变压器的噪声及控制措施
变压器噪音产生的原因、检测标准及解决方法
变压器噪音产生的原因、检测标准及解决方法产生原因:变压器噪声是由本体结构设计、选型布局、安装、使用过程中,变压器本体及冷却系统产生的不规则、间歇、连续或随机引起的机械噪声及空气噪声总和。
变压器所产生的噪声广泛影响住宅小区、商业中心、轻站、机场、厂矿、企业、医院、学校等场所。
具体来说,变压器噪声共有三个声源,一是铁心,二是绕组,三是冷却器,即空载、负载和冷却系统引起噪声之和。
铁心产生噪声原因是构成铁心硅钢片交变磁场作用下,会发生微小变化即磁致伸缩,磁致伸缩使铁心随励磁频率变化做周期性振动,铁心磁致伸缩变形和绕组、油箱及磁屏蔽内电磁力所引起。
绕组产生振动原因是电流绕组中产生电磁力,漏磁场也能使结构件产生振动。
电磁噪声产生原因是磁场诱发铁心叠片沿纵向振动产生噪声,该振动幅值与铁心叠片中磁通密度及铁心材质磁性能有关,而与负载电流关系不大。
电磁力(和振动幅值)与电流平方成正比,而发射声功率与振动幅值平方成正比。
检测标准:《中华人民共和国环境噪声污染防治法》第61条规定,受到环境噪声污染危害的单位和个人,有权要求加害人排除危害;造成损失的,依法赔偿损失。
国家《住宅设计规范》中规定:住宅建筑中不宜布置锅炉、变压器及其它有噪声振动源等设备用房。
如受条件限制需要布置时,应符合现行的建筑防火、建筑隔声及相关规范的规定。
而《民用建筑隔声设计规范》规定:条件许可时,易将噪声源设置在地下,但不宜比邻主题建筑或设在主体建筑下。
如不能避免时,必须采取可靠的隔振、隔声措施。
在2008年我国环境保护部发布的强制标准《GB 3096-2008 声环境质量标准》中规定声环境按区域的使用功能特点和环境质量要求,声环境功能区分为以下五种类型:各类声环境功能区适用表1规定的环境噪声等效声级限值。
表1 各类声环境功能区环境噪声等效声级限值单位:dB(A)声环境功能区类别昼间夜间0 类50 401 类55 452 类60 503 类65 554 类4a 类70 554b 类70 60各类声环境功能区夜间突发噪声,其最大声级超过环境噪声限值的幅度不得高于15dB(A)。
配电房变压器高低频噪声治理措施
标题:配电房变压器高低频噪声治理措施详解在现代工业生产中,配电房扮演着十分重要的角色,而变压器则是配电房中最为常见且重要的设备之一。
然而,配电房变压器产生的高低频噪声却成为了一道难题,影响着工作环境和生产效率。
针对这一问题,我们需要采取相应的治理措施,以降低噪声对周围环境和人员的影响。
1. 高低频噪声的特点我们需要了解高低频噪声的特点。
高频噪声通常指频率大于1000赫兹的噪声,而低频噪声则指频率小于1000赫兹的噪声。
高低频噪声对人体和环境的影响也有所不同,了解这些特点对我们选择治理措施至关重要。
2. 噪声治理措施a. 选择噪声小的变压器在选购变压器时,应优先选择噪声小的产品。
合理的选型能有效降低变压器在运行时产生的噪声,为工作环境创造一个相对安静的氛围。
b. 安装减振设备配电房变压器的震动也会引起噪声,因此在安装变压器时,要考虑选择适当的减振设备,减少震动转化为噪声的可能性。
c. 维护保养变压器的正常维护保养也对噪声的控制有重要影响。
定期对变压器进行检查、清洁和维护,可以减少因设备故障引起的噪声问题。
d. 声屏障设置在配电房周围设置声屏障,能够有效隔离变压器产生的噪声,保护周围的工作区和人员。
3. 个人观点和理解高低频噪声治理对于提高工作环境的舒适度和生产效率有着重要意义。
在治理措施选择上,我认为应该综合考虑成本、效果和可操作性,在不影响设备正常运行的前提下,尽可能降低噪声对周围环境和人员的影响。
在本文中,我们详细介绍了配电房变压器高低频噪声的特点及相应的治理措施。
通过选择噪声小的变压器、安装减振设备、进行定期的维护保养和设置声屏障等手段,可以有效降低变压器噪声对周围环境和工作人员的影响。
希望本文能够对读者有所启发,并为实际工程实践提供一些有益的参考。
4. 噪声对工作环境和人员的影响高低频噪声不仅会影响工作环境的舒适度,还可能对人员的健康造成不良影响。
长期处于高噪声环境中工作,会导致人员产生头痛、听力下降、失眠等健康问题,甚至会导致心理压力增加,影响工作效率和工作质量。
变压器噪声分析及改善措施
在新 标 准 J/108 20 ( BT 08— 04 6~3 V级 电力 变 5k 压 器声 级》 中声级 限值 由原来 的 A计权 空 载声 压级
定 电流 及 额定 频 率 下 的 A计 权 声 功 率 级 ( 载 声 空
业 、 品和城 市有机 垃圾 。 食
总 第 17期 5
季
青 :变 压器 噪声 分 析 及 改 善 措 施
L 一 变压 器额 定 电流下 的 A计权 声 功率 级 w ( 载 电流声级)单 位 为 d ( 。 负 , B A)
由上几 点 可 以看 出 ,硅 钢片 接缝 处和 叠 片之 间 的 电磁吸 引力 引起 的铁 芯振 动 ,比硅 钢 片磁致 伸缩
压 器噪 声的有 效措施 。 关健词 : 干式 变压器 ; 音 ; 噪 改善
1 干式变压器的相关标准
噪声是 变压器 运行 时的 固有特性 ,产 品运行 时 的噪声会对周 围环境 产生影 响 。声 级水 平是 指在额 定 电压及额定频 率 下 , 变压 器铁 芯处于激 磁条 件下 ,
在 规定 的轮廓 线 上 测得 的声 压 级水 平 () A 加权 平 均
修改 为 电力 变压 器 的空 载声 功率级 和负载 电流声 功
率级相 加 的 A计 权声 级限值 『 l 】 :
I N 0 g1 。 压器 在正 弦波额 定 电压 、正 弦波额
用 于汽车 的运输燃 料 。
Ss m c 研制 的利用先 进分级式 生物工 艺和工程 yt s n ) e I
设 计技术 、 特殊 的设 备 以及高效 微生 物发酵 系统 , 集
分 批和连续式 发 酵的优点 于一 体 的有 机废弃 物转换
变电站的噪声及其控制
变电站的噪声及其控制变电站是电力系统的重要组成部分,其主要功能是将电力从高压输电线路转换为适合分配到用户的低压电力。
然而,变电站的运行难免会产生一定的噪声,这对周边环境和居民的生活造成了一定程度的影响。
因此,对变电站的噪声进行控制是非常重要的。
变电站噪声的来源主要包括变压器、断路器、开关设备、冷却设备和风扇等。
这些设备在运行时会产生较高的噪声,尤其是风扇和冷却器通风系统所产生的噪声。
此外,变电站周边的环境噪声也会影响到变电站的噪声水平。
为了控制变电站的噪声,可以采取以下措施:1. 安装隔音罩或隔音板:在变电站设备周围安装隔音罩或隔音板,可以有效地吸收噪音,并减少其传播到周边环境的影响。
2. 优化设备运行方式:改变设备的运行方式,如减少风扇和冷却设备的运行时间或降低其转速,可以减少噪音的产生。
3. 修理和维护设备:定期检查和维护变电站设备,包括紧固螺丝、更换磨损的零件等,可以减少设备的机械噪音。
4. 增加噪声屏障:在变电站周边设置噪声屏障,如植物、围栏、墙壁等,可以减少噪声的传输和反射。
5. 合理布置变电站:在设计和建设变电站时,应采用合理的布局设计,将噪声敏感区域与噪声源隔离,减少噪声的传播。
6. 提供隔音措施:对于邻近居民区域,可以为居民提供隔音措施,如安装窗户隔音玻璃、加装隔音门等,减少噪音对居民生活的影响。
7. 加强环境监测:定期对变电站及其周边环境进行噪声监测,及时了解噪声水平,并采取相应措施进行调整和改善。
在控制变电站噪声的同时,还需要注意以下几个方面:1. 安全性:在进行噪声控制时,要确保设备的安全运行,不影响变电站的正常工作。
2. 经济性:应根据噪声控制的需要和经济能力进行评估,并选择合适的措施和设备进行噪声控制,以实现经济效益和环境效益的平衡。
3. 法律法规:在进行噪声控制时,要遵守相关的法律法规和标准,确保变电站的噪声水平符合规定。
总之,变电站噪声对周边环境和居民的生活有一定的影响,因此需要采取有效的控制措施。
干式变压器噪音标准
干式变压器噪音标准干式变压器噪音标准是一种针对干式变压器运行过程中产生的噪音进行限制和规定的标准。
干式变压器是一种广泛应用于电力系统中的重要设备,其运行时的噪音水平直接关系到人们的生产和生活环境质量。
因此,制定干式变压器噪音标准对于保护环境和人体健康具有重要意义。
一、干式变压器噪音的产生干式变压器是一种以空气为冷却介质的变压器,其运行过程中产生的噪音主要来源于以下几个方面:1.铁心和绕组的振动:干式变压器在运行时,铁心和绕组会受到电磁力的作用而产生振动。
当电磁力发生变化时,振动的幅度和频率也会相应地改变。
2.冷却设备的振动:干式变压器通常配备有冷却设备,如风扇或散热器等。
这些设备在运行时也会产生振动,与变压器本体产生共振现象。
3.机械磨损:干式变压器在长时间的运行中,铁心、绕组和支撑结构等部件会发生磨损,导致不平整度增加,从而产生更多的噪音。
4.气流扰动:干式变压器通常采用自然通风或强制通风的方式进行散热。
气流在流经变压器内部时,会因流速和压力的变化而产生扰动,从而产生噪音。
二、干式变压器噪音标准的发展历程干式变压器噪音标准的发展历程可以分为以下几个阶段:1.早期阶段:在早期,对于干式变压器的噪音水平并没有明确的标准限制,主要是通过实际运行经验进行控制。
然而,随着人们对环境噪声污染的关注度不断提高,干式变压器的噪音问题逐渐受到重视。
2.初步规定阶段:为了规范干式变压器的设计和生产,相关行业开始对干式变压器的噪音水平进行初步的规定。
例如,一些企业会制定自己的企业标准,对干式变压器的噪音水平进行限制。
3.国家标准制定阶段:随着电力行业的快速发展,国家对于干式变压器的噪音水平也开始重视。
在参考国外相关标准和实际运行经验的基础上,我国开始制定自己的干式变压器噪音标准。
目前,我国已经发布了多项与干式变压器噪音相关的国家标准和行业标准,如GB 1094.1-2013《电力变压器第1部分总则》等。
4.国际标准制定阶段:在国际上,一些国际组织和标准制定机构也开始关注干式变压器的噪音问题,并制定了相应的国际标准。
变压器噪声来源及降噪的方法
变压器噪声来源及降噪的方法文章分析了变压器噪声产生的原理和影响噪声大小的因素并给出了降低噪声的方法,希望能为大家以后的投标及设计工作提供参考和帮助。
标签:噪声;变压器;方法1 概述随着变电站距离居民区越来越近,而且人们对环境的保护意识也在增强,变压器噪声的问题已经受到电力部门系统以及设备变压器生产厂家的高度重视。
2 变压器噪声的来源变压器的绕组、铁心、油箱(含磁屏蔽)与冷却装置所产生的振动都是噪声的来源。
铁心、绕组、油箱(含磁屏蔽)叫做变压器的本体,因此,变压器噪声的来源是变压器本体振动和冷却装置振动。
变压器的额定容量、空载电源的谐波、负载电流的谐波、绕组中的直流偏磁电流、铁心在额定空载条件下的磁通密度以及变压器铁心所采用的硅钢片材料的性能均对变压器自身所产生的噪声有较大的影响。
通常,铁心的振动主要源自于硅钢片在运行过程产生的磁致伸缩(在这里由于接缝处电磁力引起的振动较小,忽略不计)经我厂试验研究表明,变压器工作在1.5T至1.8T这样一个铁心额定磁通区间内,其硅钢片磁致伸缩引发铁心振动比其负载电流所引发的磁通而产生的绕组、油箱壁(含磁屏蔽)的振动大很多。
所以,当变压器的铁心磁密度降低到1.4T及以下时,负载电流引起的漏磁通而引发的油箱壁以及绕组的振动噪声。
上面由于铁心接缝处的电磁力振动较小故忽略不计。
冷却装置的噪声源自于冷却风扇和潜油泵的运行。
国内外的相关试验表明对于油浸式自冷变压器,在油箱上安装的散热器所产生的噪声,比来自本体所产生的噪声低得多,因此不予考虑。
对强迫油循环风冷方式的变压器,其冷却风机产生的噪声很高,可以使变压器的合成噪声比变压器本体所产生的噪声提高4-6dB (A)。
2.1 空载噪声的影响因素在变压器的运行过程中,铁心在一个交变的磁场作用下,铁心中的矽钢片在这种环境下发生了细微的变化,这种变化叫做矽钢片的磁致伸缩,就是这种矽钢片的磁致伸缩使矽钢片产生振动。
所以我们可减小矽钢片的磁致伸缩来降低振动。
干式变压器噪声分析及控制
图 l 环 氧 浇 注 干 式 变 压 器
对 于 变 噪 声 的 产 生 原 因 作 了大 量 研 究 ,提 出 了各 种 控 制 方
收 稿 日期 :2 1 — 4 3 000—0
经 验
案 .但 至 今 没 有 完 善 的 控制 方 案 。
声也是不可忽视的。
1 . 2干式 变压 器 的噪声 测量
根 据 标 准 G / 0 41 — 0 3 《 力 变 压 器 第 1 B T 19 .0 2 0 电 0部 分 :声 级 测 定 》 的要 求 ,测 量 变 压 器 噪声 可 以 采 用 声 压测
压 器 过 负 荷 等原 因也 是 影 响干 变 噪 声 大 小 的 因素 。 圳 g c
3控 制 干 式 变压 器 噪 声 的 措 施
31 . 采用 优质 的铁 心材 料
由 于 铁 心 采 用 的硅 钢 片 磁 致 伸 缩 是 干 变 产 生 噪 声 的 主 要 原 因 。磁 致 伸 缩 率 大小 与 硅 钢 片 的材 质 有 关 。 当磁 场 强
量 法 或 声 级 测 量 法 。相 对 于 声 强 测 量 法 ,声 级 测 量 法 更 加 简单 、直 观 而 得 到 广 泛 应 用 。对 没 有 外壳 的 干 变 ,测 量 时
冷 却 风 机 的运 行 频 率 一 般 在 1 0 H 0 0 z以 上 ,在 变 压 器 附 近 听 到 的 比较 尖锐 的 声 音 就 是 风 机 的声 音 。 容 量 较 小 的
干 变 如 果 噪 声 正 常 ,而 又 开 启 了风 机 ,那 么 风 机 的 噪声 很 可 能 把 干 变 的 本 体 噪 声 给 掩 盖 掉 了 。所 以 当 风 机 开 启 时 , 要 仔 细 判 断 噪 声 是 干 变 本 体 发 出 的 还 是 风机 运 行 引起 的 。
2024年变电站的噪声及其控制(3篇)
2024年变电站的噪声及其控制引言:随着城市化和工业化的快速发展,电力需求急剧增加,变电站作为电力系统的重要组成部分,起到着电能变换与分配的关键作用。
然而,变电站的运行过程中会产生大量的噪声污染,给周围环境和居民生活带来不便和影响。
因此,对于2024年的变电站来说,如何控制噪声污染,保障周围环境的良好生态和居民的健康,成为亟待解决的问题。
一、变电站噪声的来源及特点变电站的噪声主要来自以下几个方面:1. 变压器和开关设备:变压器和开关设备是变电站的主要噪声源,它们的运行过程中会产生高频噪声和机械噪声。
2. 冷却设备:变电站需要使用冷却设备来散热,冷却设备的风扇运转过程中会产生低频噪声。
3. 输电线路:变电站连接着大规模的输电线路,高压电流在输电线路上流动时会产生电磁噪声。
变电站噪声的特点主要有以下几点:1. 噪声频谱宽度大:变电站噪声的频谱范围很广,从低频到高频都有。
这意味着变电站噪声的传播距离远,会同时影响到远处的居民。
2. 随机性强:变电站噪声不是周期性的,它受到多种因素的影响,包括设备的工作状态、环境温度等等。
3. 具有高声压级:由于变电站内设备的运行特点,噪声压力常常较大,可能会超过国家标准规定的允许范围。
二、变电站噪声控制的方法为了减少变电站噪声对周围环境和居民的影响,我们可以采用以下几种方法:1. 技术改进:改进变压器和开关设备的设计和制造工艺,采用减振材料和隔音材料来降低设备运行过程中产生的噪声。
2. 设备的优化布置:通过合理的布置变压器和开关设备,使其距离居民区较远,减少噪声传播的距离,降低噪声对周围环境和居民的影响。
3. 声屏障的建设:在变电站周围建设声屏障,通过反射、吸收和透声等技术手段,限制噪声传播的方向和距离,减少噪声的扩散。
4. 降噪材料的应用:在变电站的墙体、地板和天花板等位置采用降噪材料,有效隔离噪声的传播,降低噪声对周围环境和居民的影响。
5. 噪声监测和管理:建立变电站噪声监测系统,定期对噪声进行监测和评估,及时采取措施调整设备运行状态,确保噪声控制在合理范围内。
变压器噪声产生的原因及降噪措施
变压器噪声产生的原因及降噪措施1 变压器噪声产生机理变压器的噪声是由变压器本体振动及冷却装置振动而产生的一种连续性噪声。
变压器噪声的大小与变压器的容量、硅钢片材质及铁心磁通密度等因素有关。
(1)变压器本体产生噪声机理:国内外的研究结果表明,变压器本体振动的根源在于硅钢片的磁致伸缩引起的铁心振动。
(2)冷却装置产生噪声机理:冷却装置噪声也是由于其振动而产生。
冷却装置振动的根源在于冷却风扇和变压器油泵在运行时产生的振动;变压器本体的振动通过绝缘油、管接头及其装配零件等,传递给冷却装置,使冷却装置的振动加剧,辐射的噪声加大。
2 噪声的传播路径变压器通过空气向四周辐射的噪声是由两部分组成,一部分是由铁心绕组的振动通过结构件和绝缘油传给油箱,由油箱振动而产生的本体噪声;另一部分是由冷却风扇和变压器油泵振动而产生的冷却装置噪声。
变压器本体噪声完全取决于铁心的磁致伸缩振动。
3 降低噪声变压器技术措施及计算方法(1)降低变压器本体噪声技术措施1)铁心方面技术措施:一是选用磁致伸缩小的优质硅钢片。
二是降低铁心的额定工作磁密。
三是改进铁心的结构。
2)改进铁心与油箱机械连接方式:变压器的本体噪声有一部分是通过箱底和基础传播出去,还有部分通过箱盖套管上导电结构传递到母排上,如果在器身的底脚和油箱之间、油箱和基础之间、母排与固定结构件之间放置防振橡胶垫,就可使原来的刚性连接变为弹性连接,从而达到减少振动、防止共振、降低噪声的目的。
3)改进油箱及其结构:①为了降低油箱壁的振动幅度就必须提高整个油箱的刚性。
提高刚性的方法是增加箱壁的厚度及增加加强铁的个数,以及选择较好的加强铁形状和焊接位置。
②从声学技术上常用密实沉重的材料把发声体与周围的环境隔绝起来,这种方法叫隔声。
隔声构件性能与它的单位面积重量有关,重量越重,隔声效果就越好。
③当油箱的自振频率与变压器本体噪声基频、谐波频率相同或相接近时,就会发生共振,隔声效果大大降低,在某些情况下甚至会成为噪声放大器。
浅谈变压器噪声及降低噪声的措施
浅谈变压器噪声及降低噪声的措施摘要:本文介绍了变压器噪声的类型,分析了变压器空载噪声产生的原因及因素,提出了变压器铁芯设计和制造工艺的降噪措施,概述了降低变压器空载噪声的方法。
关键词:变压器噪声原因因素空载噪声降噪措施0 引言变压器的噪声来源于变压器的本体和冷却系统两个方面。
本体噪声主要由铁心硅钢片磁致伸缩所引起的振动,通过铁心垫脚和变压器油传递给箱体和附件而产生,冷却系统的噪声主要由风扇和油泵的振动而引起。
变压器噪声以铁心的噪声为主,其基频是励磁频率的两倍。
由于各种非线性因素的作用,产生各种高次谐波。
对于不同容量的电力变压器,其铁心噪声的频谱是不一样。
1 变压器噪声的类型变压器本体噪声主要有硅钢片磁致伸缩引起的铁心振动、硅钢片接缝处和叠片之间漏磁引起的铁心振动、绕组振动等。
1.1 漏磁引起的绕组振动噪声绕组负载电流产生的漏磁将引起绕组的振动,当变压器的额定工作磁通密度在1.5~1.8T范围时,这种振动与磁致伸缩引起的铁心振动相比很小。
1.2 冷却装置带来的运行噪声干式变压器采用强迫风冷时,变压器的冷却装置等附件也会产生噪声,与变压器本体噪声的机理一样,冷却装置的噪声也是由于它们的振动而产生的。
1.3 硅钢片磁致伸缩引起的噪声铁心励磁时,沿磁力线方向硅钢片的尺寸发生变化,而垂直于磁力线方向的尺寸发生相反的变化,磁致伸缩使得铁心随着励磁频率的变化而周期性振动。
1.4 电磁作用引起的铁心噪声硅钢片接缝处和叠片间存在因漏磁而产生的电磁吸引,由此引起铁心振动。
由于铁心叠积方式得到不断改进,接缝处和叠片之间的电磁吸引力引起的铁心振动比磁致伸缩引起的铁心振动小得多。
2 影响变压器空载噪声的因素铁心产生噪声的原因主要是在交变磁场作用下,硅钢片的尺寸会发生微小的变化。
由于磁致伸缩的变化周期是电源频率的半个周期,磁致伸缩引起的变压器本体的振动,是以两倍的电源频率为基频率的,所以硅钢片的振动主要是由铁磁材料的磁致伸缩特性引起的。
变压器的响声及处理范本(2篇)
变压器的响声及处理范本变压器是电力系统中常见的设备,用于改变交流电的电压。
变压器的正常运行是电力系统稳定供电的基础之一。
然而,在变压器的运行过程中,可能会出现一些异常情况,导致变压器产生响声。
为了保证变压器的正常运行,需要及时处理这些异常情况。
本文将介绍变压器的响声及处理方法。
一、变压器的响声及原因1. 响声的原因变压器在正常运行时,通常会产生一些轻微的嗡嗡声,这是由变压器的铁芯振动和电磁力引起的。
然而,当变压器产生异常情况时,响声可能会变得更加明显。
常见的变压器异常情况包括:局部放电、绝缘损坏、电流过载、过热等。
2. 响声的类型变压器的响声可以分为两类:低频响声和高频响声。
低频响声通常表现为低沉的嗡嗡声或杂音,主要由变压器的磁通变化引起。
这种响声一般与变压器的铁芯振动有关,可能是由于铁芯的变形或松动导致的。
高频响声通常表现为尖锐的啸声或呼吸声,主要由变压器的局部放电引起。
局部放电是指在绝缘介质中形成的局部放电现象,可能会产生高频电流和声音。
二、处理变压器响声的方法1. 检查变压器的铁芯当变压器产生低频响声时,首先应检查变压器的铁芯是否正常。
如果铁芯变形或松动,应及时进行修复或更换。
2. 检查绝缘状况当变压器产生高频响声时,可能是由于绝缘损坏导致的局部放电。
因此,应检查变压器的绝缘状况。
如果发现绝缘损坏,应及时进行绝缘修复或绝缘材料更换。
3. 检查负载情况当变压器产生响声时,可能是由于电流过载导致的。
因此,应检查变压器的负载情况,并确保负载在额定范围内。
如果负载过大,应及时减小负载或增加变压器容量。
4. 控制变压器温度变压器的温度过高也可能导致响声的产生。
因此,应采取措施控制变压器的温度。
可以通过增加散热设备、改善通风条件等方式来降低变压器的温度。
5. 定期维护定期维护对于保持变压器的正常运行非常重要。
应制定变压器的维护计划,并按计划进行检查和维护工作。
定期检查变压器的各项指标,如温度、绝缘电阻等,可以及时发现并处理潜在的问题,避免响声的产生。
电力变压器的噪声污染及控制
电力变压器的噪声污染及控制摘要:为了解决电力变压器噪声污染的问题,首先对噪声来源和决定因素进行深入分析,根据产生噪声的决定因素、实践经验和噪声控制理论提出了相关的解决措施,实践证明,这些措施能起到很好的降噪效果。
关键词:电力变压器;噪声污染;噪声控制经济的迅猛发展,造成居民用电量持续增加。
尤其是最近几年,随着城市化进程的加快和电网改造的需要,部分变电站建立在居民生活区附近。
然而变压器在运行过程中会产生噪声,这种噪声不仅污染了环境,也对人们的健康造成了一定影响,在夜间更为严重。
基于此,本文对电力变压器产生的噪声及控制进行分析探讨。
1 电力变压器噪声来源电力变压器在运行过程中产生的噪声主要来源两部分:本体噪声和冷却系统噪声。
1.1 本体噪声此类噪声主要来源于下述两种情况:第一,磁致伸缩效应产生的噪声。
据变压器的工作原理可知,在工作时铁芯内部会产生交变磁场,从而导致铁芯的硅钢片处于磁致伸缩状态,虽然硅钢片周期性伸缩幅度很小,但是也会引起铁芯周期性的振动,产生噪声。
第二,漏磁场产生的噪声。
变压器在工作时会出现一定的漏磁场,尤其是大型变压器,漏磁场相应增大。
由于变压器绕组中电流和漏磁场的相互作用,导线上会出现电磁力,同时由于漏磁场的存在,绕组出产生轴向电动力,受到电动力作用的铁心在金属撞击下震动,从而产生噪声。
1.2 冷却系统噪声电力变压器的冷却方式通常包括以下两种:风冷和强油风冷。
为了达到更好的冷却效果,变压器在运行过程中,通常风扇和油泵都打开,风机和油泵工作时会产生空气噪声。
目前,多数变压器都配置两台或以上的风冷却器及风冷却器,这样就极易产生空气噪声,对于部分大型电力变压器,其产生的空气噪声甚至超过80dB(A)。
由此可知,冷却系统产生的噪声要高于变压器本体产生的噪声。
2 电力变压器噪声的决定因素为了减少电力变压器的噪声污染,必须明确电力变压器工作时产生的噪声和那些因素有关,以便采取有效措施降低噪声强度。
浅谈变压器的噪声及控制措施
浅谈变压器的噪声及控制措施随着人们环境意识的提高和环保部门对各类噪声的限制变压器的噪声不但污染环境.危害人类身体健康,影响设备正常运行,而且与变电站的占地面积密切相关。
标签:变压器;噪声;控制变压器噪声水平的高低.成为了衡量变压器生产厂家设计和制造水平的重要指标。
加强变压器噪声控制技术和结构材料的研究和开发,便能根据用户对噪声的不同要求。
采用经济、有效且工艺性好的技术及结构取得理想的噪声控制效果.在满足用户需求的同时也开拓了市场。
一、变压器噪声的产生变压器的噪声来源于变压器本体和冷却系统两个方面。
国内外的研究结果表明,变压器本体振动产生噪声的根源在于:1、硅钢片的磁致伸缩引起的铁心振动。
2、硅钢片接缝处和叠片之间存在着因漏磁而产生的电磁吸引力而引起铁心的振动。
3、当绕组中有负载电流通过时。
负载电流产生的漏磁引起线圈、油箱壁的振动。
近年来,由于铁心叠积方式的改进和心柱及铁轭都用环氧玻璃丝粘带绑扎.硅钢片接缝处和叠片之间的电磁吸引力引起的铁心振动,比硅钢片磁致伸缩引起的铁心振动要小得多,可以忽略。
而变压器的额定工作磁密通常取1.5~1.8T。
国内外研究和试验均证明.在这样的磁密范围之内.负载电流产生的漏瓷引起的线圈、箱壁的振动比硅钢片磁致伸缩引起的铁心振动要小得多.也可以忽略。
这就是说变压器本体的振动完全取决于铁心的振动,而铁心的振动可以看作完全是由硅钢片的磁致伸缩引起的。
与变压器本体噪声的机理一样.冷却装置的噪声也是由于它们的振动而产生的。
其振动的根源在于:1、冷却风扇和油泵在运行时产生的振动。
2、变压器本体的振动通过绝缘油、管接头及其装配零件传递给冷却装置,使冷却装置的振动加剧,噪声加大。
另外,当铁心加热以后,由于谐振频率和机械应力的变化。
其噪声会随温度的升高而增大。
而运行现场的环境(如周围的墙壁、建筑物及安装基础等)对噪声也有影响。
二、噪声的传播路径变压器通过空气向四周发射的噪声是由两部分噪声合成的。
变压器运行常见声音及解决方案
电压问题:电压高,会使变压器过励磁,响声增大且尖锐,直接严重影响变压器的噪音。
判断方法:先看看低压输出电压,不能看低压柜上的电压表,该电压表只起指示作用,应该采用较为准确的万用表进行测量。
解决方法:现在城市里的10kV电压普遍偏高,根据低压侧输出电压,这时应该把分接档放在适合档位。
在保证低压供电质量的前提下,尽量把高压分接向上调(低压输出电压降低),以此消除变压器的过励磁现象,同时降低变压器的噪音。
2、风机、外壳、其他零部件的共振问题:风机、外壳、其他零部件的共振将会产生噪音,一般会误认为是变压器的噪音。
1)外壳:用手按一下外壳铝板(或钢板),看噪音是否变化,如发生变化就说明,外壳在共振。
2)风机:用干燥的长木棍顶一下每个风机的外壳,看噪音是否变化,如发生变化就说明,风机在共振。
3)其他零部件:用干燥的长木棍顶一下变压器每个零部件(如:轮子、风机支架等),看噪音是否变化,如发生变化就说明零部件在共振。
解决方法:1)看外壳铝板(或钢板)是否松动,有可能安装时踩变形,需要紧一下外壳的螺丝,将外壳的铝板固定好,对变形的部分进行校正。
2)看风机是否松动,需要紧一下风机的紧固螺栓,在风机和风机支架之间垫一小块胶皮,可以解决风机振动问题。
3)如变压器零部件松动,则需要固定。
3、安装的问题:安装不好会加剧变压器振动,放大变压器的噪音。
1)变压器基础不牢固或不平整(一个角悬空),或者底板太薄。
2)用槽钢把变压器架起来,会增加噪音。
解决方法:1)由安装单位对原安装方式进行改造。
2)变压器小车下面加防震胶垫,可解决部分噪音。
母线桥架振动的问题:由于并排母线有大电流通过,因漏磁场使母线产生振动。
母线桥架的振动将严重影响变压器的噪音,使变压器的噪音增大15dB以上,比较难判断,一般用户和安装单位会误认为是变压器的噪音。
1)噪音随负荷大小变化而变化。
2)用木棍用力顶母线桥架,如果噪音发生变化就认为是母线桥架在共振。
3)母线在桥架内振动,用木棍顶没有用。
变压器的响声及处理
变压器的响声及处理引言:变压器是电力系统中常见的设备之一,其主要作用是根据需要调整电压。
在正常运行过程中,变压器会产生一定的噪声。
这些噪声不仅会影响工作环境的安静度,还有可能给工作人员的健康和生产效率带来负面影响。
因此,了解变压器的响声产生原因和处理方法是非常重要的。
一、变压器的响声产生原因:1. 磁场振动:变压器的线圈通以电流时,会产生变化的磁场,这种磁场的变化会导致变压器的铁芯发生振动,进而产生噪声。
2. 磁场不均匀性:变压器的铁芯由一系列的铁片叠加而成,当铁片之间不完全紧密连接时,磁场在铁芯中的传播会受到一定程度的阻碍,产生磁滞现象,进而引起变压器的噪声。
3. 磁场与结构件的相互作用:变压器的线圈和结构件之间存在一定的间隙,磁场的变化会引起结构件的位移和振动,产生响声。
4. 冷却风扇:变压器通过散热风扇进行冷却,风扇的运转会产生一定的噪声。
5. 绝缘故障:当变压器的绝缘材料老化或存在故障时,会产生放电噪声。
二、变压器噪声的处理方法:1. 优化变压器的设计:通过改进线圈和结构件的制造工艺,确保其尺寸精度和表面光洁度,减少磁场与结构件之间的相互作用,从而降低噪声的产生。
2. 采用低噪声铁芯材料:选择低噪声的铁芯材料,如硅钢片等,可以降低变压器的噪声水平。
3. 磁场屏蔽:在变压器内部的铁芯和线圈之间增加磁场屏蔽材料,可以有效地减少磁场的泄漏和噪声的传播。
4. 加装消声器:在变压器的进出线路和散热风扇出口等位置安装消声器,可以降低噪声的传播路径,提高工作环境的安静度。
5. 绝缘故障的处理:定期检查和维护变压器的绝缘材料,及时更换老化或故障的部件,可以预防绝缘故障引起的放电噪声。
6. 精确控制冷却风扇的运转:采用变速风扇或智能控制系统,根据变压器的工作负荷和温度变化,合理调节风扇的运转速度,减少噪声的产生。
7. 合理安装:在变压器的安装过程中,要注意减少结构件之间的间隙和振动,避免产生噪声。
8. 合理布局:在变压器周围设置隔音墙、吸音材料等,减少噪声的传播和反射。
电力变压器的振动与噪声控制技术
电力变压器的振动与噪声控制技术电力变压器作为电力系统中不可或缺的设备之一,其正常运行对电力传输和分配至关重要。
然而,由于其巨大的体积和高功率运行特性,电力变压器在运行过程中常常会产生较大的振动和噪声,给设备的可靠性和人们的生活环境带来潜在的风险和困扰。
为了解决这一问题,电力变压器的振动与噪声控制技术应运而生。
一、振动控制技术1. 振动源识别与监测振动源识别与监测是振动控制技术的基础。
通过对电力变压器运行过程中振动源的准确识别和监测,可以及时了解其振动产生的原因和特性,为后续的振动控制措施提供依据。
常见的振动源识别与监测方法包括振动传感器的应用和振动信号处理技术的研究。
2. 结构优化设计通过对电力变压器的结构进行优化设计,可以有效减小振动源的产生和传播,从而降低整个系统的振动水平。
优化设计包括选择合适的结构材料、减少焊接连接、增加结构刚度等措施,以降低变压器的共振频率和共振幅值,减少振动能量的释放和传递。
3. 减振控制减振控制是通过引入减振装置来改变电力变压器结构的振动特性,从而实现振动的控制和消除。
常见的减振控制方法包括阻尼器的应用、隔振器的安装和减振材料的使用。
通过合理的减振控制手段,可以大幅度降低电力变压器的振动水平,提升设备的可靠性和运行效果。
二、噪声控制技术1. 噪声源的识别与分析噪声源的识别与分析是噪声控制技术的前提。
通过对电力变压器运行过程中噪声源的准确识别和分析,可以了解其噪声产生的机理和特性,为后续的噪声控制措施提供依据。
常见的噪声源识别与分析方法包括噪声测量仪器的应用和噪声信号处理技术的研究。
2. 噪声的传播路径控制噪声的传播路径控制是通过对电力变压器周围空间的设计和改进,阻断噪声的传播路径,减少噪声对周围环境的影响。
常见的传播路径控制方法包括安装隔音罩、加装隔音板和封闭变压器等措施。
通过合理的传播路径控制手段,可以显著降低电力变压器噪声的辐射范围和强度。
3. 噪声的吸声措施噪声的吸声措施是通过在电力变压器内部和周围环境中设置吸声材料,吸收和消散噪声能量,达到降低噪声水平的效果。
变电站的噪声分析与治理方案
变电站的噪声分析与治理方案随着城市的迅速发展和经济的快速增长,电力能源的需求也急剧增加。
电站和变电站是电力系统的重要组成部分,为城市和机构提供必要的电力支持。
然而,在变电站运营期间,会产生大量的噪声,给市民和周边居民带来极大的困扰和不适。
变电站噪声的问题一直是公众关注的焦点,对于改善环境、提高居住质量和增强城市的居民生活水平都有着重要的意义。
本文将讨论变电站噪声的原因、分析方案和治理措施。
一、变电站噪声的原因变电站噪声的来源主要有以下几个方面:1、变压器的振动在工作期间,变压器主体会出现振动,因为变压器内部会产生磁场和电流,这些磁场和电流会引起变压器的运动,从而产生噪声。
2、电缆的噪声当电缆传输电能时,由于电缆存在阻抗差异并且电磁场会通过空气和空间传输,这些因素会在电缆周围产生磁场和电流,进而导致噪声产生。
3、通风设备的噪声处理热量和保持设备正常运转需要使用通风设备,通风设备的运作会产生噪声。
二、变电站噪声的分析变电站噪声的频谱分析极其复杂,需要采取实验和分析方法进行评估。
噪声分析是对噪声产生因素的阐述和对噪声影响范围的评估,其目的是为改善变电站噪声水平提供数据支持。
在变电站噪声分析中,需要进行以下内容:1、测量噪声水平使用测量仪器定量测量变电站内和外部环境的噪声水平,以获得环境中出现的噪声和噪声对周边居民的影响等信息。
2、频率分析通过分析变电站产生的噪声的频谱,可以确定不同区域噪声的影响,以及不同引起噪声的因素所产生的频率组成。
3、贡献度分析分析不同因素对噪声产生的影响程度,可以确定需要进行的针对性措施。
三、变电站噪声治理措施了解变电站噪声的来源后,可以采取一定的措施降低噪声水平。
以下是常见的治理措施:1、减少振动采用减震措施,减少振动和噪音产生,使用粘性橡胶减震器、紧固螺栓减震器等,在减少噪声产生的同时,也可以提高设备运转的安全性。
2、材料绝缘使用噪声吸收材料包括玻璃棉、岩棉、泡沫塑料等,进行隔离和降低噪声。
灯用变压器的噪声问题及其解决方法
灯用变压器的噪声问题及其解决方法在我们日常生活中,灯具是不可或缺的用品。
然而,许多人经常面临一个让人苦恼的问题——灯用变压器会产生噪声。
这种噪声不仅会影响人们的生活品质,还可能引起不适和疾病。
因此,了解灯用变压器产生噪声的原因,并采取相应的解决方法,是非常重要的。
首先,我们需要了解灯用变压器是如何工作的。
灯用变压器是一种电气设备,用于将高电压变换为低电压,供给灯具使用。
然而,由于变压器内部的电流流动,以及变压器设计和制造的不完善,会导致噪声问题的产生。
具体来说,灯用变压器产生噪声主要有以下几个原因:1. 磁共振:当变压器内部的电流频率与变压器自身的振动频率相匹配时,就会产生磁共振现象。
这种磁场的振动会导致机械部件的震动,从而产生噪声。
2. 电磁干扰:电流在变压器内部流动时,会产生电磁场。
如果这个电磁场与其他电子设备的工作频率相冲突,就会产生电磁干扰,从而引起噪声。
3. 材料和制造问题:变压器的材料和制造工艺也会对噪声产生影响。
例如,变压器芯片的质量和材料的选择,以及绕组的固定方式和制造工艺等,都会对噪声产生一定的影响。
针对以上问题,我们可以采取一些解决方法来减少灯用变压器的噪声:1. 选择质量好的变压器:购买来自信誉良好、制造过程严谨的厂商生产的变压器,可以降低噪声的产生。
在购买前,可以咨询专业人士或进行一些调查,以确保选购的变压器符合质量标准。
2. 优化制造工艺:制造过程的优化对噪声的控制也非常关键。
使用适当的材料和制造工艺可以减少振动和噪声的产生。
确保绕组的固定方式牢固可靠,以减少振动和共振的可能性。
3. 绝缘材料的选择:选择绝缘材料良好的变压器也是减少噪声的一种有效方式。
好的绝缘材料可以减少电磁干扰的产生,从而降低噪声水平。
4. 确保合适的安装位置:正确的安装位置可以减少噪声传播。
避免将变压器安装在靠近居住区域的地方,以减少噪声对人们生活的影响。
5. 声音隔离:可以通过在变压器周围安装隔音材料来减少噪声的传播。
变电站的噪声及其控制
变电站的噪声及其控制1. 引言随着电力工业的不断发展,变电站作为电力传输的重要节点,在城市和农村都得到了广泛的应用。
然而,变电站的建设和运行不仅会对周围的环境产生一定的影响,还会给人们带来噪声污染的问题。
本文将分析变电站的噪声特点、对人体健康的影响以及噪声的控制方法等问题,以帮助人们更好地了解和应对相关问题。
2. 变电站的噪声特点变电站的噪声主要来自于变压器和其他设备的运转中产生的声音。
具体来说,变压器的开关操作、铁芯震动、冷却风扇的工作以及开关柜的操作等都会产生噪声。
由于变电站的规模较大,通常都是在城市郊区建设,因此噪声对周围居民的生活产生了不小的影响。
变电站噪声的特点主要有以下几点:•高频噪声:由于变压器的开关操作速度很快,所以产生的噪声主要是高频声波。
•间歇性噪声:变压器的操作不是连续进行的,而是间歇性的,因此变电站的噪声也具有间歇性。
•阻尼效应差:变电站的设备通常都建在钢筋混凝土地基上,而地面对声波的阻尼效应比较差,会导致噪声的传播距离较远。
3. 噪声对人体健康的影响长期处于噪声环境中会对人体健康产生一定的影响,特别是在夜间睡眠时,噪声会导致人的睡眠质量下降,从而影响白天的工作和生活质量。
一些研究表明,长期暴露在高强度的噪声环境中还会对人的听力、心理和身体健康产生不良影响。
具体来说,长期暴露在高强度的噪声环境中可能导致以下方面的健康问题:•听力损失:长期暴露在噪声环境中会导致内耳发生变化,进而影响听力。
•心理影响:噪声会导致人的情绪产生负面变化,表现为焦虑、烦躁、易怒等。
•身体健康:长期暴露在噪声环境中还可能导致心血管和内分泌系统的异常反应,从而影响身体健康。
4. 噪声控制方法为了有效控制变电站的噪声,需要采取一系列措施,包括:•设备优化:在变电站的设备设计和制造中,可以采用隔音、减震等技术来控制噪声的产生和传播。
•布设隔音屏障:在变电站周围的建筑物上布设隔音屏障,以减少噪声的传播距离和影响范围。
变压器内发出声响的判断及处理方法范文(二篇)
变压器内发出声响的判断及处理方法范文引言变压器是电力系统中常见的设备之一,起着将电能从一个电压级别转换到另一个电压级别的作用。
然而,有时候我们可能会遇到变压器内发出声响的问题,这个问题不仅影响到变压器的正常运行,还可能导致设备故障和安全隐患。
因此,判断变压器内声响的原因并采取相应的处理方法非常重要。
本文将对变压器内发出声响的判断方法以及处理方法进行详细介绍。
一、判断变压器内发出声响的方法1. 观察声音的特点当变压器内发出声响时,我们首先要观察声音的特点,以判断是属于哪一类声音。
常见的声音有嗡嗡声、轰鸣声、咔咔声等。
不同的声音可能代表不同的问题,因此观察声音的特点能够为后续的处理提供有力的线索。
2. 检查变压器的外部环境变压器周围的环境也可能会影响声音的产生。
我们需要检查变压器周围是否存在振动源,比如建筑物、机械设备等。
如果变压器受到外部振动的影响,声音可能是振动所导致的,这时候需要采取相应的措施来减小振动。
3. 检查变压器的运行状态变压器的运行状态也与声音的产生有关。
我们需要检查变压器的温度、湿度、油位等参数是否正常。
如果变压器出现过热、过载等问题,声音可能是由电流和磁场引起的。
4. 检查变压器的内部结构变压器内部的结构也可能导致声音的产生。
我们需要打开变压器,仔细检查变压器的绝缘件、线圈、连接件等是否损坏或松动。
如果发现异常,需要及时修复或更换。
5. 进行电气检测如果以上方法仍无法确定声音的原因,可以进行电气检测。
我们可以使用合适的仪器检测变压器的电压、电流等参数,以确定是否存在异常。
如果发现异常,需要及时找到问题的根源并进行修复。
二、处理变压器内发出声响的方法1. 调整环境如果变压器的声音是由外部环境引起的,我们可以采取一些措施来减小声音。
比如增加隔音设备、隔离振动源等。
这样可以有效地降低噪音对变压器的影响。
2. 维护变压器的运行状态如果变压器的声音是由运行状态不正常导致的,我们需要进行相应的维护工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
],dB(A) 式中B1、B2——分别为变化前后的工作磁密 (T) GFe2、GFe1——对应B1、B2的铁心重量 (kg)应注意的是,磁密的降低不仅导致变压器体积和重量的增加,使经济指标变差,而且会使噪声发射的表面积增大,从而导致变压器的声功率级增大。 ③ 采用全斜交错接缝的铁心结构在传统的心柱和铁轭交错接缝结构中,磁力线在接缝处横向穿越附近的硅钢片,会产生涡流和磁饱和,导致噪声和空载损耗增大。而采用全斜交错接缝,保证了心柱和铁轭搭接,减小了磁通畸变,保证了铁心整体机械强度。实践证明,当磁密为1.7T时,铁心采用全斜交错接缝噪声能降低3~5dB(A)。 ④ 增大铁轭面积以减少铁轭中的磁通密度由于变压器心柱产生的噪声能通过线圈和围屏得到有效的衰减,因此,本体噪声大部分来源于铁轭的振动。在变压器设计时,应保证每级铁轭与心柱的片宽比应与它们截面积之比完全相同。这样才能避免磁通由心柱进入铁轭时,由于产生垂直硅钢片表面的漏磁通而引起的噪声增大。 ⑤ 增加铁心接缝有试验表明,当变压器铁心由两级接缝变为三级接缝时,其噪声可降低3~6dB(A)。这是因为在两级接缝中,对应的两个接缝间隙只跨越一层叠片,而三级接缝则跨越两层叠片,通过每层跨接叠片末端处的磁密降低,故而导致噪声降低。 ⑥ 控制铁心夹紧力有资料表明,当铁心夹紧力在压强为0.08~0.12Mpa时,变压器噪声最低。在铁心制造过程中可通过力矩扳手合理控制夹紧力;同时也可在心柱级间放置绝缘棒,使心柱绑扎受力均匀,防止因铁心受力不均匀而导致磁致伸缩ε增大。使用以上措施,能降低本体噪声3~6dB(A)。 ⑦ 采用先进的加工工艺磁致伸缩ε对应力极为敏感。在相同磁密条件下,有较大应力的硅钢片与应力较小的硅钢片相比,ε随应力的增加而急剧增大。因此,采用先进、合理的加工措施如:采用自动化的横、竖剪切线,控制硅钢片堆放高度,不叠上铁轭,对油道和夹件绝缘等使用的纸板进行预压密化处理等措施都可减少硅钢片的应力增加,从而降低变压器噪声。 ⑧ 在铁心垫脚与箱底之间放置减振橡胶如前所述,铁心的磁致伸缩振动分别是通过垫脚和绝缘油这两条途径传给油箱的。在铁心垫脚与箱底之间放置减振橡胶,能使器身与油箱间的刚性接触变为弹性接触。从而,阻断部分振动的传递,减小本体噪声。(2)油箱采取的技术措施 ① 增加箱壁强度,减小箱壁振幅 为减小箱壁振幅,必须增加油箱整体的刚性。为此,可适当增加箱壁厚度或合理布置加强筋,控制筋间距。同时,辅以合理的焊接工艺,减小箱壁焊接变形,减少制造过程中的残留应力。这样,就能提高箱壁强度,减小箱壁振幅,降低噪声。 ② 增加油箱阻尼 可在油箱内壁设置橡胶板。对有磁屏蔽的变压器,可将橡胶板放置在箱壁与磁屏蔽之间。在加强筋间焊接普通工业钢板网,网上涂刷2-3mm厚的阻尼材料,这样既不影响箱壁散热,又减小了箱壁的振动,降低了噪声。 ③ 在油箱底部与基础间设置减振器 在油箱底部与基础间设置减振器,避免箱底与基础间的刚性连接,使振动通过减振器发生衰减,以达到降低噪声的目的。通常采用的是橡胶减振器和弹簧胶减振器。 2. 降低冷却系统噪声的技术措施(1)采用合理的冷却方式在满足设计要求的前提下,在低噪声变压器的设计中,应选用自冷片式散热器替代风冷散热器或强油循环风冷却器,这从根本上杜绝了冷却器的噪声源,能有效降低噪声8~15dB(A)。(2)选用低噪声的冷却装置在冷却装置的选用过程中,应选用低噪声的冷却装置。用多台流量适中的新型低噪声风扇替代大流量高噪声风扇具有以下优点:第一,风扇布置均匀,能提供均匀冷却;第二,一组风扇出现故障,其余风扇仍能正常运行,提高了冷却系统的可靠性;第三,在总的冷却风量不变的前提下,其电机功率仅为大流量风扇的70%~75%,噪声降低了2~3dB(A)。(3)采用减振装置 变压器本体的噪声通过箱壁和油引起冷却装置的振动,采用以下措施能有效控制其振动。第一,在油箱与散热器之间采用防振头。防振头可由耐腐蚀的防振橡胶或不锈钢制作。试验结果表明,防振头通常能使自冷片式散热器的振动噪声降低5~8dB(A)。第二,对于侧吹或底吹片式散热器冷却方式,为避免风扇加剧冷却系统的振动,风扇支架不能直接固定在散热器上,而应固定在箱壁上,并应设置减振橡胶垫。第三,冷却系统和本体分别安装的变压器,风扇应固定在专用基础上。 5 结束语通过控制铁心的振动,能降低变压器本体噪声5~10dB(A);控制油箱振动采用隔、吸声措施,能降低噪声6~10dB(A);通过对冷却系统采取噪声控制措施,能使其噪声接近本体噪声水平。根据用户对变压器噪声的要求,采用相应的噪声控制措施,能有效地满足关于噪声的技术要求,增加产品的技术含量,提高变压器的设计和制造水平,改善环境,取得较好的经济效益和社会效益。 参考文献 1. 朱英浩. 变压器结构与工艺. 1987 2. 董志刚. 变压器的噪声. 变压器,1996 3. 记敬. 变压器噪声的控制. 变压器,1992
ቤተ መጻሕፍቲ ባይዱ
李亚晶(云南变压器电气股份有限公司)摘要:介绍了变压器的噪声的产生并提出了噪声的控制措施,指出只要采用合理的技术措施就能使变压器铁心噪声降低5~10dB,使变压器空气传播途中的噪声降低10~20dB。关键词:变压器 噪声 控制 1 概述随着人们环境意识的提高和环保部门对各类噪声的限制,特别是近年来由于城市的不断扩大和城区电网改造的需求,一些变电站有时就要建于商业区和居民区内,于是变压器噪声问题就变的十分突出了。变压器的噪声不但污染环境,危害人类身体健康,影响设备正常运行,而且与变电站的占地面积密切相关。变压器的噪声与其他电气性能和机械性能一样,都是变压器的重要技术参数。因此,变压器噪声水平的高低,成为了衡量变压器生产厂家设计和制造水平的重要指标。目前采用的变压器专业标准ZBK41005-89《6~220kV级变压器声级》所规定的变压器声级,已难满足用户要求。加强变压器噪声控制技术和结构材料的研究和开发,便能根据用户对噪声的不同要求,采用经济、有效且工艺性好的技术及结构取得理想的噪声控制效果,在满足用户需求的同时也开拓了市场。 2 变压器噪声的产生变压器的噪声来源于变压器本体和冷却系统两个方面。国内外的研究结果表明,变压器本体振动产生噪声的根源在于:(1) 硅钢片的磁致伸缩引起的铁心振动。(2) 硅钢片接缝处和叠片之间存在着因漏磁而产生的电磁吸引力而引起铁心的振动。(3) 当绕组中有负载电流通过时,负载电流产生的漏磁引起线圈、油箱壁的振动。近年来,由于铁心叠积方式的改进和心柱及铁轭都用环氧玻璃丝粘带绑扎,硅钢片接缝处和叠片之间的电磁吸引力引起的铁心振动,比硅钢片磁致伸缩引起的铁心振动要小得多,可以忽略。而变压器的额定工作磁密通常取1.5~1.8T,国内外研究和试验均证明,在这样的磁密范围之内,负载电流产生的漏瓷引起的线圈、箱壁的振动比硅钢片磁致伸缩引起的铁心振动要小得多,也可以忽略。这就是说变压器本体的振动完全取决于铁心的振动,而铁心的振动可以看作完全是由硅钢片的磁致伸缩引起的。与变压器本体噪声的机理一样,冷却装置的噪声也是由于它们的振动而产生的,其振动的根源在于:(1) 冷却风扇和油泵在运行时产生的振动。(2) 变压器本体的振动通过绝缘油、管接头及其装配零件传递给冷却装置,使冷却装置的振动加剧,噪声加大。另外,当铁心加热以后,由于谐振频率和机械应力的变化,其噪声会随温度的升高而增大。而运行现场的环境(如周围的墙壁、建筑物及安装基础等)对噪声也有影响。 3 噪声的传播路径由上一节可知,变压器通过空气向四周发射的噪声是由两部分噪声合成的,一部分是由于箱壁振动而产生的本体噪声;另一部分是由于冷却风扇和油泵振动产生的冷却装置噪声。变压器本体噪声完全取决于铁心的磁致伸缩振动。铁心的磁致伸缩振动是通过两条路径传递给油箱的,一条是固体传递路径——铁心的振动通过其垫脚传至油箱;另一条是液体传递路径——铁心的振动通过绝缘油传至油箱。由这两条路径传递过来的振动能量,使箱壁振动而产生本体噪声。通过空气,本体噪声以声波的形式均匀地向四周发射。同样,冷却风扇和油泵振动产生的噪声,也是通过空气以声波的形式向四周发射。在变压器噪声的发射过程中,噪声会随发射距离的增加而逐渐减弱。另外,在噪声发射过程中,往往会遇到障碍物,当障碍物的尺寸小于噪声的波长时,噪声会绕过障碍物;当障碍物的尺寸大于噪声的波长时,一部分噪声将被障碍物吸收,一部分噪声将被障碍物反射回去,其余部分才穿过障碍物发射出去。 4 噪声的控制运行中变压器的噪声通常是指变压器的本体噪声和冷却装置噪声合成的噪声。因此,为了降低变压器的噪声,也应从这两个方面来采取有效的技术措施。一方面,对变压器的本体噪声,可通过减小铁心的振动和降低噪声的发散能力来控制;也可通过减振及隔声、吸声等措施,使噪声在传播途径中得以衰减。另一方面,对冷却系统的噪声加以控制,使其噪声接近或低于本体噪声水平,也能有效降低变压器噪声。 1. 降低变压器本体噪声的技术措施(1)铁心采取的技术措施 ① 选用磁致伸缩ε小的优质硅钢片优质硅钢片提高了结晶方位的完整度,特殊涂层增加了其抗张力,从而降低了其磁致伸缩ε。在磁通密度为1.5T时,高晶粒取向硅钢片的磁致伸缩ε只有一般硅钢片的60%。因此,在相同磁密下,优质硅钢片的磁致伸缩ε较小,产生的振动也相应较小,噪声可降低2~4dB(A)。 ② 降低铁心的磁通密度B 铁心的额定工作磁密B通常取决于噪声及空载损耗的要求值。试验结果表明,额定磁密B在1.5~1.8T范围内,磁密每降低0.1T,铁心的噪声可降低2~3dB(A)。磁密变化引起的噪声变化量ΔLpa可由以下公式确定: ΔLpa=10lg[(B1/B2)8