空间向量在立体几何中的应用典型例题10月3日
专题26 空间向量在立体几何中的运用(2)(纯答案)
专题26 空间向量在立体几何中的运用(2)答案题型一、面面角例1、【2020年高考全国Ⅰ卷理数】如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =.ABC △是底面的内接正三角形,P 为DO 上一点,PO DO =.(1)证明:PA ⊥平面PBC ; (2)求二面角B PC E --的余弦值.【解析】(1)设DO a =,由题设可得,,PO AO AB a ===,2PA PB PC ===. 因此222PA PB AB +=,从而PA PB ⊥. 又222PA PC AC +=,故PA PC ⊥. 所以PA ⊥平面PBC .(2)以O 为坐标原点,OE 的方向为y 轴正方向,||OE 为单位长,建立如图所示的空间直角坐标系O xyz -.由题设可得1(0,1,0),(0,1,0),(,0),(0,0,)222E A C P --. 所以31(,,0),(0,1,)22EC EP =--=-. 设(,,)x y z =m 是平面PCE 的法向量,则00EPEC ⎧⋅=⎪⎨⋅=⎪⎩m m ,即021022y z x y ⎧-+=⎪⎪⎨⎪--=⎪⎩,可取(=m . 由(1)知AP =是平面PCB 的一个法向量,记AP =n , 则cos ,|||5⋅==n m n m n m |. 所以二面角B PC E --的余弦值为5.变式1、【2020年高考全国Ⅱ卷理数】如图,在长方体1111ABCD A B C D -中,点,E F 分别在棱11,DD BB 上,且12DE ED =,12BF FB =.(1)证明:点1C 在平面AEF 内;(2)若2AB =,1AD =,13AA =,求二面角1A EF A --的正弦值.【解析】设AB a =,ADb =,1AAc =,如图,以1C 为坐标原点,11C D 的方向为x 轴正方向,建立空间直角坐标系1C xyz -.(1)连结1C F ,则1(0,0,0)C ,(,,)A a b c ,2(,0,)3E a c ,1(0,,)3F b c ,1(0,,)3EA b c =,11(0,,)3C F b c =,得1EA C F =.因此1EA C F ∥,即1,,,A E F C 四点共面,所以点1C 在平面AEF 内. (2)由已知得(2,1,3)A ,(2,0,2)E ,(0,1,1)F ,1(2,1,0)A ,(0,1,1)AE =--,(2,0,2)AF =--,1(0,1,2)A E =-,1(2,0,1)A F =-.设1(,,)x y z =n 为平面AEF 的法向量,则110,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,220,y z x z --=⎧⎨--=⎩可取1(1,1,1)=--n . 设2n 为平面1A EF 的法向量,则22110,0,A E A F ⎧⋅=⎪⎨⋅=⎪⎩n n 同理可取21(,2,1)2=n .因为121212cos ,||||⋅〈〉==⋅n n n n n n ,所以二面角1A EF A --.变式2、【2019年高考全国Ⅰ卷理数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN∥平面C1DE;(2)求二面角A−MA1−N的正弦值.【答案】(1)见解析;(2)5.【解析】(1)连结B1C,ME.因为M,E分别为BB1,BC的中点,所以ME∥B1C,且ME=12B1C.又因为N为A1D的中点,所以ND=12A1D.由题设知A1B1=DC,可得B1C=A1D,故ME=ND,因此四边形MNDE为平行四边形,MN∥ED.又MN⊄平面EDC1,所以MN∥平面C1DE.(2)由已知可得DE⊥DA.以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz,则(2,0,0)A ,A 1(2,0,4),2)M ,(1,0,2)N ,1(0,0,4)A A =-,1(12)A M =--,1(1,0,2)A N =--,(0,MN =.设(,,)x y z =m 为平面A 1MA 的法向量,则1100A M A A ⎧⋅=⎪⎨⋅=⎪⎩m m ,所以2040x z z ⎧-+-=⎪⎨-=⎪⎩,.可取=m .设(,,)p q r =n 为平面A 1MN 的法向量,则100MN A N ⎧⋅=⎪⎨⋅=⎪⎩,.n n所以020p r ⎧=⎪⎨--=⎪⎩,.可取(2,0,1)=-n .于是cos ,||⋅〈〉===‖m n m n m n , 所以二面角1A MA N --变式3、【2019年高考全国Ⅱ卷理数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,求二面角B –EC –C 1的正弦值.【答案】(1)证明见解析;(2 【解析】(1)由已知得,11B C ⊥平面11ABB A ,BE ⊂平面11ABB A ,故11B C ⊥BE .又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知190BEB ∠=︒.由题设知Rt ABE △≌11Rt A B E △,所以45AEB ∠=︒,故AE AB =,12AA AB =.以D 为坐标原点,DA 的方向为x 轴正方向,||DA 为单位长,建立如图所示的空间直角坐标系D –xyz ,则C (0,1,0),B (1,1,0),1C (0,1,2),E (1,0,1),(1,0,0)CB =,(1,1,1)CE =-,1(0,0,2)CC =.设平面EBC 的法向量为n =(x ,y ,x ),则0,0,CB CE ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,0,x x y z =⎧⎨-+=⎩所以可取n =(0,1,1)--.设平面1ECC 的法向量为m =(x ,y ,z ),则10,0,CC CE ⎧⋅=⎪⎨⋅=⎪⎩m m 即20,0.z x y z =⎧⎨-+=⎩ 所以可取m =(1,1,0).于是1cos ,||||2⋅<>==-n m n m n m .所以,二面角1B EC C --. 题型二、探索性问题例2、【2019年高考北京卷理数】如图,在四棱锥P –ABCD 中,PA ⊥平面ABCD ,AD ⊥CD ,AD ∥BC ,PA =AD =CD =2,BC =3.E 为PD 的中点,点F 在PC 上,且13PF PC =. (1)求证:CD ⊥平面PAD ; (2)求二面角F –AE –P 的余弦值; (3)设点G 在PB 上,且23PG PB =.判断直线AG 是否在平面AEF 内,说明理由.【答案】(1)见解析;(2)3;(3)见解析.【解析】(1)因为PA ⊥平面ABCD ,所以PA ⊥CD . 又因为AD ⊥CD ,所以CD ⊥平面PAD . (2)过A 作AD 的垂线交BC 于点M .因为PA ⊥平面ABCD ,所以PA ⊥AM ,PA ⊥AD .如图建立空间直角坐标系A −xyz ,则A (0,0,0),B (2,-1,0),C (2,2,0),D (0,2,0),P (0,0,2).因为E 为PD 的中点,所以E (0,1,1). 所以(0,1,1),(2,2,2),(0,0,2)AE PC AP ==-=.所以1222224,,,,,3333333PF PC AF AP PF ⎛⎫⎛⎫==-=+= ⎪ ⎪⎝⎭⎝⎭.设平面AEF 的法向量为n =(x ,y ,z ),则0,0,AE AF ⎧⋅=⎪⎨⋅=⎪⎩n n 即0,2240.333y z x y z +=⎧⎪⎨++=⎪⎩ 令z =1,则1,1y x =-=-.于是=(1,1,1)--n .又因为平面PAD 的法向量为p =(1,0,0),所以cos ,||⋅〈〉==‖n p n p n p . 由题知,二面角F −AE −P.(3)直线AG 在平面AEF 内. 因为点G 在PB 上,且2,(2,1,2)3PG PB PB ==--, 所以2424422,,,,,3333333PG PB AG AP PG ⎛⎫⎛⎫==--=+=- ⎪ ⎪⎝⎭⎝⎭. 由(2)知,平面AEF 的法向量=(1,1,1)--n .所以4220333AG ⋅=-++=n . 所以直线AG 在平面AEF 内.变式1、(2019南通、泰州、扬州、徐州、淮安、宿迁、连云港二调)如图,在四棱锥PABCD 中,底面ABCD 是矩形,PA ⊥平面ABCD ,AB =1,AP =AD =2.(1) 求直线PB 与平面PCD 所成角的正弦值;(2) 若点M ,N 分别在AB ,PC 上,且MN ⊥平面PCD ,试确定点M ,N 的位置.规范解答 (1)由题意知,AB ,AD ,AP 两两垂直.以{AB →,AD →,AP →}为正交基底,建立如图所示的空间直角坐标系Axyz ,则B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,2). 从而PB →=(1,0,-2),PC →=(1,2,-2),PD →=(0,2,-2). 设平面PCD 的法向量n =(x ,y ,z ), 则⎩⎪⎨⎪⎧n ·PC →=0,n ·PD →=0,即⎩⎨⎧x +2y -2z =0,2y -2z =0,不妨取y =1,则x =0,z =1.所以平面PCD 的一个法向量为n =(0,1,1).(3分) 设直线PB 与平面PCD 所成角为θ, 所以sin θ=|cos 〈PB →,n 〉|=|PB →·n |PB →|·|n ||=105,即直线PB 与平面PCD 所成角的正弦值为105.(5分) (2)设M (a ,0,0),则MA →=(-a ,0,0).设PN →=λPC →,则PN →=(λ,2λ,-2λ),而AP →=(0,0,2), 所以MN →=MA →+AP →+PN →=(λ-a ,2λ,2-2λ).(8分) 由(1)知,平面PCD 的一个法向量为n =(0,1,1), 因为MN ⊥平面PCD ,所以MN →∥n .所以⎩⎨⎧λ-a =0,2λ=2-2λ,解得λ=12,a =12.所以M 为AB 的中点,N 为PC 的中点.(10分)变式2、(2020届浙江省宁波市余姚中学高考模拟)如图,ABC 为正三角形,且2BC CD ==,CD BC ⊥,将ABC 沿BC 翻折.(1)若点A 的射影在BD 上,求AD 的长;(2)若点A 的射影在BCD 中,且直线AB 与平面ACD AD 的长.【答案】(1)2 (2. 【解析】(1)过A 作AE BD ⊥交BD 于E ,则AE ⊥平面BCD . 取BC 中点O ,连接AO ,OE , ∵AE ⊥平面BCD ,BC ⊂平面BCD , ∴AE BC ⊥,又ABC 是正三角形,∴BC AO ⊥, 又AEAO A =,AE ,AO ⊂平面AOE ,∴BC ⊥平面AOE ,∴BC OE ⊥.又BC CD ⊥,O 为BC 的中点,∴E 为BD 的中点.∵2BC CD ==,∴112OE CD ==,AO =BD =,∴DE =AE ==∴2AD ==;(2)取BC 中点为,O 过点A 作平面BCD 的垂线,垂足为E ,连接AO ,因为,AB AC OE BC =∴⊥.以O 为原点,以BC 为x 轴,以OE 为y 轴,以平面BCD 的过O 的垂线为z 轴建立空间直角坐标系,如图所示:设二面角D BC A --为θ,因为AE ⊥平面BCD ,与(1)同理可证BC ⊥平面AOE ,OE BC ⊥,AOE θ∴∠=,AO =则)A θθ,(1,0,0)B -,(1,0,0)C ,(1,2,0)D .∴(1,)BA θθ=,(0,2,0)CD =,()CA θθ=-,设平面ACD 的法向量为(,,)nx y z =,则200n CD y n CA x y z θθ⎧⋅==⎪⎨⋅=-⋅⋅=⎪⎩, 令1z =,得(3sin ,0,1)n θ=.∴cos ,n BA <>==解得sinθ=∴1(0,,22A ,又(1,2,0)D ,∴AD ==变式3、如图1,在直角梯形ABCP 中,BC ∥AP ,AB ⊥BC ,CD ⊥AP ,AD =DC =PD =2,E 、F 、G 分别是PC 、PD 、BC 的中点,现将△PDC 沿CD 折起,使平面PDC ⊥平面ABCD(如图2).(1) 求二面角GEFD 的大小;(2) 在线段PB 上确定一点Q ,使PC ⊥平面ADQ ,并给出证明过程.图1图2【解析】 (1) 建立如图所示的空间直角坐标系,则EF →=(0,-1,0),EG →=(1,1,-1). 设平面GEF 的一个法向量为n =(x ,y ,z), 则⎩⎪⎨⎪⎧n ·EF →=-y =0,n ·EG →=x +y -z =0,取n =(1,0,1).又平面EFD 的法向量为m =(1,0,0),所以cos 〈m ,n 〉 =m ·n |m |·|n |=22,所以二面角GEFD 的大小为45°.(2) 设PQ →=λPB →(0<λ<1),则AQ →=AP →+PQ →=(-2+2λ,2λ,2-2λ). 因为AQ ⊥PC ,所以AQ →·PC →=0, 即2×2λ-2(2-2λ)=0,解得λ=12.又AD ⊥PC ,AD ∩AQ =A ,AD ,AQ ⊂平面ADQ , 所以PC ⊥平面ADQ , 故Q 是线段PB 的中点.变式4、如图,在四面体ABOC 中,OC ⊥OA, OC ⊥OB ,∠AOB =120°,且OA =OB =OC =1.(1) 设P 为AC 的中点.在AB 上是否存在一点Q ,使PQ ⊥OA ?若存在,计算ABAQ的值;若不存在,请说明理由.(2) 求二面角OACB 的平面角的余弦值.【解析】 (1) 取O 为坐标原点,分别以OA ,OC 所在的直线为x 轴,z 轴,建立如图所示的空间直角坐标系 Oxyz ,则A(1,0,0),C(0,0,1),B(-12,32,0).因为P 为AC 的中点,所以P ⎝ ⎛⎭⎪⎫12,0,12.设AQ →=λAB →,λ∈(0,1). 因为AB →=⎝ ⎛⎭⎪⎫-32,32,0,所以OQ →=OA →+AQ →=(1,0,0)+λ(-32,32,0)=⎝ ⎛⎭⎪⎫1-32λ,32λ,0,所以PQ →=OQ →-OP →=⎝ ⎛⎭⎪⎫12-32λ,32λ,-12.因为PQ ⊥OA ,所以PQ →·OA →=0,即12-32λ=0,解得λ=13,所以存在点Q ⎝ ⎛⎭⎪⎫12,36,0使得PQ ⊥OA ,且AB AQ =3.(2) 记平面ABC 的法向量为n =(x ,y ,z), 则由n ⊥CA →,n ⊥AB →,且CA →=(1,0,-1), 得⎩⎪⎨⎪⎧x -z =0,-32x +32y =0,故可取n =(1,3,1). 又平面OAC 的法向量为c =(0,1,0),所以cos 〈n ,c 〉=(1,3,1)·(0,1,0)5×1=35,故二面角OACB 的平面角是锐角,记为θ,则 cos θ=155.1、【2018年高考全国Ⅲ卷理数】如图,边长为2的正方形ABCD 所在的平面与半圆弧CD 所在平面垂直,M 是CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)当三棱锥M ABC -体积最大时,求面MAB 与面MCD 所成二面角的正弦值.【答案】(1)见解析;(2.【解析】(1)由题设知,平面CMD⊥平面ABCD,交线为CD.因为BC⊥CD,BC⊂平面ABCD,所以BC⊥平面CMD,故BC⊥DM.因为M为CD上异于C,D的点,且DC为直径,所以DM⊥CM.又BC CM=C,所以DM⊥平面BMC.而DM⊂平面AMD,故平面AMD⊥平面BMC.(2)以D为坐标原点,DA的方向为x轴正方向,建立如图所示的空间直角坐标系D−xyz.当三棱锥M−ABC体积最大时,M为CD的中点.D A B C M,由题设得(0,0,0),(2,0,0),(2,2,0),(0,2,0),(0,1,1)=-==(2,1,1),(0,2,0),(2,0,0)AM AB DA设(,,)x y z =n 是平面MAB 的法向量,则0,0.AM AB ⎧⋅=⎪⎨⋅=⎪⎩n n 即20,20.x y z y -++=⎧⎨=⎩ 可取(1,0,2)=n .DA 是平面MCD 的法向量,因此5cos ,5||||DA DA DA ⋅==n n n ,2sin ,5DA =n , 所以面MAB 与面MCD . 2、【2018年高考北京卷理数】如图,在三棱柱ABC −111A B C 中,1CC ⊥平面ABC ,D ,E ,F ,G分别为1AA ,AC ,11A C ,1BB 的中点,AB=BC ,AC =1AA =2.(1)求证:AC ⊥平面BEF ; (2)求二面角B−CD −C 1的余弦值; (3)证明:直线FG 与平面BCD 相交. 【答案】(1)见解析;(2)(3)见解析. 【解析】(1)在三棱柱ABC -A 1B 1C 1中,∵CC 1⊥平面ABC , ∴四边形A 1ACC 1为矩形. 又E ,F 分别为AC ,A 1C 1的中点, ∴AC ⊥EF . ∵AB =BC . ∴AC ⊥BE , ∴AC ⊥平面BEF .(2)由(1)知AC ⊥EF ,AC ⊥BE ,EF ∥CC 1. 又CC 1⊥平面ABC ,∴EF ⊥平面ABC . ∵BE ⊂平面ABC ,∴EF ⊥BE . 如图建立空间直角坐标系E -xyz .由题意得B (0,2,0),C (-1,0,0),D (1,0,1),F (0,0,2),G (0,2,1). ∴=(201)=(120)CD CB ,,,,,, 设平面BCD 的法向量为()a b c =,,n , ∴00CD CB ⎧⋅=⎪⎨⋅=⎪⎩n n ,∴2020a c a b +=⎧⎨+=⎩,令a =2,则b =-1,c =-4,∴平面BCD 的法向量(214)=--,,n , 又∵平面CDC 1的法向量为=(020)EB ,,,∴cos =21||||EB EB EB ⋅<⋅>=-n n n .由图可得二面角B -CD -C 1为钝角,所以二面角B -CD -C 1的余弦值为 (3)由(2)知平面BCD 的法向量为(214)=--,,n , ∵G (0,2,1),F (0,0,2), ∴=(021)GF -,,,∴2GF ⋅=-n ,∴n 与GF 不垂直,∴GF 与平面BCD 不平行且不在平面BCD 内, ∴GF 与平面BCD 相交.3、【2018年高考天津卷理数】如图,AD BC ∥且AD =2BC ,AD CD ⊥,EG AD ∥且EG =AD ,CD FG ∥且CD =2FG ,DG ABCD ⊥平面,DA =DC =DG =2.(1)若M 为CF 的中点,N 为EG 的中点,求证:MN CDE ∥平面; (2)求二面角E BC F --的正弦值;(3)若点P 在线段DG 上,且直线BP 与平面ADGE 所成的角为60°,求线段DP 的长.【答案】(1)见解析;(2;(3)3.【解析】本小题主要考查直线与平面平行、二面角、直线与平面所成的角等基础知识.考查用空间向量解决立体几何问题的方法.考查空间想象能力、运算求解能力和推理论证能力.满分13分.依题意,可以建立以D 为原点,分别以DA ,DC ,DG 的方向为x 轴,y 轴,z 轴的正方向的空间直角坐标系(如图),可得D (0,0,0),A (2,0,0),B (1,2,0),C (0,2,0),E (2,0,2),F (0,1,2),G (0,0,2),M (0,32,1),N (1,0,2).(1)依题意DC =(0,2,0),DE =(2,0,2).设n 0=(x ,y ,z )为平面CDE 的法向量,则0000DC DE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即20220y x z =⎧⎨+=⎩,, 不妨令z=–1,可得n 0=(1,0,–1).又MN =(1,32-,1),可得00MN ⋅=n ,又因为直线MN ⊄平面CDE ,所以MN ∥平面CDE .(2)依题意,可得BC =(–1,0,0),(122)BE =-,,,CF =(0,–1,2). 设n =(x ,y ,z )为平面BCE 的法向量,则00BC BE ⎧⋅=⎪⎨⋅=⎪⎩,,n n 即0220x x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得n =(0,1,1). 设m =(x ,y ,z )为平面BCF 的法向量,则00BC CF ⎧⋅=⎪⎨⋅=⎪⎩,,m m 即020x y z -=⎧⎨-+=⎩,, 不妨令z =1,可得m =(0,2,1). 因此有cos<m ,n>=||||⋅=m n m n sin<m ,n.所以,二面角E –BC –F. (3)设线段DP 的长为h (h ∈[0,2]),则点P 的坐标为(0,0,h ),可得(12)BP h =--,,. 易知,DC =(0,2,0)为平面ADGE 的一个法向量,故cos BP DCBP DC BPDC h ⋅<⋅>==,解得h ∈[0,2]. 所以线段DP 的长为3. 4、(2020届山东省烟台市高三上期末)如图,在四棱锥S ABCD -中,ABCD 为直角梯形,//AD BC ,BC CD ⊥,平面SCD ⊥平面ABCD ,SCD ∆是以CD 为斜边的等腰直角三角形,224BC AD CD ===,E 为BS 上一点,且2BE ES =.(1)证明:直线//SD 平面ACE ;(2)求二面角S AC E --的余弦值.【答案】(1)证明见解析 (2)13【解析】(1)连接BD 交AC 于点F ,连接EF ,因为//AD BC ,所以AFD ∆与BCF ∆相似,所以2BF BC FD AD==, 又=2BE BF ES FD=,所以//EF SD , 因为EF ⊂平面ACE ,SD ⊄平面ACE ,所以直线//SD 平面ACE(2)由题,因为平面SCD ⊥平面ABCD ,平面SCD平面ABCD CD =,BC ⊂平面ABCD ,BC CD ⊥,所以BC ⊥平面SCD ,以C 为坐标原点,,CD CB 所在的方向分别为y 轴、z 轴的正方向,与,CD CB 均垂直的方向作为x 轴的正方向,建立如图所示的空间直角坐标系C xyz -,因为224BC AD CD ===,2BE ES =,则(0,0,0)C ,(1,1,0)S ,(0,2,2)A ,224(,,)333E , 所以(0,2,2)CA =,(1,1,0)CS =,224(,,)333CE =, 设平面SAC 的一个法向量为(,,)m x y z =,则00m CA m CS ⎧⋅=⎨⋅=⎩,即00y z x y +=⎧⎨+=⎩, 令1z =,得1x =,1y =-,于是(1,1,1)m =-,设平面EAC 的一个法向量为(,,)n x y z =,则00n CA n CE ⎧⋅=⎨⋅=⎩,即020y z x y z +=⎧⎨++=⎩, 令1z =,得1x =-,1y =-,于是(1,1,1)m =--,设二面角S AC E --的平面角的大小为θ,则1cos 3m nm n θ⋅==, 所以二面角S AC E --的余弦值为135、(2020届山东省潍坊市高三上期中)如图,在棱长均为2的三棱柱111ABCA B C -中,平面1ACB ⊥平面11A ABB ,11AB A B =,O 为1AB 与1A B 的交点.(1)求证:1AB CO ⊥;(2)求平面11ACC A 与平面ABC 所成锐二面角的余弦值.【答案】(1)详见解析;(2)13. 【解析】(1)因为四边形11A ABB 为菱形,所以11A B AB ⊥,又平面1ACB ⊥平面11A ABB ,平面1A CB 平面111A ABB A B =,所以1AB ⊥平面1A CB , 因为CO ⊂平面1A CB ,所以1AB CO ⊥.(2)因为11A B AB =,所以菱形11A ABB 为正方形,在Rt COA ∆中,CO ==在COB ∆中,CO OB ==2CB =,222CO OB CB +=, 所以,CO OB ⊥,又1CO AB ⊥,11A B AB O ⋂=,所以,CO ⊥平面11A ABB ;以O 为坐标原点,以OA ,OB ,OC 所在直线分别为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系O xyz -.)A,()10,A,(C,()B,设平面11ACC A的一个法向量为()1111,,n x y z=平面ABC的一个法向量为()2222,,n x y z=,则11110,0,⎧=⎪⎨+=⎪⎩令11x=,得()11,1,1=-n,22220,0,⎧+=⎪⎨+=⎪⎩令21x=,得()21,1,1=n,设平面11ACC A与平面ABC所成锐二面角为α,则21121cos33α⋅===n nn n,所以平面11ACC A与平面ABC所成锐二面角的余弦值为13.6、(2020届山东省日照市高三上期末联考)如图,扇形AOB的半径为2,圆心角120AOB∠=,点C为弧AB上一点,PO⊥平面AOB且PO=,点M PB∈且2BM MP=,PA∥平面MOC.(1)求证:平面MOC ⊥平面POB ;(2)求平面POA 和平面MOC 所成二面角的正弦值的大小.【答案】(1)见证明;(2) 4【解析】(1)如图,连接AB 交OC 于点N ,连接MN ,PA ∥平面MOC ,∴PA ∥MN ,2BM MP =,2BN NA ∴=,2OA OB ==,120AOB ∠=,AB ∴=,BN ∴=,又30OBA ∠=,∴在BON △中,根据余弦定理得ON =, 222ON OB BN ∴+=,90BON ∴∠=,ON OB ∴⊥, 又PO ⊥平面AOB ,ON OP ∴⊥,ON ∴⊥平面POB , 又ON ⊂平面MOC ,∴平面MOC ⊥平面POB(2)由(1)得,,OC OB OP OC OP OB ⊥⊥⊥,如图建立空间直角坐标系O xyz -, 5OP =,2OA OB OC ===,∴OP =,(3,1,0)OA =-,(2,0,0)OC =,(0,2,0)OB =,点M PB ∈且2BM MP =,2(0,3OM ∴=, 设平面POA 的法向量为1111(,,)x y z =n ,则1100n OP n OA ⎧⋅=⎪⎨⋅=⎪⎩,即11100y =-=, 令11x =,得1y =10z =,∴1(13,0)=n ,设平面MOC 的法向量为2222(,,)x y z =n ,则2200n OC n OM ⎧⋅=⎪⎨⋅=⎪⎩,即222202033x y z =⎧⎪⎨+=⎪⎩,即22200x y =⎧⎪⎨+=⎪⎩,令21z =,得2y =,20x =,∴2(0,=n ,设平面POA 和平面MOC 所成二面角的大小为θ,则|cos |4θ==,sin 4θ∴=, ∴平面POA 和平面MOC所成二面角的正弦值的大小为4。
空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)
空间向量在⽴体⼏何中的应⽤(重点知识+⾼考真题+模拟精选)空间向量在⽴体⼏何中的应⽤【重要知识】⼀、求平⾯法向量的⽅法与步骤:1、选向量:求平⾯的法向量时,要选取两个相交的向量,如AC AB ,2、设坐标:设平⾯法向量的坐标为),,(z y x n =3、解⽅程:联⽴⽅程组=?=?0AC n AB n ,并解⽅程组4、定结论:求出的法向量中三个坐标不是具体的数值,⽽是⽐例关系。
设定某个坐标为常数得到其他坐标⼆、利⽤向量求空间⾓: 1、求异⾯直线所成的⾓:设b a ,为异⾯直线,点C A ,为a 上任意两点,点D B ,为b 上任意两点,b a ,所成的⾓为θ,则BDAC BD AC ??=θcos【注】由于异⾯直线所成的⾓θ的范围是:?≤设直线l 的⽅向向量为a ,平⾯α的法向量为n ,直线l 与平⾯α所成的⾓为θ,a 与n所成的⾓为?,则na n a ??==?θcos sin【注】由于直线与平⾯所成的⾓θ的范围是:?≤≤?900θ,因此0sin ≥θ 3、求⼆⾯⾓:设21,n n 分别为平⾯βα,的法向量,⼆⾯⾓βα--l 为θ,则>=<21,n n θ或><-21,n n π,其中212121,cos n n n n n n ??>=<三、利⽤向量求空间距离: 1、求点到平⾯的距离设平⾯α的法向量为n ,,α?A α∈B ,则点A 到平⾯α的距离为nn AB ?2、求两条异⾯直线的距离设21,l l 是两条异⾯直线,n 是公垂线段AB 的⽅向向量,D C ,分别为21,l l 上的任意两点,则21l l 与的距离为nn CD AB ?=【重要题型】1、(2012⼴东,理)如图所⽰,在四棱锥ABCD P -中,底⾯ABCD 为矩形,ABCD PA 平⾯⊥,点E 在线段PC 上,BDE PC 平⾯⊥(1)证明:PAC BD 平⾯⊥(2)若2,1==AD PA ,求⼆⾯⾓A PC B --的正切值2、(2013⼴东,理)如图①,在等腰三⾓形ABC 中,?=∠90A ,6=BC ,E D ,分别是AB AC ,上的点,2==BE CD ,O 为BC 的中点。
空间向量在立体几何中的应用知识点大全、经典高考题带解析、练习题带答案[2]演示教学
空间向量在立体几何中的应用【考纲说明】1.能够利用共线向量、共面向量、空间向量基本定理证明共线、共面、平行及垂直问题;2.会利用空间向量的坐标运算、两点间的距离公式、夹角公式等解决平行、垂直、长度、角、距离等问题;3.培养用向量的相关知识思考问题和解决问题的能力;【知识梳理】一、空间向量的运算 1、向量的几何运算 (1)向量的数量积:已知向量 ,则 叫做 的数量积,记作 ,即 空间向量数量积的性质:① ;② ;③.(2)向量共线定理:向量()0a a ≠rr r 与b r 共线,当且仅当有唯一一个实数λ,使b a λ=r r .2、向量的坐标运算 (1)若,,则.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标。
(2)若 , ,则 ,,,;,.(3)夹角公式:(4)两点间的距离公式:若,,则二、空间向量在立体几何中的应用2.利用空间向量证明平行问题对于平行问题,一般是利用共线向量和共面向量定理进行证明.3.利用空间向量证明垂直问题对于垂直问题,一般是利用进行证明;4.利用空间向量求角度(1)线线角的求法:设直线AB、CD对应的方向向量分别为a、b,则直线AB与CD所成的角为(线线角的范围[00,900])(2)线面角的求法:设n是平面的法向量,是直线的方向向量,则直线与平面所成的角为(3)二面角的求法:设n1,n2分别是二面角的两个面,的法向量,则就是二面角的平面角或其补角的大小(如图)5.利用空间向量求距离(1)平面的法向量的求法:设n=(x,y,z),利用n与平面内的两个不共线的向a,b垂直,其数量积为零,列出两个三元一次方程,联立后取其一组解,即得到平面的一个法向量(如图)。
(2)利用法向量求空间距离(a)点A到平面的距离:,其中,是平面的法向量。
(b)直线与平面之间的距离:,其中,是平面的法向量。
(c)两平行平面之间的距离:,其中,是平面的法向量。
【经典例题】【例1】(2010全国卷1理)正方体ABCD-1111A B C D中,B1B与平面AC1D所成角的余弦值为()(A)23(B)33(C)23(D)63【解析】D【例2】(2010全国卷2文)已知三棱锥S ABC-中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA=3,那么直线AB与平面SBC所成角的正弦值为()(A)3(B)5(C)7(D)34【解析】D【例3】(2012全国卷)三棱柱111ABC A B C-中,底面边长和侧棱长都相等,1160BAA CAA∠=∠=o,则异面直线1AB与1BC所成角的余弦值为____________。
第26节-空间向量在立体几何中的应用(原卷版)
第26节空间向量在立体几何中的应用基础知识要夯实平行垂直问题基础知识直线l 的方向向量为a =(a 1,b 1,c 1).平面α,β的法向量u =(a 3,b 3,c 3),v =(a 4,b 4,c 4)(1)线面平行:l ∥α⇔a ⊥u ⇔a ·u =0⇔a 1a 3+b 1b 3+c 1c 3=0(2)线面垂直:l ⊥α⇔a ∥u ⇔a =k u ⇔a 1=ka 3,b 1=kb 3,c 1=kc 3(3)面面平行:α∥β⇔u ∥v ⇔u =k v ⇔a 3=ka 4,b 3=kb 4,c 3=kc 4(4)面面垂直:α⊥β⇔u ⊥v ⇔u ·v =0⇔a 3a 4+b 3b 4+c 3c 4=0利用空间向量求空间角基础知识(1)向量法求异面直线所成的角:若异面直线a ,b 的方向向量分别为a ,b ,异面直线所成的角为θ,则cos θ=|cos 〈a ,b 〉|=||||||a b a b ⋅ .(2)向量法求线面所成的角:求出平面的法向量n ,直线的方向向量a ,设线面所成的角为θ,则sin θ=|cos 〈n ,a 〉|=||||||a n a n ⋅ .(3)向量法求二面角:求出二面角α-l -β的两个半平面α与β的法向量n 1,n 2,若二面角α-l -β所成的角θ为锐角,则cos θ=|cos 〈n 1,n 2〉|=1212||||||n n n n ⋅;若二面角α-l -β所成的角θ为钝角,则cos θ=-|cos 〈n 1,n 2〉|=-1212||||||n n n n ⋅.基本技能要落实考点一通过空间向量判断位置关系【例1】如图所示,在底面是矩形的四棱锥P ABCD 中,PA ⊥底面ABCD ,E ,F 分别是PC ,PD 的中点,PA =AB =1,BC =2.(1)求证:EF ∥平面PAB ;(2)求证:平面P AD ⊥平面PDC .【解析】以A 为原点,AB ,AD ,AP 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系如图所示,则A (0,0,0),B (1,0,0),C (1,2,0),D (0,2,0),P (0,0,1),所以E 11,1,22⎛⎫ ⎪⎝⎭,F 10,1,2⎛⎫ ⎪⎝⎭,EF =1,0,02⎛⎫- ⎪⎝⎭,PB=(1,0,-1),PD =(0,2,-1),AP =(0,0,1),AD =(0,2,0),DC=(1,0,0),AB =(1,0,0).(1)因为EF =-12AB,所以EF ∥AB ,即EF ∥AB .又AB ⊂平面PAB ,EF ⊄平面PAB ,所以EF ∥平面P AB .(2)因为AP ·DC =(0,0,1)·(1,0,0)=0,AD ·DC=(0,2,0)·(1,0,0)=0,所以AP ⊥DC ,AD ⊥DC,即AP ⊥DC ,AD ⊥DC .又AP ∩AD =A ,AP ⊂平面PAD ,AD ⊂平面PAD ,所以DC ⊥平面PAD .因为DC ⊂平面PDC ,所以平面PAD ⊥平面PDC .【方法技巧】使用空间向量方法证明线面平行时,既可以证明直线的方向向量和平面内一条直线的方向向量平行,然后根据线面平行的判定定理得到线面平行,也可以证明直线的方向向量与平面的法向量垂直;证明面面垂直既可以证明线线垂直,然后使用判定定理进行判定,也可以证明两个平面的法向量垂直.【跟踪训练】1.在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.求证:(1)B 1D ⊥平面ABD ;(2)平面EGF ∥平面ABD .证明:(1)以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D=(0,2,-2),1B D ·BA =0,1B D ·BD=0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .(2)由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG =,1,12a ⎛⎫ ⎪⎝⎭,EF=(0,1,1),1B D ·EG =0+2-2=0,1B D ·EF=0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .考点二空间中的角【例2】如图,在直三棱柱A 1B 1C 1ABC 中,AB ⊥AC ,AB =AC =2,A 1A =4,点D 是BC 的中点.(1)求异面直线A 1B 与C 1D 所成角的余弦值;(2)求平面ADC 1与平面ABA 1所成二面角的正弦值.【解析】(1)以A 为坐标原点,建立如图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (0,2,0),D (1,1,0),A 1(0,0,4),C 1(0,2,4),所以1A B =(2,0,-4),1C D=(1,-1,-4).因为cos 〈1A B ,1C D 〉=1111||||A B C D A B C D ⋅=18310102018=⨯所以异面直线A 1B 与C 1D 所成角的余弦值为31010.(2)设平面ADC 1的法向量为n 1=(x ,y ,z ),因为AD =(1,1,0),1AC=(0,2,4),所以n 1·AD =0,n 1·1AC=0,即x +y =0且y +2z =0,取z =1,得x =2,y =-2,所以,n 1=(2,-2,1)是平面ADC 1的一个法向量.取平面ABA 1的一个法向量为n 2=(0,1,0).设平面ADC 1与平面ABA 1所成二面角的大小为θ.由|cos θ|=1212||||||n n n n ⋅=22391=⨯,得sin θ=53.因此,平面ADC 1与平面ABA 1所成二面角的正弦值为53.【方法技巧】(1)运用空间向量坐标运算求空间角的一般步骤:①建立恰当的空间直角坐标系;②求出相关点的坐标;③写出向量坐标;④结合公式进行论证、计算;⑤转化为几何结论.(2)求空间角应注意:①两条异面直线所成的角α不一定是直线的方向向量的夹角β,即cos α=|cos β|.②两平面的法向量的夹角不一定是所求的二面角,有可能两法向量夹角的补角为所求.【跟踪训练】1.如图,在四棱锥S ABCD 中,AB ⊥AD ,AB ∥CD ,CD =3AB =3,平面SAD ⊥平面ABCD ,E 是线段AD 上一点,AE =ED =3,SE ⊥AD .(1)证明:平面SBE ⊥平面SEC ;(2)若SE =1,求直线CE 与平面SBC 所成角的正弦值.【解析】(1)证明:∵平面SAD ⊥平面ABCD ,平面SAD ∩平面ABCD =AD ,SE ⊂平面SAD ,SE ⊥AD ,∴SE ⊥平面ABCD .∵BE ⊂平面ABCD ,∴SE ⊥BE .∵AB ⊥AD ,AB ∥CD ,CD =3AB =3,AE =ED =3,∴∠AEB =30°,∠CED =60°.∴∠BEC =90°,即BE ⊥CE .又SE ∩CE =E ,∴BE ⊥平面SEC .∵BE ⊂平面SBE ,∴平面SBE ⊥平面SEC .(2)由(1)知,直线ES ,EB ,EC 两两垂直.如图,以E 为原点,EB 为x 轴,EC 为y 轴,ES 为z 轴,建立空间直角坐标系.则E (0,0,0),C (0,23,0),S (0,0,1),B (2,0,0),所以CE =(0,-23,0),CB =(2,-23,0),CS=(0,-23,1).设平面SBC 的法向量为n =(x ,y ,z ),则0,0.n CB n CS ⎧⋅=⎪⎨⋅=⎪⎩ 即2230,230.x y y z ⎧-=⎪⎨-+=⎪⎩令y =1,得x =3,z =23,则平面SBC 的一个法向量为n =(3,1,23).设直线CE 与平面SBC 所成角的大小为θ,则sin θ=|||||||n CE n CE ⋅|=14,故直线CE 与平面SBC 所成角的正弦值为14.考点三利用空间向量解决探索性问题【例3】如图1,正△ABC 的边长为4,CD 是AB 边上的高,E ,F 分别是AC 和BC 边的中点,现将△ABC 沿CD 翻折成直二面角A DC B (如图2).(1)试判断直线AB 与平面DEF 的位置关系,并说明理由;(2)求二面角E DF C 的余弦值;(3)在线段BC 上是否存在一点P ,使AP ⊥DE ?如果存在,求出BPBC的值;如果不存在,请说明理由.【解析】(1)在△ABC 中,由E ,F 分别是AC ,BC 中点,得EF ∥AB .又AB ⊄平面DEF ,EF ⊂平面DEF ,∴AB ∥平面DEF .(2)以点D 为坐标原点,以直线DB ,DC ,DA 分别为x 轴、y 轴、z 轴,建立空间直角坐标系,则A (0,0,2),B (2,0,0),C (0,23,0),E (0,3,1),F (1,3,0),DF =(1,3,0),DE =(0,3,1),DA=(0,0,2).平面CDF 的法向量为DA=(0,0,2).设平面EDF 的法向量为n =(x ,y ,z ),则00DF n DE n ⎧⋅=⎪⎨⋅=⎪⎩ 即30,30,x y y z ⎧+=⎪⎨+=⎪⎩取n =(3,-3,3),cos 〈DA ,n 〉=||||DA nDA n ⋅=217,所以二面角E DF C 的余弦值为217.(3)存在.设P (s ,t,0),有AP =(s ,t ,-2),则AP ·DE =3t -2=0,∴t =233,又BP =(s -2,t,0),PC =(-s,23-t,0),∵BP ∥PC,∴(s -2)(23-t )=-st ,∴3s +t =23.把t =233代入上式得s =43,∴BP =13BC ,∴在线段BC 上存在点P ,使AP ⊥DE .此时,BP BC =13.【方法技巧】1空间向量法最适合于解决立体几何中的探索性问题,它无需进行复杂的作图、论证、推理,只需通过坐标运算进行判断.2解题时,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等,所以为使问题的解决更简单、有效,应善于运用这一方法.【跟踪训练】如图所示,在直三棱柱ABC A 1B 1C 1中,∠ACB =90°,AA 1=BC =2AC =2.(1)若D 为AA 1中点,求证:平面B 1CD ⊥平面B 1C 1D ;(2)在AA 1上是否存在一点D ,使得二面角B 1CD C 1的大小为60°?【解析】(1)证明:如图所示,以点C 为原点,CA ,CB ,CC 1所在直线分别为x ,y ,z 轴建立空间直角坐标系.则C (0,0,0),A (1,0,0),B 1(0,2,2),C 1(0,0,2),D (1,0,1),即11C B =(0,2,0),1DC =(-1,0,1),CD=(1,0,1).由11C B ·CD =(0,2,0)·(1,0,1)=0+0+0=0,得11C B ⊥CD,即C 1B 1⊥CD .由1DC ·CD =(-1,0,1)·(1,0,1)=-1+0+1=0,得1DC ⊥CD,即DC 1⊥CD .又DC 1∩C 1B 1=C 1,∴CD ⊥平面B 1C 1D .又CD ⊂平面B 1CD ,∴平面B 1CD ⊥平面B 1C 1D .(2)存在.当AD =22AA 1时,二面角B 1CD C 1的大小为60°.理由如下:设AD =a ,则D 点坐标为(1,0,a ),CD=(1,0,a ),1CB =(0,2,2),设平面B 1CD 的法向量为m =(x ,y ,z ),则10m CB m CD ⎧⋅=⎪⎨⋅=⎪⎩=⇒220,0,y z x az +=⎧⎨+=⎩令z =-1,得m =(a,1,-1).又∵CB =(0,2,0)为平面C 1CD 的一个法向量,则cos 60°=||||||m CB m CB ⋅=212a +=12,解得a =2(负值舍去),故AD =2=22AA 1.∴在AA 1上存在一点D 满足题意.达标检测要扎实一、单选题1.已知向量()3,1a =,向量()31,31a b -=++,则a 与b的夹角大小为()A .30°B .60°C .120°D .150°【答案】D【解析】 向量()3,1a =,向量()31,31a b -=++,()1,3b →∴=--,333cos ,222a b --<>==-⨯,且0,a b π≤<>≤ ,,a b →→∴的夹角为51506π=︒.故选:D.2.设,a b为单位向量,且a b - =1,则|a +2b |=()A .3B .7C .3D .7【答案】B【解析】,a b 为单位向量,且a b - =1可得2221a a b b -⋅+=,可得12a b ⋅= ,222441247a b a a b b +=+⋅+=++=.故选:B .3.在平行四边形ABCD 中,()()1,2,3,4AC BD == ,则AB AD = ()A .5B .4C .3D .2【答案】A【解析】 AC AB AD =+ ,BD AD AB =-,∴2222AC AB AB AD AD =+⋅+ ,2222BD AD AB AD AD =-⋅+ ,∴()2222224123420AC BD AB AD -=⋅=+-+=- ,5AB AD ∴⋅=-,故选:A4.已知直角三角形ABC 中,90A ∠=︒,AB =2,AC =4,点P 在以A 为圆心且与边BC 相切的圆上,则PB PC ⋅的最大值为()A .161655+B .16855+C .165D .565【答案】D【解析】以A 为原点建系,()()0,2,4,0B C ,:142x yBC +=,即240x y +-=,故圆的半径为45r =,∴圆2216:5A x y +=,设BC 中点为()2,1D ,22221120544PB PC PD BC PD PD =-=-⨯=- ,max 49555PD AD r =+=+=,∴()max 8156555PB PC =-= ,故选:D.5.在边长为1的菱形ABCD 中,∠BAD =60°,E 是BC 的中点,则AC AE ⋅=()A .333+B .92C .3D .94【答案】D【解析】建立如图平面直角坐标系,则331(,0),(,0),(0,)222A CB --∴E 点坐标为31(,)44-,331(3,0),(,),44AC AE ∴==- 339344AC AE ∴⋅=⨯= .故选:D6.如图,在菱形ABCD 中,π3BAD ∠=,E 为BC 的中点,若AF AB λ= ,且AE DF ⊥,则λ=()A .45B .35C .34D .12【答案】A【解析】设菱形ABCD 的边长为a ,E 为BC 的中点,则12=+=+AE AB BE AB AD ,又AF AB λ= ,则λ=-=- DF AF AD AB AD ,因π3BAD ∠=,则221cos 32AB AD a a π⋅== ,由AE DF ⊥得:2211)(1)1()(222AE DF AB A AD D AB AB AB AD ADλλλ-=+-⋅⋅-=⋅+ 222221(251)0224a a a a a λλλ=---==+,解得45λ=,所以45λ=.故选:A7.在ABC 中,已知6AB =,2AC =,且满足2DB AD = ,AE EC =uu ur uu u r ,若线段CD 和线段BE 的交点为P ,则()AP CA CB ⋅+= ().A .3B .4C .5D .6【答案】B【解析】设AP xAB yAC =+,由2DB AD = 知3AB AD =,∴3AP x AD y AC =+ ,∵D ,P ,C 三点共线,∴31x y +=①,由AE EC =uu u r uu u r 知2AC AE =,∴2AP x AB y AE =+ ,∵B ,P ,E 三点共线,∴21x y +=②,由①②得:15x =.25y =,∴1255AP AB AC =+ ,而2CA CB AC AB AC AB AC +=-+-=- ,∴()()()()222212112464245555AP CA CB AB AC AB AC AB AC ⎛⎫⋅+=+-=-=⨯-⨯= ⎪⎝⎭故选:B8.已知向量(),1a x =r ,()3,2b =- ,若//a b,则x =()A .32-B .23-C .32D .23【答案】A【解析】因为//a b ,(),1a x =r ,()3,2b =- ,所以2(3)10x --⨯=,解得32x =-.故选:A9.已知平面向量,a b 满足||2,||1,(2)a b a a b ==⊥+ ,则向量,a b的夹角为()A .3πB .4πC .23πD .34π【答案】D【解析】(2),(2)0a a b a a b ⊥+∴⋅+= ,即220,1a a b a b +⋅=∴⋅=-,12cos ,2||||21a b a b a b ⋅-∴〈〉===-⨯.3,[0,],,4a b a b ππ〈〉∈∴〈〉= .故选:D .10.已知向量()1,2a =,()3,0b = ,若()a b a λ-⊥r r r ,则实数λ=()A .0B .35C .1D .3【答案】B【解析】因为向量()1,2a =,()3,0b = ,且()a b a λ-⊥r r r ,所以()0a b a λ-⋅=r r r ,即20a a b λ-⋅= ,所以有530λ-=,解得35λ=,故选:B.11.在平行四边形ABCD 中,点E ,F 分别满足12BE BC = ,13DF DC = .若λ=+BD AE μ AF ,则实数λ+μ的值为()A .15-B .15C .75-D .75【答案】B【解析】由题意,设AB a AD b,==,则在平行四边形ABCD 中,因为12BE BC = ,13DF DC =,所以点E 为BC 的中点,点F 在线段DC 上,且2CF DF =,所以1123AE a b AF a b =+=+,,又因为BD AE AF λμ=+ ,且BD AD AB b a =-=-,所以11112332a b AE AF a b a b a b λμλμλμλμ⎛⎫⎛⎫⎛⎫⎛⎫-+=+=+++=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以113112λμλμ⎧+=-⎪⎪⎨⎪+=⎪⎩,解得8595λμ⎧=-⎪⎪⎨⎪=⎪⎩,所以15λμ+=。
空间向量在立体几何中的应用sxz
π
β
D
b
C
B
α
A
a
l
相 或 补 故 cosφ =- cos < A , CD>| 等 互 , 有 | B 方 思 在 半 面 找 直 垂 于 共 , 可 法 路: 两 平 各 一 线 直 公 棱 则 把
二 角 题 化 两 垂 所 的 , 转 为 量 夹 面 问 转 这 条 线 成 角 再 化 向 的 角 题 结 图 判 是 ( ) 面 , 公 处 。 问 , 合 形 定 锐 钝 二 角 套 式 理
A ⋅m C 则 异 直 的 离d= 两 面 线 距 离d | m|
向量 m 与异面直线a、b 都垂直, 可用方程组求出 m 的坐标,
五 两 互 垂 公 顶 的 共 的 线 两 相 直
正方体、长方体、底面 是矩形的直棱柱、底面 是直角 三角形且过直角顶点的 侧棱垂直于底面的三棱 锥等等。 A
C
O
B
2.有一侧棱垂直底面 有一侧棱垂直底面
O ⊥底 O C 面 AB
(1)∆OAB是等边三角形
(2)∆OAB是以OB为斜边的直角三角形 A
PA⊥ 底 AB , 四 形 B 是 形 面 CD 且 边 A CD 菱
C
O
B
P
PA⊥底 AB , 四 形 B 是 面 CD 且 边 A CD A C 60 的 形 ∠ B = ° 菱
(二)证明线面垂直 二 证明线面垂直
l
a
m
1. 直 l 的 向 量 a, 线 方 向 为 平 α的 向 量 m 面 方 向 为, 则 a = λ⋅ m⇒l ⊥α 有
α
方 思 : 直 的 向 量在 直 法 路 找 线 方 向 ( 两 线 上 两 得 向 )及 面 法 量只 取 点 一 量 平 的 向 , 需 明 向 平 , 可 线 垂 。 证 两 量 行 则 证 面 直
专题53 空间向量在立体几何中的应用(理)(解析版)
专题53空间向量在立体几何中的应用(理)专题知识梳理1.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a 的有向线段所在直线与直线l 平行或重合,则称此向量a 为直线l 的方向向量.(2)平面的法向量:直线l ⊥α,取直线l 的方向向量a ,则向量a 叫做平面α的法向量.2.空间位置关系的向量表示位置关系向量表示直线l 1,l 2的方向向量分别为n 1,n 2l 1∥l 2n 1∥n 2⇔n 1=λn 2l 1⊥l 2n 1⊥n 2⇔n 1·n 2=0直线l 的方向向量为n ,平面α的法向量为ml ∥αn ⊥m ⇔n ·m =0l ⊥αn ∥m ⇔n =λm 平面α,β的法向量分别为n ,mα∥βn ∥m ⇔n =λm α⊥βn ⊥m ⇔n ·m =03.异面直线所成的角设a ,b 分别是两异面直线l 1,l 2的方向向量,则a 与b 的夹角βl 1与l 2所成的角θ范围(0,π)求法cos β=a ·b |a ||b |cos θ=|cos β|=|a ·b ||a ||b |4.求直线与平面所成的角设直线l 的方向向量为a ,平面α的法向量为n ,直线l 与平面α所成的角为θ,则sin θ=|cos 〈a ,n 〉|=|a ·n ||a ||n |.5.求二面角的大小(1)如图①,AB ,CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB →,CD→〉(2)如图②③,n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小θ满足|cos θ|=|cos 〈n 1,n 2〉|,二面角的平面角大小是向量n 1与n 2的夹角(或其补角).考点探究考向1利用空间向量证明平行与垂直问题【例】如图所示,在四棱锥P ABCD 中,PC ⊥平面ABCD ,PC =2,在四边形ABCD 中,∠B =∠C =90°,AB =4,CD =1,点M 在PB 上,PB =4PM ,PB 与平面ABCD 成30°的角.求证:(1)CM ∥平面PAD ;(2)平面PAB ⊥平面P AD .【解析】以C 为坐标原点,CB 所在直线为x 轴,CD 所在直线为y 轴,CP 所在直线为z 轴建立如图所示的空间直角坐标系C xyz .因为PC ⊥平面ABCD ,所以∠PBC 为PB 与平面ABCD 所成的角,所以∠PBC =30°,因为PC =2,所以BC =23,PB =4,所以D (0,1,0),B (23,0,0),A (23,4,0),P (0,0,2),32,0,32所以=(0,-1,2),=(23,3,0)32,0,32(1)设n=(x,y,z)为平面PAD -y+2z=0,23x+3y=0,令y=2,得n=(-3,2,1).因为n·=-3×32+2×0+1×32=0,所以n⊥.又CM⊄平面PAD,所以CM∥平面PAD.(2)法一:由(1)知=(0,4,0),=(23,0,-2),设平面PAB的一个法向量为m=(x0,y0,z0),4y0=0,23x0-2z0=0,令x0=1,得m=(1,0,3),又因为平面PAD的一个法向量n=(-3,2,1),所以m·n=1×(-3)+0×2+3×1=0,所以平面P AB⊥平面PAD.法二:取AP的中点E,连结BE,则E(3,2,1),=(-3,2,1).因为PB=AB,所以BE⊥PA.又因为·=(-3,2,1)·(23,3,0)=0,所以⊥.所以BE⊥DA.又PA∩DA=A,所以BE⊥平面PAD.又因为BE⊂平面PAB,所以平面PAB⊥平面PAD.题组训练1.已知直三棱柱ABCA1B1C1中,△ABC为等腰直角三角形,∠BAC=90°,且AB=AA1,D,E,F分别为B1A,C1C,BC的中点.求证:(1)DE∥平面ABC;(2)B1F⊥平面AEF.【解析】以A为原点,AB,AC,AA1所在直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系Axyz,令AB =AA 1=4,则A (0,0,0),E (0,4,2),F (2,2,0),B 1(4,0,4),D (2,0,2),A 1(0,0,4).(1) DE =(-2,4,0),平面ABC 的法向量为1 AA =(0,0,4),∵ DE ·1AA =0,DE ⊄平面ABC ,∴DE ∥平面ABC .(2)1 B F =(-2,2,-4), EF =(2,-2,-2),AF =(2,2,0),1 B F · EF =(-2)×2+2×(-2)+(-4)×(-2)=0,∴1 B F ⊥EF ,∴B 1F ⊥EF ,1 B F · AF =(-2)×2+2×2+(-4)×0=0,∴1 B F ⊥AF ,∴B 1F ⊥AF .∵AF ∩EF =F ,∴B 1F ⊥平面AEF .2.如图所示,平面PAD ⊥平面ABCD ,ABCD 为正方形,△PAD 是直角三角形,且PA =AD =2,E ,F ,G 分别是线段PA ,PD ,CD 的中点.求证:PB ∥平面EFG .【解析】∵平面PAD ⊥平面ABCD ,且ABCD 为正方形,∴AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如右图所示的空间直角坐标系A xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0).∴EF →=(0,1,0),EG →=(1,2,-1),设平面EFG 的法向量为n =(x ,y ,z ),n ·EF →=0,n ·EG→=0,y =0,x +2y -z =0,令z =1,则n =(1,0,1)为平面EFG 的一个法向量,∵PB →=(2,0,-2),∴PB →·n =0,∴n ⊥PB →,∵PB ⊄面EFG ,∴PB ∥平面EFG .考向2利用空间向量求角的问题【例】(2017·江苏卷)如图,在平行六面体ABCD A 1B 1C 1D 1中,AA 1⊥平面ABCD ,且AB =AD =2,AA 1=3,∠BAD =120°.(1)求异面直线A 1B 与AC 1所成角的余弦值;(2)求二面角B A 1D A 的正弦值.【解析】(1)在平面ABCD 内,过点A 作AE ⊥AD ,交BC 于点E .因为AA 1⊥平面ABCD ,所以AA 1⊥AE ,AA 1⊥AD .故以AE ,AD ,AA 1所在直线分别为x 轴,y 轴,z 轴建立如图所示的空间直角坐标系A xyz .因为AB =AD =2,AA 1=3,∠BAD =120°,则A (0,0,0),B (3,-1,0),D (0,2,0),E (3,0,0),A 1(0,0,3),C 1(3,1,3).(1)A 1B ―→=(3,-1,-3),AC 1―→=(3,1,3).则cos 〈A 1B ―→,AC 1―→〉=A 1B ―→·AC 1―→|A 1B ―→||AC 1―→|=3-1-37×7=-17.因此异面直线A 1B 与AC 1所成角的余弦值为17.(2)可知平面A 1DA 的一个法向量为AE ―→=(3,0,0).设m =(x ,y ,z )为平面BA 1D 的一个法向量,又A 1B ―→=(3,-1,-3),BD ―→=(-3,3,0),m ·A 1B ―→=0,m ·BD ―→=0,3x -y -3z =0,-3+3y =0.不妨取x =3,则y =3,z =2,所以m =(3,3,2)为平面BA 1D 的一个法向量,从而cos 〈AE ―→,m 〉=AE ―→·m |AE ―→||m |=333×4=34.设二面角B A 1D A 的大小为θ,则|cos θ|=34.因为θ∈[0,π],所以sin θ=1-cos 2θ=74.因此二面角B A 1D A 的正弦值为74.题组训练1.在正方体A 1B 1C 1D 1-ABCD 中,AC 与B 1D 所成的角的大小为______.【解析】建立如图所示的空间直角坐标系,设正方体边长为1,则A (0,0,0),C (1,1,0),B 1(1,0,1),D (0,1,0).∴AC →=(1,1,0),B 1D →=(-1,1,-1),∵AC →·B 1D →=1×(-1)+1×1+0×(-1)=0,∴AC →⊥B 1D →,∴AC 与B 1D 所成的角为π2.2.如图,直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=4,BC =22.BD ⊥AC ,垂足为D ,E 为棱BB 1上一点,BD ∥平面AC 1E .(1)求线段B 1E 的长;(2)求二面角C 1-AC -E 的余弦值.【解析】(1)由AB =AC =4,知△ABC 为等腰三角形,又BD ⊥AC ,BC =22,故12·AC ·BD =12·BC ·AB 2-12BC 2BD =7.从而在Rt △CDB 中,CD =BC 2-BD 2=1,故AD =AC -CD =3.如图,过点D 作DF ∥CC 1,交AC 1于F ,连接EF .因为DF ∥CC 1,从而AD AC =DF CC 1=34,得DF =3.因为DF ∥CC 1,CC 1∥BB 1,故DF ∥BB 1,即DF ∥BE ,故DF 与BE 确定平面BDFE .又BD ∥平面AC 1E ,而平面BDFE ∩平面AC 1E =EF ,故BD ∥EF .故四边形BDFE 为平行四边形,从而DF =BE =3,所以B 1E =BB 1-BE =1.(2)如图,以D 为坐标原点,分别以DA →,DB →,DF →的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,则D (0,0,0),C (-1,0,0),E (0,7,3),DC →=(-1,0,0),DE →=(0,7,3).设平面ACE 的一个法向量为n 1=(x ,y ,z ),由n 1·DC →=0,n 1·DE →=0-x =0,7+3z =0,故可取n 1=(0,3,-7).又平面ACC 1在xDz 面上,故可取n 2=(0,1,0)为平面ACC 1的一个法向量.从而法向量n 1,n 2的夹角的余弦值为cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|=34.由图知二面角C 1-AC -E 为锐角,故二面角C 1-AC -E 的余弦值为34.3.(2018苏北四市一模)在正三棱柱111ABC A B C -中,已知1AB =,12AA =,E ,F ,G 分别是1AA ,AC和11A C 的中点.以{,,}FA FB FG为正交基底,建立如图所示的空间直角坐标系F xyz -.⑴求异面直线AC 与BE 所成角的余弦值;⑵求二面角1F BC C --的余弦值.【解析】(1)因为11,2AB AA ==,则1131(0,0,0),(,0,0),(,0,0),(0,(,0,1)222F A C B E -,所以(1,0,0)=- AC ,13(,22=-BE ,记直线AC 和BE 所成角为α,则221122cos |cos ,||413()()122α-⨯=<>==+-+AC BE ,所以直线AC 和BE 所成角的余弦值为24.(2)设平面1BFC 的法向量为111(,,)x y z =m ,因为3(0,2FB = ,11(,0,2)2FC =- ,则11113021202FB y FC x z ⎧⋅==⎪⎪⎨⎪⋅=-+=⎪⎩m m ,取14x =得:(4,0,1)=m 设平面1BCC 的一个法向量为222(,,)x y z =n ,因为13(22CB = ,1(0,0,2)CC = ,则22121302220CB x y CC z ⎧⋅=+=⎪⎨⎪⋅==⎩ n n ,取23x =(3,1,0)=-n222222351cos ,17(3)(1)0401∴<>=⋅+-+⋅++m n 根据图形可知二面角1F BC C --为锐二面角,所以二面角1F BC C --的余弦值为25117。
空间向量在立体几何中的应用
练习:
正方体ABCD-A1B1C1D1中,P 为DD1的中
点,O1,O2,O3分别是平面A1B1C1D1、平面
BB1C1C、平面ABCD的中心
(2) 求异面直线PO3与O1O2Z成的角
D1 O1
C1
A1
B1
P
O2
D
C
A
O3
Y B
X
空间向量在
立几中应用
小结
本堂课的学习重点是用向量代数的方法解决 立体几何问题,但在学习中应把几何综合推 理与向量代数运算推理有机结合起来 向量代数推理是更加精练,严密的推理,每 一步都要根据运算法则进行 学习过程中应善于“前思后想”,提炼方法, 开拓思路
本题多次运用了封闭回路
空间向量在
立几中应用
利用向量求空间距离
空间距离是一种重要的几何量,利 用常规方法求距离,需要较强的转化能力, 而用向量法则相对简单
空间向量在
立几中应用
例3、正方体AC1棱长为1,求平面AD1C 与平面A1BC1的距离
Z
D
C
B A
D1 A1
X
C1 Y
B1
空间向量在
评述:
立几中应用
空间向量在
立几中应用
空间向量在立体几何中的应用
空间向量在
立几中应用
利用向量判断位置关系
利用向量可证明四点共面、线线平 行、线面平行、线线垂直、线面垂直等问 题,其方法是通过向量的运算来判断,这 是数形结合的典型问题
空间向量在
立几中应用
空间向量在
立几中应用
空间向量在
立几中应用
利用向量求空间角
利用向量可以进行求线线角、线面 角、面面角,关键是进行向量的计算
空间向量在立体几何中的应用PPT优秀课件
返回目录
*对应演练*
如图,四棱锥P—ABCD中, 底面ABCD为矩形,PD⊥ 底面ABCD,AD=PD, E,F分别为CD,PB的中点. (1)求证:EF⊥平面PAB;
【分析】可用空间向量的坐标运算来证明. 【证明】以A为原点,AB,AD,AP分别为x轴,y轴,z 轴建立空间直角坐标系,如图所示. 设AB=a,PA=AD=1,
a 则P(0,0,1),C(a,1,0),E( ,0,0), 2 1 1 D(0,1,0),F(0, 2 , 2 ). 1 1 a (1)AF=(0, , ),EP=(- ,0,1), 2 2 2 a 1 1 EC=( ,1,0),∴AF= EP+ EC, 2 2 2 又AF⊂ 平面PEC,∴AF∥平面PEC.
空间向量在立体几何
考点一
考点二 考点三 考点四
考点五
1.平面的法向量
直线l⊥α,取直线l的 做平面α的法向量.
方向向量a,则 向量a 叫
2.直线l的方向向量是u=(a1,b1,c1),平面α的法向
a1a2+b1b2+c1c2=0 u· v=0 量v=(a2,b2,c2),则l∥α ⇔ . ⇔
返回目录
(2)PD=(0,1,-1),CD=(-a,0,0), 1 1 ∴AF· PD=(0, , )· (0,1,-1)=0, 2 2 1 1 AF· CD=(0, , )· (-a,0,0)=0, 2 2 ∴AF⊥PD,AF⊥CD,又PD∩CD=D, ∴AF⊥平面PCD.
【评析】用向量证明线面平行时,最后应说明向量 所在的基线不在平面内.
返回目录
*对应演练*
如图,在正方体ABCD— A1B1C1D1中,E,F,M分别 为棱BB1,CD,AA1的中点. 证明:
空间向量在立体几何中的应用
空间向量在立体几何中的应用(一)一、用向量法证明线线平行向量法证明两条直线平行是通过证明两直线的方向向量平行而证得两直线平行,需注意的是,由两条直线的方向向量平行得出的结论是两直线平行或重合,只有说明一条直线上有一点不在另一条直线上,才能说明这两条直线平行.例1.在正方体ABCD-A1B1C1D1中,点E是AB的中点,点F是AA1上靠近点A的三等分点,在线段DD1上是否存在一点G,使CG∥EF?若存在,求出点G的位置,若不存在,说明理由.练习1.如图所示,在长方体OAEB-O1A1E1B1中,OA=3,OB=4,OO1=2,点P在棱AA1上且AP=2P A1,点S在棱BB1上且SB1=2BS,点Q、R分别是O1B1、AE的中点,求证:PQ∥RS.总结:利用空间向量证明线线平行的方法步骤(1)建立适当的空间直角坐标系,求出相应点的坐标.(2)求出直线的方向向量.(3)证明两向量共线.(4)证明其中一个向量所在直线上的一点不在另一个向量所在的直线上,即表示方向向量的有向线段不共线,即可得证.二、用向量的方法证明线面平行、面面平行1.向量法证明直线l与平面α平行,需证明直线l的一个方向向量和与平面α的一个法向量垂直,同时还要说明直线l上有一点不在α内,这样才能说明l∥α.2.根据两个平面平行的判定定理,把证明两个平面平行转化为证明线面平行或线线平行,再利用空间向量证明.3.用法向量证明两个平面平行时可分别求出两个平面的法向量,再说明两个法向量平行,也可以求其中一个平面的法向量,再证明这个法向量垂直于另一个平面.4.应用法向量证明面与面垂直问题的关键是:(1)建立适当的空间直角坐标系;(2)求出平面的一个法向量;(3)判断两个法向量的关系;(4)由法向量关系转化为平面关系.例2.如图所示,在平行六面体ABCD-A1B1C1D1中,O是B1D1的中点.求证:B1C∥平面ODC1.练习2.如图,在四棱锥S—ABCD中,底面ABCD为正方形,侧棱SD⊥底面ABCD,E、F 分别为AB、SC的中点.证明:EF∥平面SAD.例3.如图所示,在正方体ABCD-A1B1C1D1中,求证:平面A1BD∥平面CD1B1.一、用向量法证明线线垂直用向量法证明空间两条直线相互垂直的主要思路是证明两条直线的方向向量相互垂直.具体方法为:(1)坐标法:根据图形的特征,建立适当的直角坐标系,准确地写出相关点的坐标,表示出两条直线的方向向量,证明其数量积为0.(2)基向量法:利用向量的加、减运算律,结合图形,将要证明的两条直线的方向向量用基向量表示出来,利用数量积运算说明两向量的数量积为0.例1.如图,在直棱柱ABCD-A1B1C1D1中,AD∥BC,∠BAD=90°,AC⊥BD,BC=1,AD=AA1=3.证明:AC⊥B1D.训练1.直四棱柱ABCD-A1B1C1D1中,底面ABCD是矩形,AB=2,AD=1,AA1=3.M是BC的中点.在DD1上是否存在一点N,使MN⊥DC1?并说明理由.二、用向量法求两条直线所成角1.求两直线l 1,l 2所成的角,可转化为求它们的方向向量v 1,v 2的夹角,l 1,l 2所成的角θ与<v 1,v 2>相等或互补,所以cos θ=|cos<v 1,v 2>|=||2121v v v v ⋅⋅.两条直线垂直时,cos θ=cos<v 1,v 2>=0.2.运用向量法求两条直线所成的角时,若能建立空间直角坐标系,则有关向量可用坐标表示;若建坐标系不便,则可选取基向量表示其他向量.例2.棱长为1的正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 分别是DD 1、BD 、BB 1的中点. (1)求证:EF ⊥CF ;(2)求EF 与CG 所成角的余弦值.训练2.如图所示,已知ABCD 是正方形,PD ⊥平面ABCD ,PD =AD =2.求异面直线PC 与BD 所成的角.训练3.如图,在正方体ABCD -A 1B 1C 1D 1中,E 、F 、G 、H 分别是AA 1、AB 、BB 1、B 1C 1的中点,则异面直线EF 与GH 所成的角等于( )A .45°B .60°C .90°D .30°训练4.已知正方体ABCD-A’B’C’D’中,点M、N分别是棱BB’、对角线A’C的中点,求证:MN⊥BB’,MN⊥A’C.训练5.如图所示,四棱锥P-ABCD中,PD⊥平面ABCD,P A与平面ABCD所成的角为60°,在四边形ABCD中,∠D=∠DAB=90°,AB=4,CD=1,AD=2.(1)建立适当的坐标系,并写出点B、P的坐标;(2)求异面直线P A与BC所成的角.空间向量在立体几何中的应用(三)用向量法求直线与平面的夹角设直线l的方向向量为a,平面的法向量为n,直线与平面所成的角为θ,则sin θ=|cos<a,n>|=|a·n| |a||n|.例.如图,在正方体ABCD-A1B1C1D1中,求A1B和平面A1B1CD所成的角.训练1.已知正方体ABCD-A1B1C1D1的棱长为4,点E、F、G、H分别在棱CC1、DD1、BB1、BC上,且CE=12CC1,DF=BG=14DD1,BH=12BC.求AH与平面AFEG的夹角.训练2.在三棱锥P-ABC中,P A⊥平面ABC,∠BAC=90°,D、E、F分别是棱AB、BC、CP 的中点,AB=AC=1,P A=2,求P A与平面DEF夹角的正弦值.训练3.如图,已知长方体ABCD-A1B1C1D1中,AB=BC=1,AA1=2,E是侧棱BB1的中点.求直线AE与平面A1ED1所成的角的大小.训练4.如图所示,在四棱锥P-ABCD中,底面ABCD是正方形,PD⊥平面ABCD.PD=DC,E是PC的中点.求EB与平面ABCD夹角的余弦值.训练5.如图,正四棱柱ABCD-A1B1C1D1(即底面为正方形的直四棱柱)中,AA1=2AB=4,点E 在CC1上且C1E=3EC.(1)证明:A1C⊥平面BED;(2)求直线A1C与平面A1DE所成角的正弦值.空间向量在立体几何中的应用(四)向量法求二面角有如下方法:(1)可以在两个半平面内作垂直于棱的向量,转化为这两个向量的夹角,但需注意两个向量的起点应始终在二面角的棱上.(2)建空间直角坐标系,分别求两个平面的法向量m,n,根据cos θ=|m·n||m||n|求得锐角θ,若二面角为锐角,则为θ;若二面角为钝角,则为π-θ.例.如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形,平面ABC⊥平面AA1C1C,AB=3,BC=5.(1)求证:AA1⊥平面ABC;(2)求二面角A1-BC1-B1的大小.训练1.如图,四棱锥P-ABCD中,P A⊥底面ABCD.底面ABCD是边长为1的正方形,P A=1,求平面PCD与平面P AB夹角的大小.训练2.如图所示,在正方体ABCD-A1B1C1D1中,求二面角A-BD1-C的大小.训练3.已知点E、F分别在正方体ABCD-A1B1C1D1的棱BB1、CC1上,且B1E=2EB,CF=2FC1,则面AEF与面ABC所成的二面角的正切值.。
空间向量与立体几何经典例题
空间向量与立体几何经典例题空间向量与立体几何经典例题空间向量和立体几何是高中数学中的重要内容,它们是解决三维空间中几何问题的基础。
在此,我们将介绍一些经典的例题,帮助读者更好地理解和掌握这两个概念。
例题1:已知平面ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求平面ABCD的法向量和面积。
解答:首先,我们可以通过向量的定义求得平面ABCD的法向量。
假设向量AB为a,向量AC为b,则平面ABCD的法向量N可以表示为N = a × b,其中×表示向量的叉乘运算。
由于a = B - A = (-1,1,-6)和b = C - A = (3,-2,-1),我们可以得到N = a × b = (7,19,5)。
其次,我们可以使用向量的叉乘运算和向量的模运算求得平面ABCD 的面积。
假设向量AB为a,向量AC为b,则平面ABCD的面积可以表示为S = 1/2 * |a × b|,其中|a × b|表示向量a × b的模。
带入已知数据计算可得,S = 1/2 * |(7,19,5)| = 1/2 * √(7^2 + 19^2 + 5^2) = 1/2 * √(1255)。
因此,平面ABCD的法向量为N = (7,19,5),面积为S = 1/2 * √(1255)。
例题2:已知四面体ABCD的四个顶点坐标为A(1,2,3),B(-1,1,-3),C(4,0,2)和D(2,-1,1),求四面体ABCD的体积。
解答:首先,我们可以通过向量的定义求得四面体ABCD的体积。
假设向量AB为a,向量AC为b,向量AD为c,则四面体ABCD的体积V 可以表示为V = 1/6 * |a · (b × c)|,其中·表示向量的点乘运算,×表示向量的叉乘运算,|a · (b × c)|表示向量a · (b ×c)的模。
空间向量在立体几何中的应用
空间向量与立体几何解法步骤:利用空间向量解决立体几何问题的“三部曲”:1.向量表示(把立体几何问题中的点、直线、平面等元素用空间向量表示); 2.向量运算(针对立体几何问题,进行空间向量运算); 3.回归几何(把空间向量运算结果回归几何意义)。
理论依据:直线a,b 的方向向量分别为a b ,,平面,αβ的法向量分别为uv,。
1.两异面直线a ,b 的夹角θ(02πθ<≤)的大小,可以由|a |cos cos a b |||a |b b θ=<>=,来计算。
2.直线a 和平面α的夹角θ(02πθ≤≤)的大小,可以由|a |sin |cos a u ||||a |u u θ=<>=,来计算。
3.两个平面,αβ的夹角θ(0θπ<<)的大小,可以由|u |cos |cos v u ||||u |v v θ=<>= ,来计算。
4.点A 到α平面的(B 是平面α内任意点)距离可以由||||u AB d u =5.线线平行 a ∥b ∥; 6.线面平行 a ∥α; 7.面面平行 α∥β∥8.线线垂直 a ⊥⊥; 9.线面垂直 a ⊥α∥;10.面面垂直 α⊥β⊥空间向量在立体几何中的应用举例例1(辽宁10)已知三棱锥P -ABC 中,PA ⊥ABC ,AB ⊥AC ,PA=AC=½AB ,N 为AB 上一点,AB=4AN,M,S 分别为PB,BC 的中点. (Ⅰ)证明:CM ⊥SN ;(Ⅱ)求SN 与平面CMN 所成角的大小.例2 (湖北10)如图, 在四面体ABOC 中,OC ⊥OA, OC ⊥OB,∠A OB=120°,且OA=OB=OC=1. (Ⅰ) 设P 为AC 的中点.证明:在AB 上存在一点Q ,使PQ ⊥OA ,并计算ABAQ的值; (Ⅱ) 求二面角O-AC-B 的平面角的余弦值. 解:例3 (江西10)如图△BCD 与△MCD 都是边长为2的正三角形,平面MCD ⊥平面BCD ,AB ⊥平面BCD,AB = (1) 求点A 到平面MBC 的距离;(2) 求平面ACM 与平面BCD 所成二面角的正弦值。
(完整版)空间向量和立体几何典型例题
∴PC⊥AB.
(Ⅱ)∵AC=BC,AP=BP,
∴△APC≌△BPC.
又PC⊥AC,
∴PC⊥BC.
又∠ACB=90°,即AC⊥BC,
且AC∩PC=C,
∴AB=BP,
∴BE⊥AP.
∵EC是BE在平面PAC内的射影,
∴CE⊥AP.
∴∠BEC是二面角B-AP-C的平面角.
在△BCE中,∠BCE=90°,BC=2,BE= ,
空间向量与立体几何典型例题
一、选择题:
1.(2008全国Ⅰ卷理)已知三棱柱 的侧棱与底面边长都相等, 在底面 内的射影为 的中心,则 与底面 所成角的正弦值等于(C)
A. B. C. D.
1.解:C.由题意知三棱锥 为正四面体,设棱长为 ,则 ,棱柱的高 (即点 到底面 的距离),故 与底面 所成角的正弦值为 .
(Ⅱ)连结BO,在直角梯形ABCD中、BC∥AD,AD=2AB=2BC,
有OD∥BC且OD=BC,所以四边形OBCD是平行四边形,
所以OB∥DC.
由(Ⅰ)知,PO⊥OB,∠PBO为锐角,
所以∠PBO是异面直线PB与CD所成的角.
因为AD=2AB=2BC=2,在Rt△AOB中,AB=1,AO=1,
所以OB= ,
, ,
, .
是二面角 的平面角.
, , ,
.
二面角 的大小为 .
(Ⅲ) ,
在平面 内的射影为正 的中心 ,且 的长为点 到平面 的距离.
如(Ⅱ)建立空间直角坐标系 .
,
点 的坐标为 . .
点 到平面 的距离为 .
5.(2008福建文)如图,在四棱锥中,侧面PAD⊥底面ABCD,侧棱PA=PD= ,底面ABCD为直角梯形,其中BC∥AD,AB⊥CD,AD=2AB=2BC=2,O为AD中点。(1)求证:PO⊥平面ABCD;
第二十一讲空间向量在立体几何中的应用原卷版2023届高考数学二轮复习讲义
第二十一讲:空间向量在立体几何中的应用【考点梳理】1.法向量的求解①法向量一定是非零向量;②一个平面的所有法向量都互相平行;③向量 n 是平面的法向量,向量 m 是与平面平行或在平面内,则有0⋅= m n .第一步:写出平面内两个不平行的向()()111222,,,,,== a x y z b x y z ;第二步:那么平面法向量(),,= n x y z ,满足1112220000⎧++=⋅=⎧⎪⇒⎨⎨++=⋅=⎩⎪⎩ xx yy zz n a xx yy zz n b .第三步:化解方程组令z y x ,,其中一个为1,求其它两个值.2.判定直线、平面间的位置关系①直线与直线的位置关系:不重合的两条直线a ,b 的方向向量分别为 a , b .若 a ∥ b ,即= a b λ,则∥a b ;若⊥ a b ,即0⋅= a b ,则⊥a b .②直线与平面的位置关系:直线l 的方向向量为 a ,平面α的法向量为 n ,且⊥l α.若 a ∥ n ,即= a n λ,则⊥l α;若⊥ a n ,即0⋅= a n ,则∥ a α.3.平面与平面的位置关系平面α的法向量为1 n ,平面β的法向量为2 n .若1 n ∥2 n ,即12= n n λ,则∥αβ;若1 n ⊥2 n ,即120⋅= n n ,则α⊥β.4.空间角公式.(1)异面直线所成角公式:设 a , b 分别为异面直线1l ,2l 上的方向向量,θ为异面直线所成角的大小,则cos cos ,⋅== a b a b a bθ.(2)线面角公式:设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.(3)二面角公式:设1n ,2n 分别为平面α,β的法向量,二面角的大小为θ,则12,= n n θ或12,- n n π(需要根据具体情况判断相等或互补),其中1212cos ⋅= n n n n θ.5.点到平面的距离A 为平面α外一点(如图), n 为平面α的法向量,过A 作平面α的斜线AB 及垂线AH.||||⋅= AB n d n 【典型题型讲解】考点一:直线与平面所成的角【典例例题】例1.(2022·广东茂名·一模)如图,四棱锥P-ABCD 中,PA ⊥底面ABCD ,底面ABCD 为平行四边形,E 为CD 的中点,12AE CD =.(1)证明:PC AD ⊥;(2)若三角形AED 为等边三角形,PA =AD =6,F 为PB 上一点,且13PF PB =,求直线EF 与平面PAE 所成角的正弦值.【方法技巧与总结】设l 为平面α的斜线, a 为l 的方向向量, n 为平面α的法向量,θ为l 与α所成角的大小,则sin cos ,⋅== a n a n a nθ.【变式训练】1.(2022·广东惠州·一模)如图1所示,梯形ABCD 中,AB=BC=CD=2,AD=4,E 为AD 的中点,连结BE ,AC 交于F ,将△ABE 沿BE 折叠,使得平面ABE ⊥平面BCDE (如图2).(1)求证:AF ⊥CD ;(2)求平面AFC 与平面ADE 的夹角的余弦值.2.(2022·广东广州·一模)如图,在五面体ABCDE 中,AD ⊥平面ABC ,//AD BE ,2AD BE =,AB BC =.(1)求证:平面CDE ⊥平面ACD ;(2)若AB =2AC =,五面体ABCDE ,求直线CE 与平面ABED 所成角的正弦值.3.(2022·广东汕头·一模)如图,D 为圆锥的顶点,O 是圆锥底面的圆心,AE 为底面直径,AE AD =,ABC 是底面的内接正三角形,且6DO =,P 是线段DO 上一点.(1)是否存在点P ,使得PA ⊥平面PBC ,若存在,求出PO 的值;若不存在,请说明理由;(2)当PO 为何值时,直线EP 与面PBC 所成的角的正弦值最大.考点二:二面角【典例例题】例1.(2021·广东佛山·一模)某商品的包装纸如图1,其中菱形ABCD 的边长为3,且60ABC ∠=︒,AE AF ==BE DF ==,将包装纸各三角形沿菱形的边进行翻折后,点E ,F ,M ,N 汇聚为一点P ,恰好形成如图2的四棱锥形的包裹.(1)证明PA ⊥底面ABCD ;(2)设点T 为BC 上的点,且二面角B PA T --的正弦值为14,试求PC 与平面PAT 所成角的正弦值.【方法技巧与总结】设12, n n 是二面角--l αβ的两个半平面的法向量,其方向一个指向二面角内侧,另一个指向二面角的外侧,则二面角--l αβ的余弦值为1212n n |n ||n |⋅⋅ .【变式训练】1.(2022·广东·一模)如图,ABCD 为圆柱OO '的轴截面,EF 是圆柱上异于AD ,BC 的母线.(1)证明:BE ⊥平面DEF ;(2)若2AB BC ==,当三棱锥B DEF -的体积最大时,求二面角B DF E --的余弦值.2.(2022·广东湛江·一模)如图,在三棱柱111ABC A B C -中,平面ABC ⊥平面11ACC A ,90ABC ∠= ,AB BC =,四边形11ACC A 是菱形,160A AC ∠=,O 是AC 的中点.(1)证明:BC ⊥平面11B OA ;(2)求二面角11A OB C --的余弦值.3.(2022·广东深圳·一模)如图,在四棱锥E -ABCD 中,//AB CD ,12AD CD BC AB ===,E 在以AB 为直径的半圆上(不包括端点),平面ABE ⊥平面ABCD ,M ,N 分别为DE ,BC 的中点.(1)求证://MN 平面ABE ;(2)当四棱锥E -ABCD 体积最大时,求二面角N -AE -B 的余弦值.4.(2022·广东广东·一模)如图,在四棱锥P ABCD -中,PD ⊥平面ABCD ,四边形ABCD 是等腰梯形,//AB DC ,2BC CD AD ===,4AB =,M ,N 分别是AB ,AD 的中点.(1)证明:平面PMN ⊥平面PAD ;(2)若二面角C AB P --的大小为60°,求四棱锥P ABCD -的体积.5.(2022·广东韶关·一模)如图,在四棱锥M ABCD -中,底面ABCD 是直角梯形,AB ∥,90C D A D C ∠= ,MBC 是以BC 为斜边的等腰直角三角形,E 为AB 中点,222AB AD D C M E ====.(1)求证:BC ME ⊥;(2)点P 为棱AM 上一点,若12AP AM =,求二面角P BD A --的余弦值.6.如图,四棱锥P ABCD -的底面ABCD 是平行四边形,且PA ⊥底面ABCD ,2,4,60AB PA BC ABC ===∠=︒,点E 是线段BC (包括端点)上的动点.(1)探究点E 位于何处时,平面PAE ⊥平面PED ;(2)设二面角P ED A --的平面角的大小为α,直线AD 与平面PED 所成角为β,求证:π2αβ+=考点三:点到平面距离【典例例题】例1.(2022·广东中山·高三期末)已知圆锥AO 的底面半径为2,母线长为,点C 为圆锥底面圆周上的一点,O 为圆心,D 是AB 的中点,且2BOC π∠=.(1)求三棱锥D OCB -的表面积;(2)求A 到平面OCD 的距离.例2.在正方体1111ABCD A B C D -中,E 为11A D 的中点,过1AB E 的平面截此正方体,得如图所示的多面体,F 为棱1CC 上的动点.(1)点H 在棱BC 上,当14CH CB =时,//FH 平面1AEB ,试确定动点F 在棱1CC 上的位置,并说明理由;(2)若2AB =,求点D 到平面AEF 的最大距离.【方法技巧与总结】如图所示,平面α的法向量为n ,点Q 是平面α内一点,点P 是平面α外的任意一点,则点P 到平面α的距离d ,就等于向量 PQ 在法向量n 方向上的投影的绝对值,即|||cos ,|==<> d PQ PQ n 或||=||||⋅⋅ PQ n d PQ n 【变式训练】1.(2022·广东梅州·二模)如图①,在直角梯形ABCD 中,AB AD ⊥,AB DC ∥,2AB =,4AD CD ==,E 、F 分别是AD ,BC 的中点,将四边形ABFE 沿EF 折起,如图②,连结AD ,BC ,AC .(1)求证:EF AD ⊥;(2)当翻折至AC =时,设Q 是EF 的中点,P 是线段AC 上的动点,求线段PQ 长的最小值.2.如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是边长为2的正方形,D 为AB 中点,且1A D =.(1)求证:CD ⊥平面11ABB A ;(2)若点P 在线段1BC 上,且直线AP 与平面1ACD ,求点P 到平面1ACD 的距离.3.如图,矩形ABCD 和梯形ABEF ,,//AF AB EF AB ⊥,平面ABEF ⊥平面ABCD ,且2,1AB AF AD EF ====,过DC 的平面交平面ABEF 于MN .(1)求证:DN 与CM 相交;(2)当M 为BE 中点时,求点E 到平面DCMN 的距离:4.某市在滨海文化中心有滨海科技馆,其建筑有鲜明的后工业风格,如图所示,截取其中一部分抽象出长方体和圆台组合,如图所示,长方体1111ABCD A B C D -中,14,2AB AD AA ===,圆台下底圆心O 为AB 的中点,直径为2,圆与直线AB 交于,E F ,圆台上底的圆心1O 在11A B 上,直径为1.(1)求1A C 与平面1A ED 所成角的正弦值;(2)圆台上底圆周上是否存在一点P 使得1FP AC ⊥,若存在,求点P 到直线11A B 的距离,若不存在则说明理由.【巩固练习】一、单选题1.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD -中,AB ⊥平面BCD ,BC CD ⊥,且AB BC CD ==,M 为AD 的中点,则异面直线BM 与CD 夹角的余弦值为()A .3B .3C .2D .22.如图,正方体1111ABCD A B C D -的棱长为a ,E 是棱1DD 的动点,则下列说法正确的()个.①若E 为1DD 的中点,则直线1//B E 平面1A BD②三棱锥11C B CE -的体积为定值313a③E 为1DD 的中点时,直线1B E 与平面11CDD C④过点1B ,C ,E 的截面的面积的范围是22⎤⎥⎣⎦A .1B .2C .3D .4二、多选题2.在空间直角坐标系Oxyz 中,已知点(1,1,1)P ,(1,0,1)A ,(0,1,0)B ,则下列说法正确的是()A .点P 关于yOz 平面对称的点的坐标为(1,1,1)-B .若平面α的法向量(2,2,2)n =- ,则直线//AB 平面αC .若PA ,PB 分别为平面α,β的法向量,则平面α⊥平面βD .点P 到直线AB 3.直三棱柱111ABC A B C -,中,AB AC ⊥,11AB AC AA ===,点D 是线段1BC 上的动点(不含端点),则()A .//AC 平面1A BDB .CD 与1AC 不垂直C .ADC ∠的取值范围为,42ππ⎛⎤ ⎥⎝⎦D .AD DC +三、填空题4.如图,在棱长为2的正方体1111ABCD A B C D -中,点E 为棱CD 的中点,点F 为底面ABCD 内一点,给出下列三个论断:①1A F BE ⊥;②13=A F ;③2ADF ABF S S =△△.以其中的一个论断作为条件,另一个论断作为结论,写出一个正确的命题:___________.5.如图,在正方体1111ABCD A B C D -中,,E F 分别为棱11A B ,BC 的中点,则EF 与平面11A BC 所成角的正弦值为___________.四、解答题6.如图,在三棱柱111ABC A B C -中,11222A C AA AB AC BC ====,160BAA ∠=︒.(1)证明:平面ABC ⊥平面11AA B B .(2)设P 是棱1CC 的中点,求AC 与平面11PA B 所成角的正弦值.7.如图,ABCD 是边长为6的正方形,已知2AE EF ==,且////ME NF AD 并与对角线DB 交于G ,H ,现以ME ,NF 为折痕将正方形折起,且BC ,AD 重合,记D ,C 重合后为P ,记A ,B 重合后为Q .(1)求证:平面PGQ ⊥平面HGQ ;(2)求平面GPN 与平面GQH 所成二面角的正弦值.8.如图所示,在直四棱柱1111ABCD A B C D -中,底面ABCD 是等腰梯形,AB CD ∥,2AB CD =,60BAD ∠=︒,四边形11CDD C 是正方形.(1)指出棱1CC 与平面1ADB 的交点E 的位置(无需证明),并在图中将平面1ADB 截该四棱柱所得的截面补充完整;(2)求二面角11B AD A --的余弦值.9.如图,圆锥PO ,ABC 是⊙O 的内接三角形,平面PAC ⊥平面PBC .BC =60ABC ∠=︒.(1)证明:PA PC ⊥;(2)设点Q 满足OQ OP λ= ,其中()0,1λ∈,且二面角O QB C --的大小为60︒,求λ的值.10.如图,在三棱柱111ABC A B C -中,1AA ⊥底面111A B C ,1A C 的中点为O ',四面体111O A B C '-的体积为13,四边形11BCC B 的面积为(1)求O '到平面11BCC B 的距离;(2)设1AB 与1A B 交于点O ,ABC 是以ACB ∠为直角的等腰直角三角形且111AA A B =.求直线1'B O 与平面1A BC 所成角的正弦值.。
空间向量在立体几何中的应用-立体几何
4.空间的角
(1)若异面直线l1和l2的方向向量分别为u1和u2,l1
与l2所成的角为α,则cosα=
|cos<u1,u2>| . 返回目录
(2)已知直线l的方向向量为v,平面α的法向量为u,l与α的 |cos<v,u>|. 夹角为α,则sinα=
(3)已知二面角α—l—β的两个面α和β的法向量分别为 相等或互补 . v,u,则<v,u>与该二面角 5.空间的距离 (1)一个点到它在一个平面内 点到这个平面的距离. 正射影 的距离,叫做
返回目录
(2)PD=(0,1,-1),CD=(-a,0,0), 1 1 ∴AF· PD=(0, , )· (0,1,-1)=0, 2 2 1 1 AF· CD=(0, , )· (-a,0,0)=0, 2 2 ∴AF⊥PD,AF⊥CD,又PD∩CD=D, ∴AF⊥平面PCD.
【评析】用向量证明线面平行时,最后应说明向量 所在的基线不在平面内.
(2)已知直线l平行平面α,则l上任一点到α的距离 都 相等 ,且叫做l到α的距离.
返回目录
(3)和两个平行平面同时 垂直 的直线,叫做两 个平面的公垂线.公垂线夹在平行平面间的部分,叫做两 个平面的 公垂线段 .两平行平面的任两条公垂线段的长 都相等,公垂线段的 长度 叫做两平行平面的距离, 也是一个平面内任一点到另一个平面的距离. (4)若平面α的一个 法向量 为m,P是α外一
【解析】 (1)证明:建立图所示空间直角坐标系,设 AB=2a,AA1=a(a>0),则 A1(2a,0,a),B(2a,2a,0),C(0,2a,0),C1(0,2a,a). ∵E为A1B的中点,M为CC1的中点,
a a ∴E(2a,a, ),M(0,2a, ). 2 2
空间向量在立体几何中的应用(重点知识+高考真题+模拟精选)PDF.pdf
A(0,0,1) B(,0,1) C(0,,1)
M ( ,0, 1) N( , ,1)
22
22
n1 = (x1, y1, z1)
A MN
n1 AM = 0 n1 MN = 0
2
x1
−
1 2
z1
=
0
2
y1
+
1 2
z1
=
0
n1 = (1,−1,)
n2 = (x2 , y2 , z2 )
x1 = 1 y1 = −1, z1 = 0 n1 = (1,−1,0)
PBC
BC
n2
=
0
BP n2 = 0
n2 = (x2 , y2 , z2 ) y2 = 0 − 2x2 + z2 = 0
x2 = 1 y2 = 0, z2 = 2 n2 = (1,0,2)
cos n1, n2 = n1 n2 = n1 n2
所以 B(4,0,0), C(2, 2 3,0), D(0, 4 3 ,0), P(0,0, 4) ………………10 分 3
由(2)可知, DB = (4, − 4 3 ,0) 为平面 PAC 的法向量………………11 分 3
z
PC = (2, 2 3, −4) , PB = (4,0, −4)
P
设平面 PBC 的一个法向量为 n = ( x, y, z) ,
S(1, 1 ,0) 2
CM = (1,−1, 1), SN = (− 1 ,− 1 ,0)
2
22
CM SN = − 1 + 1 + 0 = 0 22
CM ⊥ SN
2 NC = (− 1 ,1,0) 2
空间向量在立体几何中的应用和习题含答案
空间向量在立体几何中的应用:(1)直线的方向向量与平面的法向量:①如图,l 为经过已知点A 且平行于已知非零向量a 的直线,对空间任意一点O ,点P 在直线l 上的充要条件是存在实数t ,使得a t OA OP +=,其中向量a 叫做直线的方向向量.由此可知,空间任意直线由空间一点及直线的方向向量惟一确定.②如果直线l ⊥平面α ,取直线l 的方向向量a ,则向量a 叫做平面α 的法向量.由此可知,给定一点A 及一个向量a ,那么经过点A 以向量a 为法向量的平面惟一确定. (2)用空间向量刻画空间中平行与垂直的位置关系:设直线l ,m 的方向向量分别是a ,b ,平面α ,β 的法向量分别是u ,v ,则 ①l ∥m ⇔a ∥b ⇔a =k b ,k ∈R ; ②l ⊥m ⇔a ⊥b ⇔a ·b =0; ③l ∥α ⇔a ⊥u ⇔a ·u =0;④l ⊥α ⇔a ∥u ⇔a =k u ,k ∈R ; ⑤α ∥⇔u ∥v ⇔u =k v ,k ∈R ; ⑥α ⊥β ⇔u ⊥v ⇔u ·v =0.(3)用空间向量解决线线、线面、面面的夹角问题:①异面直线所成的角:设a ,b 是两条异面直线,过空间任意一点O 作直线a ′∥a ,b ′∥b ,则a ′与b ′所夹的锐角或直角叫做异面直线a 与b 所成的角.设异面直线a 与b 的方向向量分别是v 1,v 2,a 与b 的夹角为θ ,显然],2π,0(∈θ则⋅=><⋅|||||||,cos |212121v v v v v v②直线和平面所成的角:直线和平面所成的角是指直线与它在这个平面内的射影所成的角.设直线a 的方向向量是u ,平面α 的法向量是v ,直线a 与平面α 的夹角为θ ,显然]2π,0[∈θ,则⋅=><⋅|||||||,cos |v u v u v u③二面角及其度量:从一条直线出发的两个半平面所组成的图形叫做二面角.记作α -l -β 在二面角的棱上任取一点O ,在两个半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α -l -β 的平面角.利用向量求二面角的平面角有两种方法: 方法一:如图,若AB ,CD 分别是二面角α -l -β 的两个面内与棱l 垂直的异面直线,则二面角α -l -β的大小就是向量CD AB 与的夹角的大小.方法二:如图,m 1,m 2分别是二面角的两个半平面α ,β 的法向量,则〈m 1,m 2〉与该二面角的大小相等或互补.(4)根据题目特点,同学们可以灵活选择运用向量方法与综合方法,从不同角度解决立体几何问题. 【例题分析】例1 如图,在长方体OAEB -O 1A 1E 1B 1中,OA =3,OB =4,OO 1=2,点P 在棱AA 1上,且AP =2P A 1,点S 在棱BB 1上,且B 1S =2SB ,点Q ,R 分别是O 1B 1,AE 的中点,求证:PQ ∥RS .【分析】建立空间直角坐标系,设法证明存在实数k ,使得.RS k PQ =解:如图建立空间直角坐标系,则O (0,0,0),A (3,0,0),B (0,4,0),O 1(0,0,2),A 1(3,0,2),B 1(0,4,2),E (3,4,0).∵AP =2P A 1, ∴),34,0,0()2,0,0(32321===AA AP ∴⋅)34,0,3(P同理可得:Q (0,2,2),R (3,2,0),⋅)32,4,0(S,)32,2,3(RS PQ =-=∴//,又R ∉PQ ,∴PQ ∥RS .【评述】1、证明线线平行的步骤:(1)证明两向量共线;(2)证明其中一个向量所在直线上一点不在另一个向量所在的直线上即可.2、本体还可采用综合法证明,连接PR ,QS ,证明PQRS 是平行四边形即可,请完成这个证明. 例2 已知正方体ABCD -A 1B 1C 1D 1中,M ,N ,E ,F 分别是棱A 1D 1,A 1B 1,D 1C 1,B 1C 1的中点,求证:平面AMN ∥平面EFBD .【分析】要证明面面平行,可以通过线线平行来证明,也可以证明这两个平面的法向量平行. 解法一:设正方体的棱长为4,如图建立空间直角坐标系,则D (0,0,0),A (4,0,0),M (2,0,4),N (4,2,4),B (4,4,0),E (0,2,4),F (2,4,4).取MN 的中点K ,EF 的中点G ,BD 的中点O ,则O (2,2,0),K (3,1,4),G (1,3,4).MN =(2,2,0),EF =(2,2,0),AK =(-1,1,4),=(-1,1,4),∴MN ∥EF ,=,∴MN//EF ,AK//OG ,∴MN ∥平面EFBD ,AK ∥平面EFBD , ∴平面AMN ∥平面EFBD .解法二:设平面AMN 的法向量是a =(a 1,a 2,a 3),平面EFBD 的法向量是 b =(b 1,b 2,b 3). 由,0,0==⋅⋅AN AM a a 得⎩⎨⎧=+=+-,042,0423231a a a a 取a 3=1,得a =(2,-2,1).由,0,0==⋅⋅b b得⎩⎨⎧=+-=+,042,0423132b b b b 取b 3=1,得b =(2,-2,1).∵a ∥b ,∴平面AMN ∥平面EFBD .注:本题还可以不建立空间直角坐标系,通过综合法加以证明,请试一试.例3 在正方体ABCD -A 1B 1C 1D 1中,M ,N 是棱A 1B 1,B 1B 的中点,求异面直线AM 和CN 所成角的余弦值.解法一:设正方体的棱长为2,如图建立空间直角坐标系,则D (0,0,0),A (2,0,0),M (2,1,2),C (0,2,0),N (2,2,1).∴),1,0,2(),2,1,0(==CN AM设AM 和CN 所成的角为θ ,则,52||||cos ==⋅CN AM CNAM θ∴异面直线AM 和CN 所成角的余弦值是⋅52 解法二:取AB 的中点P ,CC 1的中点Q ,连接B 1P ,B 1Q ,PQ ,PC . 易证明:B 1P ∥MA ,B 1Q ∥NC ,∴∠PB 1Q 是异面直线AM 和CN 所成的角. 设正方体的棱长为2,易知,6,52211=+===QC PC PQ Q B P B∴,522cos 11221211=-+=⋅Q B P B PQ Q B P B Q PB∴异面直线AM 和CN 所成角的余弦值是⋅52【评述】空间两条直线所成的角是不超过90°的角,因此按向量的夹角公式计算时,分子的数量积如果是负数,则应取其绝对值,使之成为正数,这样才能得到异面直线所成的角(锐角).例4 如图,正三棱柱ABC -A 1B 1C 1的底面边长为a ,侧棱长为a 2,求直线AC 1与平面ABB 1A 1所成角的大小.【分析】利用正三棱柱的性质,适当建立空间直角坐标系,写出有关点的坐标.求角时有两种思路:一是由定义找出线面角,再用向量方法计算;二是利用平面ABB 1A 1的法向量求解.解法一:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),),2,0,0(1a A⋅-)2,2,23(1a a a C 取A 1B 1的中点D ,则)2,2,0(a aD ,连接AD ,C 1D . 则),2,0,0(),0,,0(),0,0,23(1a AA a AB aDC ==-= ,0,0111==⋅⋅AA DC AB DC∴DC 1⊥平面ABB 1A 1,∴∠C 1AD 是直线AC 1与平面ABB 1A 1所或的角.),2,2,0(),2,2,23(1a aa a a AC =-= 23cos 111==∴AD C , ∴直线AC 1与平面ABB 1A 1所成角的大小是30°.解法二:如图建立空间直角坐标系,则A (0,0,0),B (0,a ,0),A 1(0,0,a 2),)2,2,23(1a aa C -,从而⋅-===)2,2,23(),2,0,0(),0,,0(11a aa AC a AA a AB 设平面ABB 1A 1的法向量是a =(p ,q ,r ), 由,0,01==⋅⋅a a得⎩⎨⎧==,02,0ar aq 取p =1,得a =(1,0,0). 设直线AC 1与平面ABB 1A 1所成的角为],2π,0[,∈θθ.30,21|||||,cos |sin 111 ===〉〈=⋅θθa a AC AC AC【评述】充分利用几何体的特征建立适当的坐标系,再利用向量的知识求解线面角;解法二给出了一般的方法,即先求平面的法向量与斜线的夹角,再利用两角互余转换.例5 如图,三棱锥P -ABC 中,P A ⊥底面ABC ,AC ⊥BC ,P A =AC =1,2=BC ,求二面角A-PB -C 的平面角的余弦值.解法二图解法一:取PB 的中点D ,连接CD ,作AE ⊥PB 于E . ∵P A =AC =1,P A ⊥AC , ∴PC =BC =2,∴CD ⊥PB . ∵EA ⊥PB ,∴向量EA 和DC 夹角的大小就是二面角A -PB -C 的大小.如图建立空间直角坐标系,则C (0,0,0),A (1,0,0),B (0,2,0),P (1,0,1),由D 是PB的中点,得D ⋅)21,22,21( 由,3122==AB AP EB PE 得E 是PD 的中点,从而⋅)43,42,43(E ∴)21,22,21(),43,42,41(---=--=DC EA∴⋅=>=<33,cos 即二面角A -PB -C 的平面角的余弦值是⋅33 解法二:如图建立空间直角坐标系,则A (0,0,0),)0,1,2(B ,C (0,1,0),P (0,0,1),).1,1,0(),0,0,2(),0,1,2(),1,0,0(-====设平面P AB 的法向量是a =(a 1,a 2,a 3),平面PBC 的法向量是b =(b 1,b 2,b 3). 由,0,0==⋅⋅a a得⎪⎩⎪⎨⎧=+=,02,0213a a a 取a 1=1,得).0,2,1(-=a 由0,0==⋅⋅b b 得⎪⎩⎪⎨⎧=+-=,0,02321b b b 取b 3=1,得b =(0,1,1).∴⋅-=>=<⋅33||||,cos b a b a b a∵二面角A -PB -C 为锐二面角, ∴二面角A -PB -C 的平面角的余弦值是⋅=-33|33| 【评述】1、求二面角的大小,可以在两个半平面内作出垂直于棱的两个向量,转化为这两个向量的夹角;应注意两个向量的始点应在二面角的棱上.2、当用法向量的方法求二面角时,有时不易判断两个平面法向量的夹角是二面角的平面角还是其补角,但我们可以借助观察图形而得到结论,这是因为二面角是锐二面角还是钝二面角一般是明显的.练习一、选择题:1.在正方体ABCD -A 1B 1C 1D 1中,E 是BB 1的中点,则二面角E -A 1D 1-D 的平面角的正切值是( ) (A)2(B)2(C)5(D)222.正方体ABCD -A 1B 1C 1D 1中,直线AD 1与平面A 1ACC 1所成角的大小是( ) (A)30° (B)45° (C)60° (D)90°3.已知三棱柱ABC -A 1B 1C 1的侧棱与底面边长都相等,A 1在底面ABC 内的射影为△ABC 的中心,则AB 1与底面ABC 所成角的正弦值等于( ) (A)31 (B)32 (C)33 (D)32 4.如图,α ⊥β ,α ∩β =l ,A ∈α ,B ∈β ,A ,B 到l 的距离分别是a 和b ,AB 与α ,β 所成的角分别是θ 和ϕ,AB 在α ,β 内的射影分别是m 和n ,若a >b ,则下列结论正确的是( )(A)θ >ϕ,m >n (B)θ >ϕ,m <n (C)θ <ϕ,m <n(D)θ <ϕ,m >n二、填空题:5.在正方体ABCD -A 1B 1C 1D 1中,E ,F ,G ,H 分别为AA 1,AB ,BB 1,B 1C 1的中点,则异面直线EF 与GH 所成角的大小是______. 6.已知正四棱柱的对角线的长为6,且对角线与底面所成角的余弦值为33,则该正四棱柱的体积等于______. 7.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB ,则异面直线A 1B 与AD 1所成角的余弦值为______.4题图 7题图 9题图 8.四棱锥P -ABCD 的底面是直角梯形,∠BAD =90°,AD ∥BC ,==BC AB AD 21,P A ⊥底面ABCD ,PD 与底面ABCD 所成的角是30°.设AE 与CD 所成的角为θ ,则cos θ =______. 三、解答题:9.如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =4,点E 在CC 1上,且C 1E =3EC .(Ⅰ)证明:A 1C ⊥平面BED ;(Ⅱ)求二面角A 1-DE -B 平面角的余弦值. 10.如图,在四棱锥O -ABCD 中,底面ABCD 是边长为1的菱形,4π=∠ABC ,OA ⊥底面ABCD ,OA =2,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN ∥平面OCD ;(Ⅱ)求异面直线AB 与MD 所成角的大小.11.如图,已知直二面角α -PQ -β ,A ∈PQ ,B ∈α ,C ∈β ,CA =CB ,∠BAP =45°,直线CA 和平面α 所成的角为30°.(Ⅰ)证明:BC ⊥PQ ;(Ⅱ)求二面角B -AC -P 平面角的余弦值.练习答案一、选择题:1.B 2.A 3.B 4.D 二、填空题:5.60° 6.2 7.548.42三、解答题:9题图 10题图 11题图9.以D 为坐标原点,射线DA 为x 轴的正半轴,建立如图所示直角坐标系D -xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).),0,2,2(),1,2,0(==DB DE ).4,0,2(),4,2,2(11=--=A(Ⅰ)∵,0,011==⋅⋅A A ∴A 1C ⊥BD ,A 1C ⊥DE . 又DB ∩DE =D ,∴A 1C ⊥平面DBE .(Ⅱ)设向量n =(x ,y ,z )是平面DA 1E 的法向量,则.,1DA DE ⊥⊥n n ∴⎩⎨⎧=+=+.042,02z x z y 令y =1,得n =(4,1,-2).⋅==4214||||),cos(111C A C A A n n ∴二面角A 1-DE -B 平面角的余弦值为⋅4214 10.作AP ⊥CD 于点P .如图,分别以AB ,AP ,AO 所在直线为x ,y ,z 轴建立坐标系.则A (0,0,0),B (1,0,0),)0,22,22(),0,22,0(-D P ,O (0,0,2),M (0,0,1),⋅-)0,42,421(N (Ⅰ)⋅--=-=--=)2,22,22(),2,22,0(),1,42,421( 设平面OCD 的法向量为n =(x ,y ,z ),则,0,0==⋅⋅n n即⎪⎪⎩⎪⎪⎨⎧=-+-=-.022222,0222z y x z y 取,2=z ,得).2,4,0(=n ∵,0=⋅n ∴MN ∥平面OCD . (Ⅱ)设AB 与MD 所成的角为θ ,,3π,21||||cos ),1,22,22(),0,0,1(=∴==∴--==⋅θθMD AB MD AB 即直线AB 与MD 所成角的大小为⋅3π11.(Ⅰ)证明:在平面β 内过点C 作CO ⊥PQ 于点O ,连结OB .∵α ⊥β ,α ∩β =PQ ,∴CO ⊥α . 又∵CA =CB ,∴OA =OB .∵∠BAO =45°,∴∠ABO =45°,∠AOB =90°,∴BO ⊥PQ ,又CO ⊥PQ , ∴PQ ⊥平面OBC ,∴PQ ⊥BC .(Ⅱ)由(Ⅰ)知,OC ⊥OA ,OC ⊥OB ,OA ⊥OB ,故以O 为原点,分别以直线OB ,OA ,OC 为x 轴,y 轴,z 轴建立空间直角坐标系(如图).∵CO ⊥α ,∴∠CAO 是CA 和平面α 所成的角,则∠CAO =30°.不妨设AC =2,则3=AO ,CO =1.在Rt △OAB 中,∠ABO =∠BAO =45°,∴.3==AO BO∴).1,0,0(),0,3,0(),0,0,3(),0,0,0(C A B O).1,3,0(),0,3,3(-=-=AC AB设n 1=(x ,y ,z )是平面ABC 的一个法向量,由⎪⎩⎪⎨⎧==⋅⋅,0,0AB n n 得⎪⎩⎪⎨⎧=+-=-,03,033z y y x 取x =1,得)3,1,1(1=n . 易知n 2=(1,0,0)是平面β 的一个法向量. 设二面角B -AC -P 的平面角为θ ,∴,55||||cos 2121==⋅⋅n n n n θ即二面角B -AC -P 平面角的余弦值是⋅55。
37.空间向量在立体几何中应用1
5.300;
6. 2 ; 3
【例1】已知正方体ABCD-A1B1C1D1中,E是 BB1的中点,F是CD的中点.G为AA1的中点 求证:(1)GC1∥平面ADE , (2)D1F⊥平面ADE,
(3)平面 A1 D1F 平面ADE .
探究提高 平行、垂直问题的证明,其一般
G
规律是能建系的则建系,平面求 法向量,再利用向量的平行与垂 直,来证明线线、线面、面面的 平行与垂直.
B
O
_1
_2 M
4.最小角定理:
________平__面__的__斜__线_与__平__面__内__的_直__线__所__成__的_角__中__,__以_.斜线 与斜线在平面内的射影最小
题型二: 利用空间向量求线线角,线面角 【例 2】如图所示,已知点 P 在正方体 ABCD—A′B′C′D′的对 角线 BD′上,∠PDA=60°. (1)求 DP 与 CC′夹角的大小; (2)求 DP 与平面 AA′D′D 夹角的大小.
【考纲要求】
1.能用向量语言表述直线与直线、 直线与平面的垂直、平行关系. 2.能用向量方法解决直线与直线、 直线与平面的夹角的计算问题。 3.了解向量方法在研究立体几何 问题中的作用。
1.用向量表示直线或点在直线上的位置
AP ta (Ⅰ),
OP OA ta
(Ⅱ),
设AB a,则OP OA tAB OA t(OB OA) (1 t)OA tOB
题型三: 空间向量在立体几何中应用
【例 3】如图所示,已知长方体 ABCD—A1B1C1D1 中, AB=BC=2,AA1=4,E 是棱 CC1 上的点,且 BE⊥B1C. (1)求 CE 的长; (2)求证:A1C⊥平面 BED; (3)求 A1B 与平面 BDE 夹角的正弦值.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.如图,在直三棱柱 中, , 。M、N分别是
AC和BB1的中点。
(1)求二面角 的大小。
(2)证明:在AB上存在一个点Q,使得平面 ⊥平面 ,并求出 的长度。
4.如图,直三棱柱 中, AB=1, ,∠ABC=60 .
(Ⅰ)证明: ;
(Ⅱ)求二面角A— —B的大小。
5.如图,已知P为矩形ABCD所在平面外一点,PA 平面ABCD,E、F分别是AB.PC的中点.
(Ⅰ)求证:EF∥平面PAD;
(Ⅱ)求证:EF CD;
(Ⅲ)若,∠PDA=45°,求EF与平面ABCD所成角的大小.
6.如图,PA⊥平面ABCD,四边形ABCD是正方形,PA=AD=2,M、N分别是AB.PC的中点.
(1)求二面角P-CD-B的大小;
(2)求证:平面MND⊥平面PCD;
(3)求点P到平面MND的距离.
为1的 菱形, , ,
, 为 的中点。
(Ⅰ)求异面直线AB与MD所成角的大小 ;
(Ⅱ)求点B到平面OCD的距离。
17.四棱锥S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,
且DE= a(0< ≦1).
(Ⅰ)求证:对任意的 (0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求 的值。
(Ⅱ)求二面角 的大小.
14. 如图,在正三棱柱 中, , 是 的中点,点 在 上, 。
(Ⅰ)求 所成角的正弦值;
(Ⅱ)证明 ;
(Ⅲ) 求二面角 的大小.
15.如图, 在三棱柱 中, 侧面 ,
为棱 的中点, 已知 , ,
, , 求:
(1)异面直线 与 的距离;(2)二面角 的平面角的正切值.
16.如图,在四棱锥 中,底面 四边长
12.如图,在正三棱柱ABC—A1B1C1中,BB1=BC=2,且M是BC的中点,点N在CC1上。
(1)试确定点N的位置,使AB1⊥MN;
(2)当AB1⊥MN时,求二面角M—AB1—N的大小。
13.如图,四棱锥 的底面是矩形, 底面 , 为 边的中点, 与平面 所成的角为 ,且 , .
(Ⅰ) 求证: 平面 ;
18.如图,在四棱锥 中,底面 是边长为 的菱形, , 底面 , , 为 的中点, 为 的中点.
(Ⅰ)证明:直线 平面 ;
(Ⅱ)求异面直线 与 所成角的大小; (Ⅲ)求点 到平面 的距离.
立体几何典型例题选讲(理科)
1 .如图在棱长为2的正方体 中,点F为棱CD中点,点E在棱BC上
(。
2 .如图,四面体ABCD中,O、E分别是B D.BC的中点, ,
(Ⅰ)求证: 平面BCD;
(Ⅱ)求异面直线AB与CD所成角的余弦值;
(I)证明:MN//平面ABC;
(II)求A1到平面AB1C1的距离
(III)求二面角A1—AB1—C1的大小。
9 .在直平行六面体 中, 是菱形, , , .
(1)求证: 平面 ;
(2)求证:平面 平面 ;
(3)求直线 与平面 所成角的大小.
10.如图,在直三棱柱 中,,D是AA1的中点.
(Ⅰ) 求异面直线 与 所成角的大小;
7.如图,多面体ABCDS中面ABCD为矩形,
,E为CD四等分点(紧靠D点)。
(I)求证:AE与 平面SBD
(II)求二面角A—SB—D的余弦值。
8 .如图,直三棱柱ABC—A1B1C1的底面积是等腰直角三角形,∠A1B1C1=90°,A1C1=1,AA1= ,N、M分别是线段B1B.AC1的中点。
(Ⅱ) 求二面角C-B1D-B的大小;
(Ⅲ) 在B1C上是否存在一点E,使得 平面 ? 若存在,
求出 的值;若不存在,请说明理由.
11.如图,在棱长为1的正方体ABCD—A1B1C1D1中,点E是棱BC的中点,点F是棱CD的中点。
(1)求证:D1E⊥平面AB1F;
(2)求二面角C1—EF—A的余弦值。