椭圆的简单几何性质
3.1.2 第1课时 椭圆的简单几何性质(课件)
![3.1.2 第1课时 椭圆的简单几何性质(课件)](https://img.taocdn.com/s3/m/e45e791c2e60ddccda38376baf1ffc4ffe47e21f.png)
经典例题
题型二 由几何性质求椭圆的标准方程
(2)由题意知 e2=1-ab22=12, 所以ba22=12,即 a2=2b2, 设所求椭圆的方程为2xb22+by22=1 或2yb22+bx22=1.
将点 M(1,2)代入椭圆方程得21b2+b42=1 或24b2+b12=1,
解得 b2=92或 b2=3. 故所求椭圆的方程为x92+y92=1 或y62+x32=1.
a 23 2
当堂达标
6.已知椭圆 C: x2 y2 1( a b 0 ),点 A,B 为长轴的两个端点,若在椭
a2 b2
圆上存在点
P,使
k AP
kBP
1 3
,
0
,求椭圆的离心率
e
的取值范围.
解:由题可知 Aa,0 , Ba,0 ,设 P x0,y0 ,
由点
P
在椭圆上,得
y02
b2 a2
∵|F1F2|=2c,|F1F2|=|PF2|,∴3a-2c=2c,∴e=ac=34.
当堂达标
5.椭圆的中心在原点,焦点在 x 轴上,焦距为 2
6 ,且经过点 3,
6 2
.
(1)求满足条件的椭圆方程; (2)求该椭圆的长半轴的长、顶点坐标和离心率.
解:(1)设椭圆的标准方程为
x2 a2
y2 b2
当堂达标
4.设 F1,F2 是椭圆 E:ax22+by22=1(a>b>0)的左、右焦点,P 为直线 x=32a上
一点,△F2PF1 是底角为 30°的等腰三角形,则 E 的离心率为________.
3 4
解析:由题意,知∠F2F1P=∠F2PF1=30°,
∴∠PF2x=60°.∴|PF2|=2×32a-c=3a-2c.
椭圆的简单几何性质
![椭圆的简单几何性质](https://img.taocdn.com/s3/m/bfc817bc312b3169a551a404.png)
2.2 椭圆2.2.2椭圆的简单几何性质 第一课时 椭圆的简单几何性质【学习目标】1、理解椭圆的范围、对称性、顶点、长轴长及短轴长;2、掌握椭圆的离心率及c b a ,,的几何意义。
【重难点】重点:椭圆的简单几何性质 难点:求椭圆的离心率 【学习过程】复习引入:1、椭圆的定义我们把平面内与两个定点21,F F 的距离的和等于常数(大于||21F F )的点的轨迹叫做椭圆。
这两个定点21,F F 叫做椭圆的焦点,两焦点21,F F 间的距离||21F F 叫做椭圆的焦距。
2、椭圆的标准方程焦点在x 轴上:12222=+b y a x )0(>>b a 焦点在y 轴上:12222=+ay b x )0(>>b a3、重要结论:222c b a +=知识点一:椭圆的简单几何性质 1、范围由图形及椭圆的标准方程12222=+b y a x 可知,122≤a x 且122≤by ,即⎩⎨⎧≤≤-≤≤-by b ax a 故椭圆12222=+by a x 位于直线a x ±=和b y ±=所形成的矩形框里。
2、对称性观察椭圆的形状,可以发现椭圆既是轴对称图形,又是中心对称图形。
在椭圆12222=+by a x 中,用y -代替y ,方程不变,所以椭圆关于x 轴对称;用x -代替x ,方程不变,所以椭圆关于y 轴对称;用x -代替x ,用y -代替y ,方程不变,所以椭圆关于原点对称。
结论:椭圆关于x 轴和y 轴都对称,所以x 轴、y 轴叫做椭圆的对称轴;对称轴的交点原点,叫做椭圆的对称中心。
3、顶点椭圆与对称轴的交点,叫做椭圆的顶点。
显然12222=+by a x 有四个顶点,其中在x 轴上有)0,(),0,(21a A a A -,在y 轴上有),0(),,0(21b B b B -。
线段2121,B B A A 分别叫做椭圆的长轴和短轴,它们的长分别和a 2和b 2,b a ,分别叫做椭圆的长半轴长和短半轴长。
3.1.2椭圆的简单几何性质课件(人教版)
![3.1.2椭圆的简单几何性质课件(人教版)](https://img.taocdn.com/s3/m/4a9d27430622192e453610661ed9ad51f01d54bf.png)
y
O
x
A1 F1
y
B2 ba
Oc
x
F2 A2
B1
图2.1 7
综 上, 椭 圆 关 于x 轴 、y 轴 对 称,这 时,坐 标 轴 是 椭 圆 的 对 称 轴 ,原点 是 椭 圆 的对 称 中 心 , 椭 圆 的 对 称中 心 叫 做
y
O
x
图2.1 8
y
O
x
图2.1 8
图2.1 9
y
O
x
图2.2 10
c = 1.20 a = 1.81 c a = 0.66
c = 1.50 a = 1.81 c a = 0.83
我 们 把 椭 圆 的 焦 距 与 长轴 长 的 比c a
称 为 椭 圆 的 离 心 率,用e表 示,即e c . a
B
解 设d是点M到直线
l
:
x
25 4
的距离,
根据题意, 点M的轨迹就是集合
P
M
|
|
MF d
|
4 5
.
由此得
x 42 y2 4
25
5.
4 x
y Md H
O
Fx
l
将上式两边平方, 并化简, 得
图2.1 129x2 Nhomakorabea25 y2
225,
即
x2 25
y2 9
1.
所以,点M 的轨迹是长轴、短轴长分别为10、6
的椭圆图2.1 12.
A
F1
C
y
反射镜面
E
O
F2
x
D
透明窗
y
B
反射镜面
椭圆的简单几何性质
![椭圆的简单几何性质](https://img.taocdn.com/s3/m/97c1d1e9aa00b52acfc7ca38.png)
1.椭圆的对称性
y
F
1
O
F
2
x
椭圆关于x轴对称
二、新课探究:
A1 F
1
1.椭圆的对称性
y
O
F
2
x
A2
椭圆关于原点对称
二、新课探究:
1.椭圆的对称性
Y P(x,y)
以焦点在X轴上的为例:
P1(-x,y)
O
X
P 2 x, y
P3(-x,-y)
二、新课探究:
2、椭圆的顶点
B2 (0,b)
一、复习回顾:
3.椭圆中a,b,c的关系:
若点M运动到y轴上时:
y
M
| MF1 | = | MFOF1 | = | OF2 | c
x
F1
O
| MO | = a c b
2 2
a2=b2+c2
二、新课探究:
y
1.椭圆的对称性
F
1
O
F
2
x
椭圆关于y轴对称
二、新课探究:
根据前面所学有关知识画出下列图形
x y 1 (1) 25 16
y
4 B2 3 2 1
2 2
x2 y2 1 (2) 25 4
y
4 3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4
2.2.2 椭圆的简单几何性质
第一课时 椭圆的简单几何性质
一、复习回顾:
1、椭圆的定义:
3.2.2 椭圆的简单几何性质
![3.2.2 椭圆的简单几何性质](https://img.taocdn.com/s3/m/2370687c302b3169a45177232f60ddccda38e69b.png)
椭圆的离心率 e= .
范围: 0<e<1
e越接近1,c越接近a, = 2 − 2 越小,因
此椭圆越扁平;
e越接近0,c越接近0, = 2 − 2 越大,因
此椭圆越接近于圆;
当且仅当a=b时,c=0,这时两个焦点重合,
图形变为圆,方程为 2 + 2 = 2 .
典型例题
典型例题
例2 动点M(x,y)与定点F(4,0)的距离和M到定直线l:x=
4
比是常数 ,求动点M的轨迹.
5
25
的距离的
4
轨迹方程
轨迹上任意的点 M 的坐标(x , y)所满足的条件
点M所满足的条件
点M与定点F(4,0)的距离和M到定
25
4
直线l:x= 的距离的比是常数
4
转化
5
两点间距离和点到直线的距离
6 − 91 = 0内切,求动圆圆心的轨迹方程,并说明它是什么曲线?
圆 2 + 2 + 6 + 5 = 0
圆心1 (− 3,0),半径r1=2
椭圆的一个焦点F1上,片门位于另一个焦点F2上.由椭圆一个焦点F1发出的光线,
经过旋转椭圆面反射后集中到另一个焦点F2.已知 ⊥ 1 2 , 1 = 2.8cm,
1 2 = 4.5cm.试建立适当的平面直角坐标系,求截口BAC所在椭圆的方程.
椭圆的方程
求a,b
建立关于a,b的方程
典型例题
2
4.12
+
2
3⋅4 2
= 1.
方
程
思
想
典型例题
例1 如图,一种电影放映灯的反射镜面是旋转椭圆面(椭圆绕其对称轴旋转一周形成的曲
3.1.2椭圆的简单几何性质课件(人教版)
![3.1.2椭圆的简单几何性质课件(人教版)](https://img.taocdn.com/s3/m/d9c7379efbb069dc5022aaea998fcc22bdd1435c.png)
x2 a2
y2 b2
1,
(4)
由此可知,点M的轨迹是椭圆,方程(1)是椭圆
的参数方程,在椭圆的参数方程(1)中,常数a、
b分别是椭圆的长半轴长和短半轴长.
6、椭圆的参数方程
椭圆 x2 a2
y2 b2
1 (a
b
0),的参数方程是
x
y
a cos b sin
(为参数)
7、椭圆的焦半径公式
P(x0,y0)是椭圆
c2
b2,就可化
成:x a
2 2
y2 b2
(1 a
b 0).
这是椭圆的标准方程,所以点M的轨迹是长轴、 短轴长分别为2a、2b的椭圆.
5、椭圆的第二定义
平面内点M与一个定点的距离和它到一定直线的
距离的比是常数:e c (0<e<1)时,这个 a
点M的轨迹是椭圆,定点是椭圆的焦点,定直线 叫做椭圆的准线,常数e是椭圆的离心率.
长、离心率、焦点和顶点的坐标,并用描点法
画出它的图形.
解:把已知方程化成标准方程: x 2 52
y2 42
1,
这里,a 5,b 4,所以:c 25 16 3,
因此,椭圆的长轴和短轴的长分别是:2a 10
和 2b 8,离心率 e c 3,两个焦点分别是 a5
F1 ( 3,0)和F2 (3,0),椭圆的四个顶点是 A(1 5,0)、A(2 5,0),B(1 0, 4)和B(2 0,4).
练习
一、选择题
1、椭圆短轴长是2,长轴是短轴的2倍,则椭圆
的中心到其准线的距离是(D )
A、8 5 5
B、 4 5 5
C、8 3 3
D、 4 3 3
2、椭圆 9x2 25 y 2 225 上有一点P,它到右准
3.1.2椭圆的简单几何性质
![3.1.2椭圆的简单几何性质](https://img.taocdn.com/s3/m/b16a424e2379168884868762caaedd3382c4b55a.png)
OF
y1 c
1 c2 ,即 b2
2
c
1 c ,a2 2
c2
1 2
c2
,解得
e
c a
6. 3
综上所述,可得 2 e 6 .故选:A
2
3
5.直线 x-y+1=0 被椭圆 x2 +y2=1 所截得的弦长|AB|等于( )
3
A. 3 2 2
B. 2 C. 2 2
D. 3 2
【答案】A
x y 1 0,
()
A. 3 2
B. 2 2
C. 5 3
D. 6 3
【答案】B 【解析】由题意:椭圆的两个焦点与它的短轴的两个端点是一个正方形的四个顶点, 所以 b=c.
则 a b2 c2 2c , 所以离心率 e c 2 .
a2 故选:B
2.已知圆 M
: x2
y2
2mx 3 0m 0
的半径为 2 ,椭圆C :
则
x1+x2=-
4 3
,
故 AB
的中点横坐标
x0=
x1
2
x2
=- 2 3
.
纵坐标
y0=x0+1=-
2 3
+1=
1 3
.
例题分析2
已知椭圆的离心率为
1 2
,焦点是(-3,0)和(3,0),则椭圆方程为(
)
A. x2 + y2 =1 36 27
B. x2 + y2 =1 63
C. x2 + y2 =1 27 36
x2 a2
y2 3
1 的左焦点为
F c,0 ,若垂直于 x 轴且经过 F 点的直线l 与圆 M 相切,则椭圆C 的长轴长为( )
A. 3 2
椭圆的简单几何性质(第一课时)
![椭圆的简单几何性质(第一课时)](https://img.taocdn.com/s3/m/bcebf057bfd5b9f3f90f76c66137ee06eef94e19.png)
• 感谢阅读
感谢阅读
• 感谢阅读
• 感谢阅读
A1
(-a,0) F1
b
oc
a A2(a,0) F2
叫做椭圆的长轴和短轴。
B1 (0,-b)
它们的长分别等于2 a和2 b 。
a、b分别叫做椭圆的长半轴长和短半轴长。
根据前面所学有关知识画出下列图形
(1)
x2 y2 1
25 16
(2) x2 y2 1 25 4
y
4 B2
3
2
A1
1
A2
-5 -4 -3 -2 --11 0 1 2 3 4 5 x
3、椭圆
x2 a2
y2 b2
1(a b 0)的顶点:
令 x=0,得 y=?说明椭圆与 y轴的交点为( 0, ±b ), 令 y=0,得 x=?说明椭圆与 x轴的交点为( ±a, 0 )。
*顶点:椭圆与它的对称轴的四个
y
B2 (0,b)
交点,叫做椭圆的顶点。
*长轴、短轴: 线段A1A2、B1B2分别
从方程上看:
(1)把x换成-x方程不变,图象关于 y 轴对称;
(2)把y换成-y方程不变,图象关于 x 轴对称; Y
(3)把x换成-x,同时把y换成-y方程不变,
图象关于原点 成中心对称。
P1(-x,y)
P(x,y)
坐标轴是椭圆的对称轴,
O
X
原点是椭圆的对称中心。
P2(-x,-y)
中心:椭圆的对称中心叫做椭圆的中心。
100 64
100 64
练习:书本48页第1、2、3题
标准方程 范围
x2 y2 1(a b 0) a2 b2 -a ≤ x≤ a, - b≤ y≤ b
椭圆的简单几何性质
![椭圆的简单几何性质](https://img.taocdn.com/s3/m/1cf1df403c1ec5da51e27017.png)
不 同 点
焦点
顶点 准线
F1 (c,0) F2 (c,0)
A1 (a,0) A2 (a,0) B1 (0,b) B(0, b)
F1 (0,c) F2 (0, c)
A1 (0,a) A2 (0, a ) B1 (b,0) B(b,0)
a2 x c
a2 y c
例题讲解
练习1: 求下列椭圆的焦点坐标和准线
(1)
+ =1 100 36
25 __ x= ±
x2 __
2 y __
焦点坐标:(-8,0),(8,0). 准线方程:
2
(2) 2x2+y2=8
焦点坐标:(0,-2),(0,2). 准线方程:y= ±4
首页 上页 下页
例题讲解
例2:求中心在原点,一条准线方程是x=3, 离心率为 5 的椭圆标准方程。
c [3]e与a,b的关系: e a
a b b 1 a a
2 2 2
2
2
两种标准方程的椭圆性质的比较
方程
x y 2 1(a b 0) 2 a b
B2 y A1 F1 O B1 F2 A2 x
2
2
y 2 x2 2 1(a b 0) 2 a b
A2 F2 B1 O F1 A1 y B2
F (c,0) 0
F (c,0)
2 a x 方程是 x c
a x c
2
a x c
2
由椭圆的对称性,相应与焦点 F (c,0) 的准线方程是
a2 x c
知识归纳
图 形 相同点
方程
长轴长 2a, 短轴长 2b
c 离心率e (0 e 1) a 2 b2 c2 a 2 2 2 2 y x x y 2 1(a b 0) 2 1(a b 0) 2 2 a b a b
椭圆的简单几何性质课件培训讲解
![椭圆的简单几何性质课件培训讲解](https://img.taocdn.com/s3/m/991b8550fe00bed5b9f3f90f76c66137ef064f5a.png)
03
CHAPTER
椭圆的面积与周长
椭圆的面积
1 2
椭圆面积
椭圆的面积可以通过其长半轴和短半轴的长度计 算得出,公式为$S = pi ab$,其中$a$是长半轴 长度,$b$是短半轴长度。
面积计算
在已知椭圆的长半轴和短半轴长度的情况下,可 以直接代入公式计算出椭圆的面积。
3
面积与长、短半轴关系
椭圆的面积与其长半轴和短半轴的长度密切相关, 当长半轴和短半轴长度发生变化时,椭圆的面积 也会相应地发生变化。
转换的意义
在实际应用中,经常需要在直角坐标系和极坐标系之间进行转换。例如,在物理学、工程学和天文学等领域中, 许多问题可以通过极坐标或直角坐标方便地描述和解决。因此,掌握这两种坐标之间的转换方法对于解决实际问 题非常重要。
06
CHAPTER
椭圆的几何性质在生活中的 应用
地球轨道的椭圆性质
总结词
地球的轨道是椭圆形的,这是天文学和地理学中一个重要的 知识点。
椭圆的简单几何性质课件培训 讲解
目录
CONTENTS
• 椭圆的定义与性质 • 椭圆的焦点与离心率 • 椭圆的面积与周长 • 椭圆的切线与切点性质 • 椭圆的对称性与极坐标表示 • 椭圆的几何性质在生活中的应用
01
CHAPTER
椭圆的定义与性质
椭圆的定义
椭圆是平面内与两个定点F1、 F2的距离之和等于常数(大于
工程设计中的椭圆应用
总结词
在工程设计中,椭圆也有着广泛的应用。
详细描述
例如桥梁、建筑和机械零件的设计中,经常需要使用到椭圆的几何性质。特别是 在结构稳定性和力学分析方面,椭圆的几何性质发挥了重要的作用。
THANKS
椭圆性质
![椭圆性质](https://img.taocdn.com/s3/m/92950e7a33687e21ae45a91d.png)
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2
越小,因此椭圆越扁;
y
O
x
4.离心率 椭圆的焦距与长轴长的比
e
c
,叫做
椭圆的离心率.∵a>c>0,∴0<ea<1.
(1)当e越接近1时,c越接近a,从而b a2 c2 越小,因此椭圆越扁;
A1 b a A2 F1 O c F2 x
B1
3.顶点 线段A1A2、B1B2分别叫做椭圆的长轴和 短轴. 长轴的长等于2a. 短轴的长等于2b.
a叫做椭圆的长半轴长.
y
b叫做椭圆的短半轴长.
B2
|B1F1|=|B1F2|=|B2F1| =|B2F2|=a.
A1 b a A2 F1 O c F2 x
2.1.2椭圆的简单 几何性质
§2.1 椭 圆
1.在平面内到两定点F1、椭圆
.这两定点叫做椭圆
的 焦点 ,两焦点间的距离叫 焦距 .
集合P={M||MF1|+|MF2|=2a},|F1F2|=2c,其中a>0,c>0, 且a,c为常数;(1)若 a>c ,则集合P
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
3. 综合练习:
1. 以 正 方 形ABCD的 相 对 顶 点A、C为
焦点的椭圆,恰好过正方形四边的中
点,则该椭圆的离心率为( D )
,
10 2 A.
3
5 1 B.
3
C. 5 1 2
D. 10 2 2
例2 求适合下列条件的椭圆的标准方程:
椭圆的简单几何性质ppt课件
![椭圆的简单几何性质ppt课件](https://img.taocdn.com/s3/m/be4c0f7359fb770bf78a6529647d27284b733708.png)
研究直线与椭圆的位置关系的思路方法
1.研究直线与椭圆的位置关系,可联立直线与椭圆的方程,消元后用 判别式讨论. 2.求直线被椭圆截得的弦长,一般利用弦长公式,对于与坐标轴平行 的直线,直接求交点 坐标即可求解. 3.有关弦长的最值问题,可以运用二次函数性质、一元二次方程的判 别式、基本不等式等来求解.
m
4
4.已知椭圆 C :
x2 a2
y2 b2
1(a
b
0) 的左、右焦点分别为 F1 ,F2
,A
15 2
,
1 2
在椭圆
B C 上,且 AF1 AF2 ,则椭圆 C 的长轴长为( )
A. 5
B. 2 5
C. 5 或 3
D.2 5 或2 3
解析:由 AF1
AF2 ,得
OA
1 2
F1F2
,所以c
3.1.2 椭圆的简单几何性质
学习目标
01 掌握椭圆的范围、对称点、顶点、离心率等简单性质 02 能 利 用 椭 圆 的 简 单 性 质 求 椭 圆 方 程 03 能 用 椭 圆 的 简 单 性 质 分 析 解 决 有 关 问 题 04 理 解 数 形 结 合 思 想
学习重点
椭圆的几何性质
学习重点
y2 b2
1 (a
b
0) 的长半轴长为
a,半焦距为
c.利
y
用信息技术,保持长半轴长 a 不变,改变椭圆的半焦距
c,可以发现,c 越接近 a,椭圆越扁平.类似地,保持 c
O
x
不变,改变 a 的大小,则 a 越接近 c,椭圆越扁平;而
当 a,c 扩大或缩小相同倍数时,椭圆的形状不变.
这样,利用c和a这两个量,可以刻画椭圆的扁平程度.
椭圆的简单几何性质 课件
![椭圆的简单几何性质 课件](https://img.taocdn.com/s3/m/53a05ddbbdeb19e8b8f67c1cfad6195f312be885.png)
据椭圆定义得|BF1|+|BF2|=2a,
即 c+ 3c=所2以a,
c= 3-1. a
所以椭圆的离心率为 e= 3-1.
【方法技巧】求椭圆离心率及范围的两种方法 (1)直接法:若已知a,c可直接利用 e 求c解.若已知a,b或b,c
a
可借助于a2=b2+c2求出c或a,再代入公式e c 求解.
的距离为 1 |OF1|,则椭圆的离心率为( )
2
A. 1
B. 3 1
C. 2
D. 2 1
3
2
(3)已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直
线交椭圆于A,B两点,若△ABF2是正三角形,求该椭圆的离心
率.
【解题探究】1.题(1)由条件 3DF1 DA能得2D到F2什么结 论? 2.题(2)求解离心率的关键是什么? 3.题(3)当椭圆中涉及其他平面几何图形时,一般要注意什 么?
所以|AF1|= 3c,
所以2a=|AF1|+|AF2|= 3 1 c,
所以 e 3 1.
(3)不妨设椭圆的焦点在x轴上,因为 AB⊥F1F2,且△ABF2为正三角形,所以 在Rt△AF1F2中,∠AF2F1=30°,令|AF1| =x,则|AF2|=2x, 所以 F1F2 AF2 2 AF1 2 3x 2c, 再由椭圆的定义,可知|AF1|+|AF2|=2a=3x, 所以 e 2c 3x 3 .
【探究提示】1.将向量的等量关系转化为坐标间的关系,取
D(0,b)得3(-c,-b)=(-a,-b)+2(c,-b). 2.由题意求a,c的值或构造a,c的关系式,求 的c 值.
a
3.当椭圆中涉及其他平面几何图形时,注意利用平面图形的几
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图形
范围 对称性 顶点
离心率
a x a,b y b a y a,b x b
关于x轴、y轴、原点对称 A1(-a,0), A2(a,0) A1(0,-a), A2(0,a) B1(0,-b), B2(0,b) B1(-b,0), B2(b,0)
例1求椭圆16x2+25y2=400的长轴和短轴长,离心率 焦点和顶点坐标。 x2 y2 解:把已知方程化为标准方程 1
4、椭圆的离心率 (刻画椭圆扁平程度的量)
c 椭圆的焦距与长轴长的比e a 叫做椭圆的离心率。 [1]离心率的取值范围: 0<e<1
[2]离心率对椭圆形状的影响: 2 2 1)e越接近1,c就越接近a,从而b a c 就越小,椭圆就越扁 2 2 2)e越接近0,c就越接近0,从而b a c 就越大,椭圆就越圆 思考:当e=0时,曲线是什么? 圆 线段F1F2 当e=1时曲线又是 什么?
y Q M -2 O A 2 x
解:设动点M的坐标为(x,y), 则Q的坐标为(2x-1,2y)
x y2 1 因为Q点为椭圆 4 上的点
2
(2 x 1) 2 (2 y ) 2 1 所以有 4 1 2 即 (x ) 4 y2 1 2 1 2 所以点M的轨迹方程是 ( x ) 4 y 2 1 2
►
a、b、c的几何意义
B1 (0,b) a b c O B2(0,-b) y
(-a,0) A1
F1
ห้องสมุดไป่ตู้F2
(a,0) A2 x
a b c
2 2
2
B1F1 B1F2 B2 F1 B2 F2 a
2、范围:
B2
y
b a
F2
A1
A2
F1
o c
B1
y2 x 1, 2 1得: 2 b a -a≤x≤a, -b≤y≤b 知 椭圆落在x=±a,y= ± b组成的矩形中
2
x2 y2 3、对称性: 2 2 1(a b 0) a b 从图形上看,椭圆关于x轴、y轴、原点对称, 原点是椭圆的中心. 从方程上看: (1)把x换成-x方程不变,图象关于y轴对称; (2)把y换成-y方程不变,图象关于x轴对称; (3)把x换成-x,同时把y换成-y方程不变,图 y 象关于原点成中心对称。 B2
9
2 2
4
1
2 2 x y y x 1 1或 ⑵ 100 64 100 64
练习:P42 T5
例3:点M(x,y)与定点F(4,0)的距离和它到直 25 4 线x 的距离的比是常数 ,求点M的轨迹。
4
5
练习:P43 T2
x2 练:已知x轴上的一定点A(1,0),Q为椭圆 y 2 1 4 上的动点,求AQ中点M的轨迹方程.
y P
x2 y2 + 2 = 1 a > b > 0 2 b a y
F2 P x
不 同 点
图
形
F1
O
F2
x
O
F1
焦点坐标
相 同 点 定 义 a、b、c 的关系 焦点位置的判断
F1 -c , 0,F2 c , 0
F1 0,- c ,F2 0,c
平面内到两个定点F1,F2的距离的和等 于常数(大于F1F2)的点的轨迹
c [3]e与a,b的关系: e a
a b b 1 a a
2 2 2
2
2
两种标准方程的椭圆性质的比较
方程
x y 2 1(a b 0) 2 a b
B2 y O A1 F1 B1 F2 A2 x
2
2
y 2 x2 2 1(a b 0) 2 a b
A2 F2 y B2 B1 F1 A1 O x
课后记
• • 通过本节课的学习,让学生掌握了 一:椭圆: 1:标准椭圆,取一根标准的圆柱体,并在圆柱的圆心轴上O点横切圆柱是标 准正圆,再过O点斜切圆柱这个斜切面就是标准椭圆。 2:基础椭圆,当在标准圆柱上过圆心轴的O点横切圆柱,横切面则是正圆。 又过 圆柱的圆心轴上的O点斜切圆柱这个斜切面就是标准椭圆。设:斜切面椭圆与 横切面正圆经O点的交角为α 。当a=0时,斜切面就变成了横切面,椭圆也就 变成了正圆。所以我们把圆柱的横切面正圆命名为基础椭圆(简称为基础 圆)。 3:椭圆心,因为椭圆和正圆都是以圆柱的圆心轴上的O点为圆心,斜切和横 切圆柱的。所以椭圆和正圆都只有一个圆心。 4:椭圆的形状,在标准圆柱上过圆心轴上的O点横切面正圆与斜切椭圆的交 角α 越大,椭圆的形状也就越长。α 角越小,椭圆形状也就越短(越接近正 圆)。当α =0时,斜切面重叠横切面,椭圆的形状就是正圆(基础椭圆)。
所以a 5, b 4, c 3
因此长轴长 2a
25 16
c 3 离心率 e a 5
10
,短轴长 2b 8
练习:P41 T2
焦点F1(-3,0)和F2(3,0), 椭圆的四个顶点是A1(-5,0)、A2(5,0)、 B1(0,-4)、B2(0,4)
例2:求适合下列条件的椭圆的标准方程 ⑴经过点P(-3,0)、Q(0,-2); ⑵长轴长等于20,离心率3/5。 (1)解:利用椭圆的几何性质,以坐标轴为对 称轴的椭圆与坐标轴的交点就是椭圆的顶点,于 是焦点在x轴上,且点P、Q分别是椭圆长轴与短 轴的一个端点,故a=3,b=2,故椭圆的标准方 2 2 程为 x y
能力目标
通过对椭圆概念的引入与标准方程的推导,培养学生分析探索能力,增强运用坐标法 解决几何问题的能力.
学科渗透点
通过对椭圆标准方程的推导的教学,可以提高对各种知识的综合运用能力. 二、教材分析 1.重点:椭圆的定义和椭圆的标准方程. 2.难点:椭圆的标准方程的推导.
标准方程
x2 y2 + 2 = 1 a > b > 0 2 a b
a 2 = b2 + c 2
分母哪个大,焦点就在哪个轴上
练习:P36 T2,3,4
1.顶点:椭圆和坐标轴的交点叫做椭圆的顶点 • 椭圆有四个顶点(±a,0)、(0,±b)
B1 (0,b)
(-a,0) A1 F1 F2 (a,0) A2 x y
O B2(0,-b)
• 线段A1A2叫做椭圆的长轴,且长为2a, a叫做椭圆的长半轴长 • 线段B1B2叫做椭圆的短轴,且长为2b, b叫做椭圆的短半轴长 2c 为椭圆的焦距, c 为椭圆的半焦距
A1
b F1
a F2
A2
o c
B1
根据前面所学有关知识画出下列图形
x y 1 (1) 25 16
y
4 B2 3 2 1
2 2
x2 y2 1 (2) 25 4
y
4 3 B 2 2 1
A1
A2 x
A1
A2 x
-5 -4 -3 -2 -1 -1 -2 -3 -4
123 4 5
B1
-5 -4 -3 -2 -1 -1 1 2 3 4 5 -2 -3 B1 -4