干燥剂:有些液体化合物中有水与否,溶液总是清澈透明的。 这时判断干燥剂用量是否合适,则应看干燥剂的状态。加入干燥 剂后,因其吸水变黏,粘在壁上,摇动不易旋转,表明干燥剂用 量不够。应补加干燥剂。直到新的干燥剂不结块,不粘壁。干燥 剂棱角分明,摇动时旋转,表明所加干燥剂用量合适。(注:由 于干燥剂还能吸附一部分有机液体,影响产品收率。故干燥剂用 量要适中。应加入少量干燥剂后静置一段时间,观察用量不足时 再补加。
• 在合成过程中还可另加入用苯或CCl4除水。例如在合成醋酸苄酯时, C6H5CH2OH + CH3COOH C6H5CH2COOCH3 +H2O 就可以在反应体系中加入一定的苯,利用苯与水形成共沸体系(69C)把水带出。
• 萃取:从固体或液体混合物中分离所需要的物质称为提取或萃取。 在欲分离的液体混合物中加入一种与其不溶或部分互溶的液体溶 剂,形成两相系统,利用液体化合物中各组分在两相中的溶解度 和分配系数的不同,易溶组分较多地进入溶剂相,从而实现混合 液的分离。
117.6
乙酸正丁酯-正丁醇-水
90.7
注:蒸馏时,在某些温度下出现的馏分,可以利用恒沸体系来解释
• 分水器的使用及其原理: 1)原理:分水器之所以可以提水,是因为共沸所 带出的混合物不互溶且比重不同。本实验中有 机物在上层,水在下层,因而可以控制有机相 携带易溶于其中的反应物回到反应体系,而水 留在体系外。 2)使用分水器的条件:分水器内物质不反应,不 互溶,比重不同。 3)使用:见教材53页的装置,必须使用温度计。 分水器用前先装一定量的水,反应中从活塞分 出水。 注:温度计需要插入液面里。

清华大学有机化学李艳梅老师课件第十章_图文

清华大学有机化学李艳梅老师课件第十章_图文

Mechanism 本质:亲核取代反应
(B) Intramolecular dehydration Example
This reaction follows an E1 elimination mechanism.
Reactivity Mechanism
Product Follows Zaitzev’s rule E form
alcohol.
(C) Reactions with SOCl2
不重排
No
rearrangement!
10.3.4 Dehydration and elimination 脱水与消除
(A) Intermolecular 分子间脱水
Example
A side reaction of alcohol dehydration to form ethene. You have performed this experiment at high school.
分子间氢键导致熔点、沸点较高
Simple alcohols completely miscible with water 与水形成氢键 低级醇一般与水任意混溶
Simple alcohols may form co-crystals with inorganic salts.
低级醇与一些无机盐(如:MgCl2、CaCl2、CuSO4等)形成结晶状 的分子化合物 - 结晶醇(醇化物)
工业上常用方法:脱氢
还原性气氛, 易将产物又还 原为醇
When air is pumped in, water vapor is generated.
10.4 Polybasic alcohol 多元醇
10.4.1 Reactions similar to monobasic alcohol

有机化学考研学校排名2024

有机化学考研学校排名2024

引言概述:有机化学考研学校排名是一项引起广泛关注的问题。

随着化学行业的快速发展,越来越多的学生选择通过考研深造,特别是在有机化学领域。

本文将详细介绍有机化学考研学校排名的背景和重要性,并在正文中根据学校综合实力、师资力量、科研水平、学科实验室以及就业情况等因素,给出了较为全面的排名列表。

正文内容:一、学校综合实力1. 中国科学院:中国科学院是我国最高学术机构和全国自然科学与高技术研究的综合研究与发展中心,有着极高的综合实力。

2. 清华大学:清华大学作为我国一流学府,其在化学领域的实力也极为强大。

3. 北京大学:北京大学在自然科学领域一直保持着较高的学术声誉,其有机化学专业也有着良好的师资力量和科研水平。

二、师资力量1. 南开大学:南开大学有机化学领域有着一支高水平的师资团队,其中包括多位国家重点实验室的主任及国内外知名专家。

2. 南京大学:南京大学有机化学学科拥有一支结构严谨、教学经验丰富的师资队伍,其中不乏有机化学领域的顶尖学者。

3. 复旦大学:复旦大学的有机化学学科拥有一批具有较高学术水平的师资力量,这些教师既有国内著名学者,也有国外知名教授。

三、科研水平1. 中国科学技术大学:中国科学技术大学在有机化学领域拥有世界级的科研团队和实验室,研究成果在国际上有着较高的影响力。

2. 浙江大学:浙江大学有机化学学科一直在国内处于较高的水平,科研团队和实验室设备较为先进,科研成果也较为丰硕。

3. 哈尔滨工业大学:哈尔滨工业大学的有机化学学科在化工界内具有较高的声誉,其科研水平一直处于国内领先地位。

四、学科实验室1. 北京化工大学:北京化工大学的有机化学学科实验室设备先进、实验室面积大,有助于学生开展科研工作。

2. 同济大学:同济大学的有机化学学科实验室设备齐全,各类仪器设备完善,为学生提供了良好的科研环境。

3. 华东理工大学:华东理工大学的有机化学学科实验室条件优越,实验室团队有着丰富的研究经验,能够提供良好的实验指导。

清华大学有机化学李艳梅老师课件第三章

清华大学有机化学李艳梅老师课件第三章
同分异构体:两个或两个以上分子式一样而构造不同 的物质互称同分异构体。
本章重点:
饱和烃 通式:CnH2n+2
Content
3.1 Structure 3.2 Conformation 3.3 Physical properties and spectrum
data 3.4 Chemical properties 3.5 Preparation (Learn on your own) 3.6 Sources and usages (Learn on your
重叠型构象中,两个C原子上的H原子相距较近, 产生排斥力,而出现空间阻碍效应(Steric effect)。 而在穿插型构象中,两个C原子上H原子的相距较 远,不会出现空间阻碍效应的排斥力,能量较低, 比较稳定。
对“试题一〞的讨论:
在国内外现行的有机化学教科书中,对乙烷分 子的构象问题大多是按上述方式〔空间阻碍效应〕 解释的.
3.2.4 Conformation of the other alkanes Learn on your own
3.3 Physical properties and spectrum data
3.3.1 Physical properties
沸点:
b.p liq—>gas 分子距离恰好为色散力作用范围
C—C , C—H 有一定极性,可反响
特点3:自由基型反响
电负性 C:2.5 H:2.2
不同的C—H键其键能不同,但极性都不大,以
均裂为主
自由基型为主
H CH3CH2CH2CH2 CH2C H
H
• 氧化反响 • 热解 • 异构化 • 自由基取代反响
Cleavage Substitution Oxidation

清华大学有元素机化学第八章有机磷化学

清华大学有元素机化学第八章有机磷化学

90%
+
EtOOC
COOEt P(CH2CH2COOEt)2 10%
catalyst PH3 + 3 H2C CH(CN)
P(CH2CH2CN)3 + NC
catalyst = PtL3 (L = P(CH2CH2CN)3)
nP(CH2CH2CN)2 CN
Chem. Commun. 1998. 49. Organometallics. 1999, 18, 5381.
Ph +
Ph + PPh2
PPh2
R1R2PH +
Pd cat (5%)
R3
1R2RP R3
dppp(6%)
BH3
Synlett.
2001.
497-500
J. Org. 7022
Chem.
2003.
68:Biblioteka 7016-金属催化P(III)-H对炔烃的分子间加成(III)
钯和铑催化三苯基膦对炔烃的加成
R +
RP(O)(OR')2 + R'X
机理
R3 O
R1 P R2
R4-X
R3
X
O R1 P
R4
R2
R3-X
+ O
R1
P R4 R2
6.4.2 传统的方法(II)
Abramov反应: (RO)3P + R'CHO
Pudovik反应:
(RO)2PO + R'CHO
O (RO)2PCHR'
OR
O OH (RO)2P-CHR'
其它
用亚磷酸酯做底物进行Michael加成:

清华大学有机化学李艳梅课件全共7文档

清华大学有机化学李艳梅课件全共7文档

清华大学有机化学李艳梅课件全共7文档•课程介绍与有机化学概述•烃类化合物及其衍生物•羰基化合物及其衍生物•碳碳重键与芳香性目录•立体化学基础与手性合成策略•有机合成方法与路线设计•现代有机化学实验技术与方法01课程介绍与有机化学概述介绍清华大学有机化学课程的开设背景、历史沿革以及在国内外的学术地位。

课程背景课程内容教学方法概述本课程的主要教学内容,包括有机化合物的结构、性质、合成方法以及反应机理等。

介绍本课程采用的教学方法,如课堂讲授、实验操作、小组讨论等。

030201清华大学有机化学课程简介有机化学研究对象与特点研究对象阐述有机化学的研究对象,即有机化合物,包括其结构、性质、合成和反应等方面。

特点介绍有机化学的特点,如化合物种类繁多、结构复杂、反应条件温和等。

有机化学发展历史及现状发展历史回顾有机化学的发展历程,包括早期有机化学、近代有机化学和现代有机化学等阶段。

现状介绍当前有机化学的研究热点和前沿领域,如有机合成、有机材料、生物有机化学等。

本课程教学目标与要求教学目标明确本课程的教学目标,包括知识目标、能力目标和素质目标等。

教学要求提出本课程对学生的教学要求,如掌握基本概念和原理、具备实验技能和创新能力等。

02烃类化合物及其衍生物烷烃饱和链烃,分子中只含有单键,通式为CnH2n+2,性质稳定,主要发生取代反应。

烯烃含有碳碳双键的链烃,通式为CnH2n,性质活泼,可以发生加成、氧化、聚合等反应。

炔烃含有碳碳三键的链烃,通式为CnH2n-2,性质活泼,可以发生加成、氧化、聚合等反应。

烷烃、烯烃、炔烃结构和性质苯的结构和性质苯分子为平面正六边形结构,6个碳原子和6个氢原子共平面。

苯环上的碳碳键是介于碳碳单键和碳碳双键之间的独特键,使得苯具有特殊的稳定性。

芳香烃含有苯环的烃类化合物,具有特殊的芳香气味,通式为CnH2n-6。

芳香烃的取代反应芳香烃在催化剂作用下可以发生取代反应,如硝化、磺化、卤化等。

清华大学有机化学下册李艳梅胺ppt

清华大学有机化学下册李艳梅胺ppt

Ka Kb K 1.0 1014
pKa pKb 14
3.胺的碱性强弱
气相 液相
R3N
H3C NH
H3C
R2NH
CH3NH2
RNH2
NH3
原因:烷基给电子
H3C N CH3
H3C
NH3
H3CH2C NH
H3CH2C
H3CH2C N CH2CH3
H3CH2C
CH3NH2
NH3
原因:溶剂影响﹠烷基给电子
H HN
μ=1.3D
吸电子诱导 给电子共轭
光谱性质
1. IR N-H 伸缩
脂肪族伯胺 液体芳胺 仲胺
3400-3300cm-1 (不对称) 3300-3200cm-1 (对称)
3500-3390cm-1 3420-3300cm-1 3500-3300cm-1(较弱)
2. NMR
N-CH3 2.2 N-CH2- 2.4 N-CH 2.8
染料中间体,有致癌作用
根据二胺分子中两个氨基之间的距离
3D
给电子共轭 CH3
仲胺
3500-3300cm-1(较弱)
m-methyl-benzenamine
乙二胺四乙酸(EDTA)
相应的氢键亦弱
NH 5 芳胺、二胺、不饱和胺和取2代胺
当四个取代基不同时,分子中无对称面和对称中心,即可拆分。
CH3CH2-NH2 μ=1. 1) 从混合物中分离出胺
水溶液中的溶剂效应
对人的致死量约为6mg~12mg。
根据二胺分子中两个氨基之间的距离
不同溶剂中,三种胺的碱性强弱次序也不同 Dimethylamine
氢键数目
染料中间体,有致癌作用
胺表当的现N上碱 由所性动连常力接用学的其控三共制个轭之H基酸产2团O的物H不。p2K相Oa值同进时H行,比分NH较子,无R切对勿称与面胺及本对身称三的中p心K。a相混淆。

清华大学有机化学及实验A1教学大纲

清华大学有机化学及实验A1教学大纲

有机化学A1 教学大纲第一章(4 学时,自学为主)绪论1.1 有机化合物与有机化学1.1.1 有机化合物、有机化学及发展简史1.1.2 有机化合物的特性1.1.3 有机化学的研究内容1.2 有机化合物的结构1.2.1 碳元素1.2.2 有机化学中的共价键1.2.3 描述共价键的物理量:键参数(自学为主)1.3 有机化学反应1.3.1 共价键的断裂1.3.2 有机反应类型1.4 有机化合物的分类(自学)1.4.1 按碳架分类1.4.2 按官能团分类1.5 有机化合物的命名1.5.1 几“个与命名有关的名词”1.5.2 普通命名法(习惯命名法)1.5.3 衍生物命名法1.5.4 IUPAC 命名法1.5.5 其它化合物的IUPAC 命名法1.6 有机化学的研究方法1.4.3 特殊方法1.4.4 常规方法1.7 学习方法第二章(4 学时)现代仪器分析方法及应用2.1 概述第一部分NMR (核磁共振)2.2 NMR 的基本原理2.3 1H-NMR (核磁共振氢谱)2.3.1 化学位移2.3.2 耦合常数2.3.3 积分曲线与峰面积2.3.4 1H-NMR 谱的解析2.4 13C-NMR (核磁共振碳谱)132.4.1 13C-NMR 谱2.4.2 应用——识谱第二部分IR (红外光谱)2.5 IR 的基本原理2.5.1 产生2.5.2 分子的振动形式2.5.3 Hooke 定律2.6 IR 谱与分子结构的关系2.6.1 IR 谱总结2.6.2 各类化合物的IR 谱第三部分MS(质谱)2.7 MS 的基本原理2.8 MS 谱第四部分UV (紫外光谱)2.9 UV 的基本原理2.9.1 产生2.9.2紫外光谱图及Lambert-Beer (朗伯一比尔)定律2.10 UV 谱与分子结构的关系2.10.1 各类化合物的UV 谱2.10.2 影响紫外光谱的因素第三章(4 学时)烷烃3.1 几个名词和术语3.2 烷烃的结构3.3 烷烃的构象3.3.1 表示化合物结构的化学式3.3.2 乙烷的构象(自学)3.3.3 丁烷的构象3.3.4 高级烷烃的构象(自学)3.4 烷烃的物理性质与光谱性质(自学)3.5 烷烃的化学性质3.5.1 氧化反应3.5.2 热解(热裂)3.5.3 异构化3.5.4 自由基取代反应3.6 烷烃的制备3.7 烷烃的来源与用途(自学)第四章(4 学时)环烷烃4.1 环烷烃的分类、异构与命名4.1.1 分类4.1.2 异构4.1.3 命名4.2 环烷烃的结构4.2.1 Baeyer张力学说4.2.2 环烷烃的燃烧热4.2.3 现代观点4.2.4 环己烷的构象4.2.5 十氢合萘的构型4.3 环烷烃的物理性质与光谱性质(自学)4.4 环烷烃的化学性质4.4.1 自由基取代反应4.4.2 小环的特征反应――加成4.4.3 氧化反应4.5 环烷烃的制备4.5.1 分子内偶联4.5.2 狄尔斯-阿德尔反应4.5.3 卡宾合成法4.5.4 脂环烃之间的转化第五章(4 学时)立体化学概述5.1 概念5.1.1 物质的旋光性5.1.2 不对称碳原子、手性、手性分子5.1.3 分子的对称因素与手性关系5.2 含一个不对称碳原子的分子及构型的表示5.2.1 构型的R/S 命名及费歇尔投影式5.2.2 对映体及其性质5.2.3 外消旋体5.3 含两个不对称碳原子的分子及构型的表示5.3.1 含两个相同不对称碳原子的化合物5.3.2 旋光性与构象5.3.3 含两个不同不对称碳原子的化合物5.4 含多个不对称碳原子的分子及构型的表示5.4.1 差向异构体5.4.2 含假不对称碳原子的分子5.5 环状化合物5.5.1 环丙烷、环丁烷及环戊烷5.5.2 环己烷5.6 其它不含不对称碳原子的手性化合物5.6.1 丙二烯型化合物5.6.2 单键旋转受阻碍的联苯型化合物5.6.3 具有螺旋型的化合物5.6.4 含有其它不对称原子的光活性分子5.7 旋光的测定及外消旋体的拆分5.7.1 旋光的测定(自学)5.7.2 外消旋体的拆分5.7.3 对映体过量百分率第六章(5 学时)卤代烷6.1 卤代烷的分类、命名及同分异构6.1.1 卤代烷的分类6.1.2 卤代烷的命名6.1.3 卤代烷的同分异构(自学)6.2 卤代烷的物理性质与光谱性质(自学)6.3 卤代烷的化学性质6.3.1 卤代烷的结构及诱导效应6.3.2 亲核取代反应6.3.3 消除反应6.3.4 与金属反应6.3.5 还原6.4 亲核取代反应历程6.4.1 两种历程:S N2、S N16.4.2 影响亲核取代反应活性的因素6.5 消除反应机制及与亲核反应的竞争6.5.1 两种机制:E1、E26.5.2 消除反应与取代反应竞争6.6 卤代烷的制备(自学)6.6.1 一元卤代烷的制备6.6.2 多卤代烷的制备6.6.3 工业生产6.6.4 氟代烷6.7 几种重要的卤代烷(自学)第七章(5 学时)烯烃7.1 烯烃的结构、异构及命名7.1.1 烯烃的结构7.1.2 烯烃的异构7.1.3 烯烃的命名7.2 烯烃的物理性质与光谱性质(自学)7.3 烯烃的化学性质7.3.1 催化氢化、氢化热及烯烃的相对稳定性7.3.2 亲电加成反应7.3.3 自由基加成反应7.3.4 氧化735烯烃的a—氢卤化7.3.6 与卡宾反应7.3.7 顺/反异构体的转化7.3.8 聚合7.4 烯烃的制备(自学)6.1 卤代烷的分类、命名及同分异构 6.1.1 卤代烷的分类 6.1.2 卤代烷的命名6.1.3 卤代烷的同分异构(自学)6.2 卤代烷的物理性质与光谱性质(自学)7.4.1 经由消除反应 7.4.2 炔烃的还原7.5 重要的烯烃及烯烃的来源与用途(自学)7.5.1 重要的烯烃7.5.2 烯烃的来源及用途第八章(4 学时)炔烃和二烯烃第一部分炔烃8.1 炔烃的结构、异构与命名8.1.1 炔烃的结构8.1.2 炔烃的异构8.1.3 炔烃的命名8.2 炔烃的物理性质与光谱性质(自学)8.3 炔烃的化学性质8.3.1 炔烃的酸性及其反应8.3.2 亲电加成反应8.3.3 自由基加成反应8.3.4 亲核加成8.3.5 还原8.3.6 氧化8.3.7 聚合8.4 炔烃的制备8.4.1 乙炔的生产8.4.2 由二元卤代烷制备8.4.3 由乙炔或一元取代乙炔制备8.5 重要的炔烃及炔烃的来源与用途(自学)第二部分烯烃8.6 二烯烃的分类、异构与命名8.6.1 二烯烃的分类8.6.2 二烯烃的异构8.6.3 二烯烃的命名(多烯烃)8.7 共轭效应与共振式8.7.1 共轭效应8.7.2 超共轭效应8.7.3 共振式8.8 共轭二烯8.8.1 共轭二烯的结构及解释8.8.2 共轭二烯的物理性质(自学)8.8.3 共轭二烯的化学性质第九章(6 学时)芳烃9.1 苯的结构9.1.1 苯的结构及传统表达式9.1.2 苯分子结构的价键观点9.1.3 苯分子结构的分子轨道模型9.1.4 苯分子结构的共振式9.1.5 苯的构造式表示法9.2 芳烃的分类、同分异构与命名9.2.1 分类9.2.2 同分异构9.2.3 芳烃的命名9.3 芳烃的物理性质与光谱性质(自学)9.4 单环芳烃的亲电取代反应9.4.1 亲电取代反应9.4.2 取代基的定位效应9.4.3 定位效应的应用9.5 单环芳烃的其它化学性质9.5.1 还原9.5.2 加成反应9.5.3 侧链反应9.6 卤代芳烃(自学)9.7 多环芳烃9.7.1 多苯代脂烃9.7.2 联苯9.7.3 稠环芳烃9.8 非苯系芳烃9.8.1 Huckel 规则9.8.2 非苯芳烃9.9 重要的芳烃及芳烃的来源与用途第十章(4 学时)醇、酚第一部分醇10.1 醇的结构、异构、分类和命名10.2 醇的物理性质与光谱性质10.2.1 醇的物理性质(自学)10.2.2 醇的光谱性质10.3 一元醇的化学性质10.3.1 酸碱性10.3.2 酯化10.3.3 亲核取代10.3.4 脱水与消除10.3.5 氧化10.3.6 脱氢10.4 多元醇的化学性质10.4.1 与一元醇类似之反应10.4.2 多元醇的特殊性质10.5 醇的制备(自学)10.5.1 一元醇的制备10.5.2 多元醇的制备10.6 重要的醇及醇的来源与用途(自学)第二部分酚10.7 酚的结构、分类和命名10.8 酚的物理性质与光谱性质(自学)10.8.1 物理性质10.8.2 光谱性质10.9 酚的化学性质10.9.1 苯环上的亲电取代反应10.9.2 特性10.10 酚的制备(自学)10.10.1 苯酚的制备10.10.2 萘酚的制备10.11 重要的酚及酚的来源与用途(自学)第十一章(2 学时)醚11.1 醚的结构、异构、分类和命名11.1.1 醚的结构11.1.2 分类11.1.3 醚的命名11.2 醚的物理性质与光谱性质(自学)11.2.1 醚的物理性质11.2.2 光谱性质11.3 醚的化学性质11.3.1 自动氧化11.3.2 碱性——生成盐11.3.3 醚键断裂11.3.4Claisen (克莱森)重排11.4 醚的制备(自学)11.4.1 Williamson 合成法(威廉森)11.4.2 醇分子间失水11.4.3 烯烃加醇――烷氧汞化去汞法11.5 环醚11.5.1 环氧乙烷及其衍生物11.5.2 冠醚11.6 重要的醚及醚的来源与用途(自学)第十二章(5 学时)醛酮12.1 醛、酮的结构、异构分类和命名12.1.1 醛、酮的结构12.1.2 分类12.1.3 通分异构12.1.4 命名12.2 醛、酮的物理性质与光谱性质(自学)12.2.1 物理性质12.2.2 光谱性质12.3 醛、酮的亲核加成反应12.3.1 与含氧亲核试剂的加成12.3.2 与含硫亲核试剂的加成12.3.3 与含碳亲核试剂的加成12.3.4 与含氮亲核试剂的加成12.3.5 亲核加成反应历程及立体化学12.4 醛、酮的其它化学性质12.4.1 a - H的酸性12.4.2 氧化12.4.3 还原12.4.4 歧化反应12.4.5 聚合――醛羰基的自身加成12.5 醛、酮的制备(自学)12.5.1 氧化和脱氢法12.5.2 还原法12.5.3 不饱和烃加成12.5.4 Friedel- Crafts 酰化反应12.5.5 偕二卤代物水解法12.5.6芳环甲酰化法(Gatermann— koch)合成法12.6 重要的醛、酮及醛、酮的来源于用途(自学)第十三章(4 学时)不饱和醛酮及取代醛酮13.1 烯酮13.2 a, B -不饱和醛酮13.2.1 共轭加成13.2.2 还原13.3 醌13.3.1 分类与命名13.3.2 结构、物理性质与光谱性质(自学)13.3.3 醌的性质13.3.4 制备13.4 羟基醛酮13.4.1 羟基醛酮的化学性质13.4.2 制备(自学)13.5 酚酮和酚酮(自学)13.5.1 性质13.5.2 合成有机化学A(2)教学大纲第十四章羧酸14.1 羧酸的分类和命名14.1.1 羧酸的分类14.1.2 羧酸的命名14.2 羧酸的物理性质与光谱性质(自学)14.2.1 羧酸的物理性质14.2.2 羧酸的光谱性质14.3 羧酸的化学性质14.3.1 酸性14.3.2 羧基上羟基的取代反应——酰化反应14.3.3 脱羧14.3.4 还原14.3.5 a -H 卤代14.4 二元羧酸14.4.1 命名(自学)14.4.2 物理性质及光谱性质(自学)14.4.3 化学性质14.5 羧酸的制备(自学)14.5.1 由醇、醛及芳烃侧链氧化14.5.2 由有机金属化合物制备14.5.3 由腈化物的水解及羧酸a 烷基化14.6 重要的羧酸及羧酸的来源与用途(自学)第十五章羧酸衍生物15.1 羧酸衍生物的结构和命名15.1.1 羧酸衍生物的结构15.1.2 羧酸衍生物的命名15.2 羧酸衍生物的物理性质和光谱性质(自学)15.2.1 羧酸衍生物的物理性质15.2.2 羧酸衍生物的光谱性质15.3 羧酸衍生物的反应15.3.1 羧酸衍生物的水解——形成酸15.3.2 羧酸衍生物的醇解——形成酯15.3.3 羧酸衍生物的氨(胺)解——形成酰胺15.3.4 羧酸衍生物的酸解15.3.5 羧酸衍生物与有机金属化合物的反应15.3.6 羧酸衍生物的还原15.3.7 羧酸衍生物的其它反应15.4 油脂、蜡和合成洗涤剂(自学)15.4.1 油脂15.4.2 肥皂与合成洗涤剂15.4.3 磷脂与生物膜15.4.4 蜡15.5 羧酸衍生物的制备(自学)15.5.1 酰卤的制备15.5.2 酸酐的制备15.5.3 酯的制备15.5.4 酰胺的制备15.5.5 腈的制备15.6 碳酸衍生物15.6.1 碳酸的酰氯15.6.2 碳酸的酰胺15.6.3 碳酸的酯15.7 原酸衍生物15.7.1 原碳酸衍生物15.7.2 原酸衍生物——原酸酯15.8 过酸和二酰基过氧15.8.1 过酸15.8.2 二酰基过氧15.9 异腈15.9.1 结构与特点15.9.2 异腈的反应15.10 重要的羧酸衍生物及羧酸衍生物的来源与用途(自学)第十六章不饱和羧酸和取代羧酸16.1 不饱和羧酸16.1.1 a , B —不饱和羧酸的结构16.1.2 a , B —不饱和羧酸的反应16.2 卤代酸16.3 醇酸16.3.1 醇酸的性质16.3.2 内酯16.4 酚酸16.4.1 水杨酸16.4.2 对羟基苯甲酸16.5 羰基酸16.5.1 a—羰基酸16.5.2 B —酮酸16.5.3 丫一酮酸16.6 B —酮酸酯16.6.1 B —酮酸酯的制备(自学)16.6.2 B —酮酸酯的化学性质16.6.3 乙酰乙酸乙酯合成法16.6.4 丙二酸二乙酯合成法第十七章胺17.1 胺的分类、结构及命名17.1.1 胺的分类17.1.2 胺的结构17.1.3 胺的命名17.2 一元胺的物理性质与光谱性质(自学)17.2.1 物理性质17.2.2 光谱性质17.3 一元胺的化学性质17.3.1 酸碱性17.3.2 烃化17.3.3 酰化17.3.4 亚硝化17.3.5 氧化17.4 一元胺的制备(自学)17.4.1 氨或胺的直接烃化1742 Gabriel (加布里埃尔)合成法17.4.3 还原法17.4.4 酰胺的霍夫曼重排17.5 芳胺、二胺、不饱和胺及取代胺17.5.1 芳胺17.5.2 二胺17.5.3 烯胺17.5.4 羟基胺17.6 季铵盐和氢氧化四烃基铵(季铵碱)17.6.1 季铵盐17.6.2 季铵碱(氢氧化四烃基铵)17.7 重要的胺及胺的来源与用途(自学)第十八章其它含氮化合物18.1 硝基化合物18.1.1 硝基化合物的分类、结构和命名18.1.2 硝基化合物的物理性质与光谱性质(自学)18.1.3 脂肪族硝基化合物的化学性质18.1.4 芳香族硝基化合物的化学性质18.1.5 亚硝基化合物18.1.6 硝基化合物的制备(自学)18.2 重氮化合物之一——重氮甲烷18.2.1 重氮甲烷及其制备18.2.2 重氮甲烷的化学性质——甲基化试剂18.2.3 碳烯和类碳烯18.3 重氮化合物之二——芳基重氮盐18.3.1 芳香族重氮化反应18.3.2 芳基重氮盐的化学反应及用途18.4 偶氮化合物18.4.1 芳香族偶氮化合物18.4.2 脂肪族偶氮化合物18.4.3 偶氮燃料(自学)18.5 叠氮化合物18.5.1 叠氮化合物的制备18.5.2 叠氮化合物的性质与用途18.5.3 氮烯第十九章有机合成及重排第一部分有机合成19.1 碳胳19.1.1 碳-碳键的形成19.1.2 碳链的断裂19.1.3 成环和开环19.1.4 特殊的碳胳形成要求19.2 官能团19.2.1 官能团的互变19.2.2 官能团保护19.3 构型19.3.1 常见的立体选择性反应19.3.2 不对称合成(手征性合成)19.4 合成路线19.5 有机合成参考书第二部分重排19.6 重排反应的分类19.7 亲核重排19.7.1 概论19.7.2 重排到缺电子的碳原子19.7.3 重排到缺电子的氮原子19.7.4 重排到缺电子的氧原子19.8 亲电重排19.9 自由基重排19.10 芳香族重排第二十章杂环化合物20.1 杂环化合物的分类、命名和结构20.1.1 杂环化合物的分类20.1.2 杂环化合物的命名20.1.3 杂环化合物的结构第一部分五元杂环化合物20.2 含一个杂原子的五元杂环体系20.2.1 呋喃、噻吩、吡咯的物理性质与光谱性质(自学)20.2.2 呋喃、噻吩、吡咯的化学性质20.2.3 呋喃、噻吩、吡咯的制备(自学)2024 a—呋喃甲醛20.3 含一个杂原子的五元杂环苯并体系20.4 含两个或两个以上杂原子的五元杂环体系20.4.1 命名20.4.2 结构和性质20.4.3 噻唑和咪唑20.5 族化合物第二部分六元杂环化合物20.6 含一个杂原子的六元杂环体系20.6.1 吡啶的结构20.6.2 吡啶的化学反应20.6.3 吡啶的制备(自学)20.7 含一个杂原子的六元杂环苯并体系20.8 含两个或两个以上氮原子的六元杂环体系第三部分其它杂环化合物20.9 三元、四元、七元杂环体系20.9.1 三元杂环化合物20.9.2 四元杂环化合物20.9.3 七元杂环第二十一章周环反应21.1 周环反应的理论21.2 电环化反应21.2.14 n 体系21.2.2 4n+2 体系21.3 环加成反应21.3.1 [2+2]21.3.2 [2+4]21.3.3 环加成规律21.4(T键迁移反应21.4.1 c键迁移的含义及命名法21.4.2 H[1 , j] c 迁移21.4.3 C[1,j]c 迁移21.4.4 [i,j]c 迁移第二十二章元素有机之一(非金属元素有机化合物)含硫、磷、硅及硼的元素有机化合物22.1 有机硫化合物22.1.1 有机硫化合物的成键特征、分类及命名22.1.2 常见的有机硫化合物22.1.3 有机硫试剂在有机合成上的应用22.2 有机磷化合物22.2.1 有机磷化合物的结构、分类及命名22.2.2 有机磷的反应22.2.3 有机磷的应用22.2.4 生命有机磷22.3 有机硅化合物22.3.1 有机硅化合物的结构特点及命名22.3.2 有机硅化合物在有机合成中的应用22.4 有机硼化合物22.4.1 常见的有机硼化合物22.4.2 有机硼化合物在有机合成中的应用第二十三章元素有机之二金属有机化合物23.1 金属有机化合物(复习)23.1.1 有机镁化合物——格氏试剂23.1.2 烃基钠RNa23.1.3 烃基锂Rli23.1.4 二烃基铜锂R2CuLi23.2过渡金属n络合物23.2.1过渡金属n络合物的结构特点2322常见的几种过渡金属n络合物2323过渡金属n络合物在有机合成中的应用第二十四章碳水化合物24.1 单糖24.1.1 单糖的构造式24.1.2 单糖的构型24.1.3 单糖的反应及应用24.1.4 单糖的环状结构24.2 二糖24.2.1 概论24.2.2 重要的双糖24.3 多糖24.3.1 纤维素24.3.2 淀粉24.4 糖的衍生物(自学)第二十五章蛋白质与核酸25.2.1 多肽结构25.2.2 多肽的序列分析25.2.3 多肽的合成25.3 蛋白质25.3.1 蛋白质的分类及功能25.3.2 蛋白质的结构25.3.3 蛋白质的性质25.4 酶25.4.1 酶的组成、分类及命名25.4.2 酶催化反应的特异性25.5 核酸25.5.1 核酸的组成及分类25.5.2 核酸的结构25.5.3 核酸的生物功能第二十六章类脂、萜类化合物、甾族化合物和生物碱26.1 类脂26.1.1 油脂26.1.2 蜡26.1.3 磷脂26.2 萜类26.2.1 萜的涵义及异戊二烯规律26.2.2 萜的命名26.2.3 分类及重要的萜26.3 甾族26.3.1 甾醇26.3.2 胆酸26.3.3 甾族激素26.4 生物碱26.4.1 生物碱的一般性质26.4.2 生物碱的提取方法第二十七章合成高分子化合物27.1 基本概念27.2 高分子化合物的合成27.2.1 加聚反应27.2.2 缩聚反应25.1 氨基酸25.1.1 氨基酸的结构、命名及分类25.1.2 氨基酸的性质25.1.3 氨基酸的制备(自学)25.2 多肽。

清华大学 有机化学及实验 作业习题 LGPD ppt全集

清华大学 有机化学及实验 作业习题 LGPD ppt全集

• 用动力学讨论解释为什么1,2-二苯基-2-溴丙烷和 乙醇钠在乙醇中于80摄氏度反应的主产物是(E)1,2-二苯基丙烯(而顺式产物极少)。
Br
一 个 想 法 跳 了 出 来
• Write the structure of the product(s) formed when 1-methylcyclohexanol reacts with 85% H3PO4 at 150 degrees centigrade. Write a detailed mechanism for the reaction.
OR
OR
PhLi Br
RCO3H Na2CO3
Ph
O ROH RO-
Br
Ph HO
OR
(2)
O
H+
RCO3H
ROH
Na2CO3
RO-
Ph
Br
HO CH2
C
O
H3C
C
R
H2
(2)
R''COCl
N
C
O
O C
CH2
C
R
H3C
CH2 O R
酯热解
H2C
C
+
CH2
C
O
CH2
R
(3)
C
CH
H3C
C
O
CH2
R
+
Ph
OH
HNR'2
R'2N
COOR TM
Ph COOR
下面,让我们 来看下一题
Indan
H NH2
OH H Right-hand moiety of Crixivan

2024版清华大学有机化学李艳梅老师课件PPT文档

2024版清华大学有机化学李艳梅老师课件PPT文档

目录•有机化学概述•碳原子结构与性质•官能团及其反应活性•立体异构现象与手性分子识别•有机合成策略与方法•绿色化学原理在有机合成中应用有机化学概述有机化学定义与发展历程定义研究有机化合物结构、性质、合成、反应机理及其应用的科学发展历程从早期对天然产物的提取和分离,到合成有机化合物的探索,再到现代有机化学的飞速发展有机化合物分类及特点分类按碳骨架分类(开链化合物、碳环化合物、杂环化合物等)、按官能团分类(烃类、醇类、醛类、酮类等)特点种类繁多、结构复杂、性质各异,具有广泛的应用价值有机化学在科研与工业中应用科研应用研究生命现象的本质、探索新药物和新材料、发展高效低毒的农药和化肥等工业应用合成纤维、塑料、橡胶等高分子材料,生产染料、香料、涂料等精细化学品,制备医药、农药等中间体。

碳原子结构与性质碳原子杂化类型及空间构型sp杂化碳原子形成两个σ键,呈直线型构型,如乙炔中的碳原子。

sp²杂化碳原子形成三个σ键,呈平面三角形构型,如乙烯中的碳原子。

sp³杂化碳原子形成四个σ键,呈四面体构型,如甲烷中的碳原子。

0102 03σ键由两个原子轨道沿键轴方向重叠而形成,具有方向性和饱和性。

π键由两个原子轨道垂直于键轴方向重叠而形成,具有方向性和不饱和性。

共价键的极性由成键原子的电负性差异决定,差异越大,极性越强。

共价键形成与性质分析03疏水作用非极性分子间的相互作用力,使非极性分子在水溶液中相互聚集。

01范德华力普遍存在于分子间的相互作用力,与分子的大小和极性有关。

02氢键存在于含有氢原子的分子间的一种特殊相互作用力,具有方向性和饱和性。

碳原子间相互作用力探讨官能团及其反应活性卤素原子(-X )具有亲电性,可发生亲核取代、消除等反应。

-NH2)具有亲核性和碱性,可参与亲核取代、缩合等反应。

羧基(-COOH )具有酸性,可发生酯化、酰卤化等反应。

羟基(-OH )具有亲核性,可参与亲核取代、消除等反应。

有机化学清华大学李艳梅版课后习题答案

有机化学清华大学李艳梅版课后习题答案

习题答案第一章1.(1)有机化合物:含碳化合物(一氧化碳、二氧化碳、碳酸盐、金属碳化物等少数简单含碳化合物除外)或碳氢化合物及其衍生物的总称。

有机物是生命产生的物质基础。

(2)共价键:共价键(covalent bond)是化学键的一种,两个或多个原子共同使用它们的外层电子,在理想情况下达到电子饱和的状态,由此组成比较稳定的化学结构叫做共价键。

(3)同分异构:同分异构是一种有相同化学式,有同样的化学键而有不同的原子排列的化合物的现象。

(4)杂化:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化。

(5)偶极矩:正、负电荷中心间的距离r 和电荷中心所带电量q 的乘积,叫做偶极矩μ=r×q。

它是一个矢量,方向规定为从负电荷中心指向正电荷中心。

(6)诱导效应:诱导效应是指在有机分子中引入一原子或基团后,使分子中成键电子云密度分布发生变化,从而使化学键发生极化的现象,称为诱导效应(Inductive Effects)。

(7)异裂:共价键断裂时,共用电子对完全转移给成键原子中的某个原子,形成了正、负离子,这种断键方式称为异裂。

(8)范德华力:在化学中通常指分子之间的作用力。

(9)键角:分子中和两个相邻化学键之间的夹角。

(10)Lewis 酸:路易斯酸(Lewis Acid,LA)是指电子接受体,可看作形成配位键的中心体。

(11)疏水作用:非极性分子间或分子的非极性基团间的吸引力。

导致这些基团在水性环境中的缔合。

(12)官能团:决定有机物性质的原子或原子团称为官能团。

2.(1)(2)(3)(4)(5)(6)(7)(8)(9)3.具有偶极的分子:(1)两 H 原子中心指向 O 原子方向;(2)又 H 原子指向 Br 原子;(4)H 原子指向三个 Cl 原子的中心方向;(5)乙基指向羟基方向4.(1)正庚烷;(2)异丁烷;(3)异己烷;(4)新戊烷5.(1)(3)6.(4)(2)酸:Cu2+ FeCl3 CH3CN碱:NH3 CH3NH2 C2H5OC2H5加合物:CH3COOH CH3OHH3O+/ H2O 7.(1)CH3COOH/CH3COO-(2)H2SO4/HSO4-(3)HNO3/NO3-8. (3) CH3Cl > (1) CH4CH3OH2+/CH3OH (CH3)3NH+/(CH3)3N(2) CH3F >(4)CH3Br >(5)CH3I > 9. 单键最长,双键次之,叁键最短.单键中两个原子间的电子云密度小,叁键两个原子间的电子云密度最大,共同的电子把两个原子吸引得最近.所以说,叁键最短,单键最长,双键处于中间.10. C5H12O11. C8H10N4O2第二章1. ⑶>⑵>⑴>⑸>⑷3. 2-甲基丁烷较稳定的构象是:CH3H⑴HCH3HCH3⑵HCH3CH3H⑶HCH3HCH3CH3CH3HCH3其中⑴和⑵更稳定。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档