二项式定理说课讲义
二项式定理说课
三、教法分析
教学中采用启发式教学,从特殊到一般引导 n 学生自主发现一般的二项式的展开式(a b) 的各项系数。 提出二项式定理的过程注重培养学生观察 和归纳能力。在二项式定理得出后,安排 了四个例题及相关的练习巩固应用二项式 定理的展开式和通项公式,使学生理解与 掌握相关的数学技能。
四、教学过程
(五)、课堂小结 (由学生归纳总结,教师补充。)
(六)、作业布置
1、必做题: 教材P110习题10.4
1、2、3、4(1)(2) 2、选做题: 中, x 5 的系数是什么?
(1 x 3 )(1 x)10 的展开式 在
五、本节课的教学流程图:
复习 启发 探究 新知 合作 交流 应用 新知 归纳 梳理 总结 作业
(一)、复习回顾,引入新知
1、教材P87 乘积
(a1 a 2 a3 )(b1 b2 b3 b4 )(c1 c 2 c3 c3 c 4 c5 )
展开后共有多少项 ?
(a b) 4 1、回顾初中所学的公式,进一步计算
突破难点。
(a b) 2 (a b)(a b) a 2 2ab b 2 (1)
(赋值法)
(三)、例题的讲解与分析
1 4 例1、展开 (1 ) x
例2、展开 (2 x
1 x
)6
例3、 ( x a) 的展开式中的倒数第4项。
12
(1 2 x) 7 的展开式中的第4项 例4(1)求
1 9 (2)求( x ) 的展开式中的 x 3 的系数 x
(四)、课堂练习 教材 P107 1、2、3、4(同学板演) 5、6(自己完成后校对答案)
若是 (a b) n 第 r 1 项呢?
二项式定理说课稿
二项式定理说课稿一、引言二项式定理是高中数学中的重要内容,在代数学中起到了重要的作用。
它是数学家杨辉在《详解九章算术》中首次提出的,后来被数学家牛顿推广和证明。
二项式定理在数学中有着广泛的应用,特别在组合数学与概率论中起到了重要的作用。
本说课稿将介绍二项式定理的定义、证明方法、拓展应用以及相关习题练习。
二、体系结构本说课稿将按照以下顺序介绍二项式定理的内容:1.定义和表述2.证明方法3.拓展应用4.相关习题练习三、正文1. 定义和表述二项式定理是指对于任意实数a和b以及非负整数n,有以下公式成立:(a+b)n=C n0a n+C n1a n−1b+C n2a n−2b2+...+C n n−1ab n−1+C n n b n其中,C n k表示从n个不同元素中取k个元素的组合数。
2. 证明方法2.1 代数证明法二项式定理的一个常见证明方法是代数证明法。
通过使用数学归纳法,可以证明对于任意的非负整数n都成立。
2.2 几何证明法二项式定理还可以通过几何证明法来证明。
通过构建一个乘方和差分式的几何图形,可以直观地理解二项式定理的成立。
3. 拓展应用3.1 组合数学中的应用二项式定理在组合数学中有着广泛的应用。
通过二项式定理,可以计算组合数,求解排列组合问题,解决概率问题等。
3.2 概率论中的应用二项式定理在概率论中也有着重要的应用。
通过二项式定理,可以计算二项分布的概率,求解二项分布的期望和方差等。
4. 相关习题练习4.1 选择题1.若(x−1)6展开后的常数项的系数为3,则x等于() A. 1 B. -1 C. 0D. -24.2 计算题2.求(3t2−2)4的展开式中t2的系数。
四、结语通过本说课稿的介绍,我们了解了二项式定理的定义、证明方法、拓展应用以及相关习题练习。
二项式定理作为代数学中的重要内容,具有广泛的应用。
希望同学们通过学习和练习,能够熟练掌握二项式定理的运用。
最后,祝同学们在数学学习中取得不断进步!。
苏教版选修2《二项式定理》说课稿
苏教版选修2《二项式定理》说课稿一、引言首先,让我们来了解什么是二项式定理。
在高中数学中,二项式定理是一个非常重要且实用的定理,它用于展开任意次数的二项式的幂。
本节课我们将讨论二项式定理的基本概念、公式和应用。
通过本节课的学习,同学们将能够灵活使用二项式定理解决实际问题。
二、二项式定理的基本概念1.二项式的定义:二项式是由两个代数式相加(或相减)而得的代数式。
2.二项式系数:二项式展开式中,每个项前面的系数称为二项式系数。
例如在展开式(a+b)^n中,二项式系数是(a+b)的系数。
三、二项式定理的公式表达二项式定理的公式表达如下: (a+b)^n = C(n, 0) * a^n * b^0 + C(n, 1) * a^(n-1) * b^1 + … + C(n, r) * a^(n-r) * b^r + … + C(n, n) * a^0 * b^n在上述公式中,C(n, r)表示从n个不同元素中取r个元素的组合数。
四、二项式定理的证明二项式定理的证明过程较为复杂,在这里我们只进行简略的叙述。
1.使用数学归纳法证明二项式定理对于n=1的情况成立。
2.假设当n=k时,二项式定理成立,即(a+b)^k = C(k,0) * a^k * b^0 + C(k, 1) * a^(k-1) * b^1 + … + C(k,r) * a^(k-r) * b^r + … + C(k, k) * a^0 * b^k。
3.在上述假设成立的情况下,使用数学归纳法证明当n=k+1时,二项式定理也成立。
4.综上所述,根据数学归纳法原理,二项式定理对于所有自然数n都成立。
五、二项式定理的应用二项式定理在实际问题中有广泛的应用,我们将介绍以下两个常见的应用场景。
1. 组合数的应用二项式定理中的组合数C(n, r)可以表示从n个元素中取r个元素的组合数,因此可以用于解决组合问题。
例如,当n个元素中只能选取r个元素时,求解C(n, r)可以得到解决方案的总数。
《二项式定理 》优质课比赛说课稿
二项式定理(一)(说课稿)一、教材分析1.教材的地位和作用:本节课的教学内容是人教版《高中数学》系列2-3第一章1.3节(大约需要2课时,本次只说第一课时).在此之前,学生已经学习了两个计数原理以及排列、组合的有关知识,将本小节内容安排在计数原理之后学习,一方面是因为二项式定理的证明用到计数原理,可以把它作为计数原理的一个应用;另一方面也为学习随机变量及其分布做准备;另外,由二项式定理导出的一些组合数恒等式,对深化组合数的认识也有好处. 总之,二项式定理是综合性较强的、具有联系不同内容作用的知识,也是高考必考内容之一.2.教学重点:用计数原理分析()2a b+的展开式,归纳得出二项+、()3a b式定理及二项展开式的通项公式.3.教学难点:用计数原理分析二项式的展开过程,发现二项展开式各项系数的规律.二、目标分析根据学生的认知结构特征以及教材内容的特点,依据新课程标准要求,确定本节教学目标如下:知识目标:使学生经历定理的发现过程,直观了解二项式定理的内容,并且在此基础上进行简单应用;能力目标:通过观察二项展开式,掌握其基本特征,培养学生观察、分析、概括的能力;情感目标;A.揭示寻求二项式定理的方法,激发学生的求知欲;B.体会“由特殊到一般”这一重要的数学思想;C.感受二项展开式各项系数的规律,发现数学中的对称美.三、学法和教法分析1. 学法分析学法要突出自主学习、研讨发现.知识是通过学生自己积极思考、主动探索获得的,学生在教师引导下,通过观察、讨论、合作探究等活动来对知识、方法和规律进行总结,在课堂活动中注重引导学生,并让学生体会从局部到整体、从特殊到一般的方法获取知识的过程,让学生体验发现的喜悦,培养学生学习的主动性.2. 教法分析素质教育理论明确要求,教师是主导,学生是主体,只有教师在教学过程中注重引导,才能充分发挥学生的主观能动性,有利于学生创造性思维的培养和能力的提高.根据本节的教学内容、教学目标和学生的认知规律,我采用类比、引导、探索式相结合的方法,启发、引导学生积极思考本节所遇到的问题,引导学生归纳、猜想、探索新知识,从而使学生产生浓厚的学习兴趣和求知欲,体现学生的主体地位.四、教学程序设计分析五、板书设计附: 达标检测题1.()8x y +的展开式中,必不存在的项为( )(A )26x y (B )35x y (C )27x y (D )44x y2.()101x -的展开式中,第6项的系数是( )(A )610C (B )610C - (C )510C (D )510C - 3.()9m n +的展开式中,54m n 项的系数为_____________.4. 用二项式定理展开4⎫-⎝.。
部编《二项式定理》说课稿课件
新课讲授— 研究各项
2
考虑到将二项式展开式与计数问题联系在一起的难度,以n=2 的情形为例,根据多项式的乘法法则,每个括号中的a或b都要相 乘,所以展开式的每一项就有两个因子。
新课讲授— 研究各项
2
然后引导学生利用已学知识,构建组合计数模型,培养学生的 直观想象和数学建模素养。
新课讲授— 研究各项
2
然后引导学生利用已学知识,构建组合计数模型,培养学生的 直观想象和数学建模素养。
新课讲授
2
教师指引学生自己模仿推导出n=3和n=4 的展开式的各项的得到 方式,让学生逐渐体会到用“联系”的观点解决问题带来的巧妙性。
新课讲授
2
从具体到一般的结论,需 要经历一个归纳、概括的过 程,这一过程在教师的引导 和学生的自主探究中完成. 体现了“教学活动是师生积 极参与、交往互动、共同发 展的过程”的课程理念.
目标定位
(1)使学生掌握二项式定理及推导方法,二项式展开式、通项公式 的特点,并能利用二项式定理计算或证明一些简单问题。
(2)在学生对二项式定理形成的参与讨论过程中,培养学生观察 、猜想、归纳的能力,以及学生的化归意识及知识迁移能力。
(3)通过二项式定理的发现过程培养学生的数学抽象素养和数学 建模素养。
问题的基础,有承上启下的作用.二项式定理与二项分布有其内在联系,本小节是学习概率统计的
准备知识;二项式系数都是一些特殊的组合数,利用二项式定理可以得到关于组合数的一些恒等式,
从而深化对组合数的认识;基于二项展开式与多项式乘法的联系,本小节的学习可对初中学习的多
项式的变形起到复习、深化的作用;运用二项式定理可以解决一些比较典型的数学问题,比如近似
新课讲授
2
二项式定理说课稿公开课一等奖课件省赛课获奖课件
的展开式中含
x32的项的系数为
30,则
a=
A. 3
B.- 3
C.6
() D.-6
[解析] (2)∵Tr+1=Cr5(x2)5-r-x23r=(-2)rCr5·x10-5r,由 10 -5r=0,得 r=2,∴T3=(-2)2C25=40.
(3)Tr+1=Cr5( x)5-r·-xar=Cr5(-a)rx5-22r,由5-22r=32,解 得 r=1.由 C15(-a)=30,得 a=-6.故选 D.
[答案] C
突破点一
突破点二
课标达标检测
二项式定理 结 束
(2)(2016·安徽安庆二模)将x+4x-43 展开后,常数项
是________.
[解析]
x+4x-43=
x-
2 6 x
展开式的通项是
Ck6
( x)6-k·- 2xk=(-2)k·Ck6( x)6-2k.
令 6-2k=0,得 k=3.
所以常数项是 C36(-2)3=-160.
[答案] (2)C (3)D
突破点一
突破点二
课标达标检测
二项式定理 结 束
(4)
x- 1 24
8 x
的展开式中的有理项共有________项.
[解析]
(4)
x- 1 8 24 x
的展开式的通项为
Tr + 1 =
Cr8·( x)8-r2-4 1xr=-12rCr8x16-4 3r(r=0,1,2,…,8),为使
突破点一
突破点二
课标达标检测
二项式定理 结 束
[方法技巧] 求解形如(a+b)n(c+d)m 的展开式问题的思路
(1)若 n,m 中一个比较小,可考虑把它展开得到多个, 如(a+b)2(c+d)m=(a2+2ab+b2)(c+d)m,然后展开分别求解.
二项式定理讲义
二项式定理一、二项式定理(1)二项式定理公式:()n n n r r n r n n n n n n n nb C b a C b a C b a C a C b a ++++++=+---............222110所表示的定理叫做二项式定理;(2)相关概念及公式①公式右边的多项式叫做()nb a +的展开式; ②各项的系数()n r C r n ,......,2,1,0=叫做二项式系数;③展开式中的r r n r n b a C -叫做二项式展开式的通项,记作r r n r n r b a C T -+=1,它表示展开式的第1+r 项; ④在二项式定理中,如果设x b a ==,1,则得到公式:()n n n r r n n n n x C x C x C x C x ++++++=+............11221;()()()n n n r r nn n n x C x C x C x C x -++-+++-=-............11221; 二、二项式系数的性质(1)对称性:与首末两端“等距离”的两个二项式系数相等;(2)增减性与最大值: 当21+<n r 时,二项式系数r n C 是递增的; 当21+>n r 时,二项式系数r n C 是递减的; 当n 时偶数时,中间一项的二项式系数取得最大值;当n 时偶数时,中间两项的二项式系数相等,且同时取得最大值; (3)各二项式系数的和:()n b a +的展开式的各个二项式系数的和等于n 2,即n n n n n n C C C C 2......210=++++;二项展开式中,奇数项的二项式系数的和等于偶数项的二项式系数的和,即............531420+++=+++n n n n n n C C C C C C ;注意二项式系数与系数的区别;例题:1.在6212⎪⎭⎫ ⎝⎛+x x 的二项展开式中,常数项是________________; 2.若()()R x x a x a x a a x ∈++++=-2009200922102009......21,则200920092212......22a a a +++的值为( ) A. 2 B. 0 C.1- D. 2-3.若nx x ⎪⎭⎫ ⎝⎛-21的展开式中第3项的二项式系数是15,则展开式中所有项的系数之和为___________;4.已知()4433221043x a x a x a x a a x ++++=-,则=+-+-43210a a a a a ______________; 5.已知()554433221051x a x a x a x a x a a x +++++=-,则()()531420a a a a a a ++++的值等于________; 6.6⎪⎪⎭⎫ ⎝⎛-x y y x 的展开式中,3x 的系数等于_________________; 7.若9⎪⎭⎫ ⎝⎛-x a x 的展开式中,3x 的系数是84-,则=a ___________; 8.()()R x x x ∈--624展开式中的常数项是( ) A. 20- B. 15- C.15 D. 20 9.在622⎪⎪⎭⎫ ⎝⎛-x x 的二项展开式中,2x 的系数为( ) A. 415- B. 415 C.83- D. 83 10. ()n by ax ++1的展开式中不含x 的项的系数绝对值的和为243,不含y 的项的系数绝对值的和为32,则n b a ,,的值可能为( )A. 5,1,2=-==n b aB. 6,1,2=-=-=n b aC. 6,2,1==-=n b aD. 5,2,1===n b a11.设()2121221021......1x a x a x a a x ++++=-,则=+1110a a ________________;12.若n n n n n x C x C x C +++......221能被7整除,则n x ,的值可能为( )A. 3,4==n xB. 4,4==n xC. 4,5==n xD. 5,6==n x13.当*∈N n 时,求证:3112<⎪⎭⎫ ⎝⎛+≤nn ,*∈N n . 14.()()533121x x -+的展开式中x 的系数是( ) A. 4- B. 2- C.2 D. 415.()6211⎪⎭⎫ ⎝⎛-++x x x x 的展开式中的常数项是_______________; 16.在5212⎪⎭⎫ ⎝⎛-x x 的二项展开式中,x 的系数是( ) A. 10 B. 10- C.40 D. 40-16. ()522112⎪⎭⎫ ⎝⎛-+x x 的展开式中的常数项是_______________; 17.设Z a ∈,且130<≤a ,若a +201251能被13整除,则=a ( )A. 0B. 1C.11D. 1218.()71x +的展开式中2x 的系数是____________________; 19.821⎪⎪⎭⎫ ⎝⎛+x x 的展开式中常数项是___________________; 20.若n x x ⎪⎭⎫ ⎝⎛+1的展开式中第3项与第7项的二项式系数相等,则该展开式中21x 的系数为___________; 21.若将函数()5x x f =表示为()()()()5522101......11x a x a x a a x f +++++++=,其中5210,...,,,a a a a 为实数,则=3a _______________;22. ()4x a +的展开式中3x 的系数等于8,则实数=a ________________; 23. ()6622106......21x a x a x a a x ++++=-,则6210......a a a a ++++的值为( ) A. 1 B. 64 C.243 D. 72924.二项展开式()1012-x 中x 的奇次幂项的系数之和为_________________; 25.已知()1011232110......1x a x a x a a x ++++=+,若数列()Z k k a a a k ∈≤≤,111,......,,21是一个单调递增数列,则k 的最大值是______________________.26.若()2215b a +=+(b a ,为有理数),则=+b a ( ) A. 45 B. 55 C.70 D. 8027.设Z a ∈,且130<≤a ,若a +201251能被13整除,则=a ____________. 28.()6622106...51x a x a x a a x ++++=-,则=+++610...a a a ________________.29.若()*++∈=N n C C n n 6271327,则n x x ⎪⎪⎭⎫ ⎝⎛-32的展开式中的常数项是____________. 30.二项式()n x sin 1+的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为25,则x 在[]π2,0内的值为____________________.。
(vip免费)【数学】1.3《二项式定理说课》课件(新人教A版选修2-3)
重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式, 系数,字母的幂次,展开式项数的规律。
(2)能够应用二项式定理对二项式进行展开。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
二﹑说教学目标
A.知识与技能
(1)使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的 幂次、展开式项数的规律.
坚持做好每个学习步骤
武亦文的高考高分来自于她日常严谨的学习 态度,坚持认真做好每天的预习、复习。 “高中三年,从来没有熬夜,上课跟着老师 走,保证课堂效率。”武亦文介绍,“班主 任王老师对我的成长起了很大引导作用,王 老师办事很认真,凡事都会投入自己所有精 力,看重做事的过程而不重结果。每当学生 没有取得好结果,王老师也会淡然一笑,鼓 励学生注重学习的过程。”
说教材 说教学目标 说教法、学法 说教学过程
课堂小结 解决问题 提出问题、分析问题
一、说教材
1、知识内容:二项式定理及简单的应用
2、地位及重要性:
二项式定理安排在高中数学选修2-3第三节,是排列组合内容后的一部分 内容,其形成过程是组合知识的应用,同时也是自成体系的知识块, 为随后学习的概率知识及概率与统计,作知识上的铺垫。二项展开式 与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和 更高的层次来审视初中学习的关于多项式变形的知识。运用二项式定 理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不 等式的证明等。
青 春 风 采
高考总分:
692分(含20分加分) 语文131分 数学145分 英语141分 文综255分
毕业学校:北京二中 报考高校:
北京大学光华管理学 院
北京市文科状元 阳光女孩--何旋
二项式定理说课 课件-高二下学期数学人教A版(2019)选择性必修第三册
TEXT HERE
TEXT HERE
TEXT HERE
多项式,培养学生的逻辑推理与数学抽象的核心素养。
七、说教学过程
(二)探究归纳,发现规律
思考3:不计算,能否运用摸球试验解释( + )3 ?并写出展开式?
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
学学习的热情,培养核心素养。通过这两个计算,学生体会学习是一
个日积月累的过程。
七、说教学过程
(四)知识迁移,初步应用
反思:1.探究展开式某一项时,常用什么方法?
2.二项式系数与项系数是同一个概念吗如果不是,二者的区别
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
是带领学生初步体验二项式定理在解决问题时的
TEXT HERE
TEXT HERE
TEXT HERE
方法:赋值或是赋表达式。
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
七、说教学过程
(四)知识迁移,初步应用
1. 求 (1 + 2)5 的展开式。
2. 求 (2 + )6 的展开式的第三项。
情境,
初步
TEXT HERE
HERE
发现 TEXT形成
TEXT HERE
HERE
体验
规律 TEXT定理
TEXT HERE
TEXT HERE
TEXT HERE
TEXT HERE
知识
回顾
布置
TEXT HERE
高三复习课《二项式定理》说课稿
高三复习课(二项式定理)说课稿高三第—阶段复习,也称“知识篇〞。
在这一阶段,学生重温高一、高二所学课程,全面复习稳固各个知识点,熟练掌握根本方法和技能;然后站在全局的高度,对学过的知识产生全新认识。
在高一、高二时,是以知识点为主线索,依次传授讲解的,由于后面的相关知识还没有学到,不能进行纵向联系,所以,学的知识往往是零碎和散乱,而在第—轮复习时,以章节为单位,将那些零碎的、散乱的知识点串联起来,并将他们系统化、综合化,把各个知识点融会贯穿。
对于一般高中的学生,第—轮复习更为重要,我们期望能做高考真题中一些根底题目,必须侧重根底,加强复习的针对性,讲求实效。
一、内容分析说明1、本小节内容是初中学习的多项式乘法的继续,它所研究的二项式的乘方的展开式,与数学的其他局部有紧密的联系:〔1〕二项展开式与多项式乘法有联系,本小节复习可对多项式的变形起到复习深化作用。
〔2〕二项式定理与概率理论中的二项分布有内在联系,利用二项式定理可得到一些组合数的恒等式,因此,本小节复习可加深知识间纵横联系,形成知识网络。
〔3〕二项式定理是解决某些整除性、近似计算等问题的一种方法。
2、高考中二项式定理的真题几乎年年有,多数真题的难度与课本习题相当,是简单题和中等难度的真题,考察的题型稳定,通常以选择题或填空题出现,有时也与应用题结合在一起求某些数、式的近似值。
二、学校情况与学生分析〔1〕我校是一所镇一般高中,学生的根底不好,记忆力较差,反响速度慢,普遍感到数学难学。
但大局部学生想考大学,主观上有学好数学的心愿。
〔2〕授课班是政治、地理班,学生听课积极性不高,听课率低〔60﹪〕,注意力不能持久,不能连续从事某项数学活动。
课堂上喜欢轻松诙谐的气氛,大局部能机械的模仿,局部学生好记笔记。
三、教学目标复习课二项式定理方案安排两个课时,本课是第—课时,主要复习二项展开式和通项。
依据历年高考对这局部的考查情况,结合学生的特点,设定如下教学目标:1、知识目标:〔1〕理解并掌握二项式定理,从项数、指数、系数、通项几个特征熟记它的展开式。
二项式定理说课稿
《二项式定理》说课稿各位领导、老师大家好:我今天说课的题目是《二项式定理》,本节课是人教B版选修2-3的1.3.1节内容,下面我从教材分析、教法与学法、教学过程、设计说明等几个方面进行说课。
一、教材分析:1、教材的地位与作用:本节课是在学生学习了排列组合和多项式乘法的基础上,进一步研究学习二项式展开式的内容。
将本小节内容安排在计数原理之后来学习,一方面是因为二项式定理的证明要用到计数原理,可以把它作为计数原理的一个应用,另一方面也为学习随机变量及其分布作准备。
本节课在本章的学习中起着乘上启下的作用.同时利用二项式定理可解决实际生活中有关近似计算及整除的问题。
2、教学目标:知识与技能目标:会用计数原理和组合数的性质去推导和证明二项式定理,掌握二项式定理,培养学生利用由特殊到一般,由具体到抽象的数学思想去发现问题,解决问题的能力过程与方法目标:通过教师指导下的探究活动,经历数学思维过程,熟悉理解“观察—归纳—猜想—证明”的思维方法,对具体问题的分析、类比、归纳、证明二项式定理,让学生充分体验到归纳推理不仅可以猜想到一般性的结果,而且可以启发我们发现一般性问题的解决方法,养成合作的意识,获得学习和成功的体验。
情感与价值目标:教学过程中,通过对二项式定理内容的研究,体验特殊到一般发现规律,一般到特殊指导实践的认识事物过程;通过对二项展开式结构特点的观察,体验数学公式的对称美、和谐美.3、突出重点、突破难点:依据新课标及学生认识水平,确立:重点:二项式定理的发现与运用难点:二项式定理的证明,各项系数的产生的过程突破难点的方法:通过实例展示显示形象的揭示多项式相乘时每项形成的过程。
并引导学生通过分析每项系数的产生过程联想到组合的模型。
二、教法与学法指导:1、教法:为了完成本节课的教学目标,掌握并能正确运用二项式定理,让学生主动探索展开式的由来是关键。
本节课的教法采用自主探究教学方法,使学生在交流合作及教师的引导下去发现、解决问题;以“引导思考”为核心,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的逻辑思维能力;同时,考虑到学生的个体差异,在教学的各个环节进行分层施教,实现“有差异”的发展。
高中数学教案:二项式定理(说课稿)
高中数学教案:二项式定理(说课稿)尊敬的各位评委、老师们:大家好!我是××中学的××,我将要为大家说课的内容是高中数学二项式定理。
一、教学背景分析:二项式定理是高中数学中的重要内容,它是高中数学中的一个较为复杂的概念,也是以后学习乘方与根式定理以及函数与导数的基础。
该内容包含很多实际应用,因此能够培养学生的实际动手能力和解决实际问题的能力。
二、教学目标:1.知识与技能:掌握二项式定理的基本概念和公式,能够应用二项式定理计算多项式的展开结果。
2.过程与方法:培养学生归纳总结的能力,激发学生的兴趣,提高观察、思维和解决问题的能力。
3.情感态度:培养学生正确的学习态度,善于思考和发现问题,培养学生的数学思维和数学逻辑思维。
三、教学重点难点:1.掌握二项式定理的基本概念和公式。
2.掌握应用二项式定理计算多项式的展开结果。
3.培养学生归纳总结的能力。
四、教学过程安排:1.导入(5分钟)首先,我会通过引导学生回忆乘方的内容,提问:如何计算(2+3)²、(4-5)³等表达式的值?通过回忆与思考,引出二项式定理的概念。
2.新课呈现(10分钟)介绍二项式定理的定义:当n为自然数,a、b为任意实数,有:(a+b)ⁿ=aⁿ+naⁿ⁻¹b+...+n(n-1)...(n-k+1)aⁿ⁻ᵏbᵏ+...+bⁿ。
引导学生通过观察与分析,发现并总结二项式定理的规律与特点。
利用例题,让学生体会并巩固二项式定理的应用。
3.合作探究(20分钟)学生自主或小组合作完成练习和问题解决。
可以设计一些展开多项式的计算题目,让学生通过计算,并灵活应用二项式定理进行展开。
4.归纳总结(10分钟)引导学生根据前面的学习和探究,总结出二项式定理的公式形式,并将其写在板书上,让学生进行回顾与复习。
5.拓展应用(10分钟)通过生活实际问题的讨论,培养学生实际应用二项式定理解决问题的能力。
新人教版高中数学《二项式定理(说课)》精品PPT课件
1.3.1 二项式定理 (一)
流程分析
二项式定理
教材分析 目标分析 过程分析 评价分析
教材分析
二项式定理
1.教材地位和作用
把二项式定理安排在第一章第三节,而它的前一节是
排列与组合,通过二项式定理的学习,既可以进一步深化对 组合知识的认识,又为后面学习随机变量及其分布作好知识 上的铺垫.运用二项式定理还可以解决一些比较常见的数学 问题,例如近似计算、整除问题、恒等式的证明等.
2.教学重点和难点
重点:二项式定理及通项公式的应用. 难点:用计数原理分析二项式的展开过程,理解推导二项
式定理的形成过程.
目标分析
二项式定理
1.知识与技能:
理解二项式定理及通项公式的特点,能够运用二项式定理对 所给出的二项式进行正确的展开.并能运用二项式定理解决一 些简单问题.
2.过程与方法:
通过二项式定理形成过程的探讨,有意识地培养学生观察, 类比,猜想,归纳的能力,培养学生化归的意识和知识迁移的 能力.
3.情感、态度与价值观:
通过“二项式定理”形成过程的自主参与和探讨学习,培养 学生解决数学问题的兴趣和信心,感受数学的内在美.
过程分析
二项式定理
提
寻
深
得
应
归
出
找
入
出
用
纳
问
规
探
定
பைடு நூலகம்
新
小
题
律
究
理
知
结
评价分析
问题提出自然 问题解决创新 学习力提升持续
二项式定理
《二项式定理(第一课时)》说课稿
《二项式定理(第一课时)》说课稿
《二项式定理(第一课时)》说课稿
(一)说教材。
本课时的教材是高中数学必修一:《二项式定理》。
在本课稿中,我将主要讲授二项式定理的基本概念、定义以及证明方法。
(二)说教学目标。
1. 通过本节课的学习,学生能够熟练掌握二项式定理的基本概念; 2. 能够利用二项式定理解决实际问题; 3. 学会使用二项式定理证明定理并应用于实际问题中。
(三)说教学重点和难点。
教学重点:二项式定理的基本概念、定义以及证明方法。
教学难点:如何利用二项式定理解决实际问题,以及如何正确使用二项式定理证明定理。
(四)说教学方法。
1. 以教师讲授为主,充分利用影像、课件等视觉资料,突出特点,深入浅出,使学生理解深刻; 2. 采用“问题导向法”,以解决实际问题为出发点,让学生更加认真思考; 3. 布置小组探究课题,培养学生的合作意识,让学生学会独立思考、集体探究、解决实际问题; 4. 布置家庭作业,巩固所学知识,提高学生的学习效果。
(五)说教学过程。
1. 教师通过讲解引入,介绍二项式定理的基本概念,并给出定义; 2. 教师布置小组探究课题,让学生学会独立思考、集体探究; 3. 教师使用影像、课件等视觉资料,结合实例,讲解证明方法; 4. 教师布置家庭作业,巩固所学知识,提高学生的学习效果; 5. 教师最后总结,检查学生学习情况,并给出进一步的学习指导。
高中数学说课课件《二项式定理》
【设计意图 : 】
对定理的特点加以说明,可 使学生能熟练掌握定理的特点, 以便今后在应用定理解决问题时 能得心应手。
应用解析:
例:(1)、展开
(1
1 x
)4
(2)、求 (2a 3b)6 展开式的第3项
(学生练习:)
(3)、求 (3b 2a)6 展开式的第3项
【设计意图 : 】
例(1)是对二项式定理的简单应用,目的在于 对定理字母a、b所表示的数或式的领会及运用 定理的能力;例(2)、(3)二题着重于学生
2个里取“a”得C72a2 ,再从余下的5个括号中的3个取
“2b”得 C53 (2b)3 ,最后剩下的2个括号里取“3c” 得:C22 (3c)2,由分步计数原理得:
C72a2 C53 (2b)3 C22 (3c)2 72C72C53a2b3c2 15120a2b3c2 通过本题的学习,有利于学生对知识的串联、
11
(a b)2
12 1
(a b)3
13 3 1
(a b)4
14 6 4 1
…………
发现每行两端都是1,后一行其它各数是
上一行肩上二数之和。再从一个数等于另二数 之和联想到结合数及其性质:Cnm1 Cnm Cnm11, 于是各项系数可写成表中形式:
C10
C11
C20
C21
五、课后反思
本节课是二项式定理的第一节课,在教学中注意以下几点: 1、本节课以“二项式定理”的形成过程为主线,让学生思维由 特殊到一般,演绎、归纳,得出定理。培养学生猜想、归纳,整节 课以学生为主体,师生互动,体现了新课标的教学理念。 2、在例题、练习、作业的配备上,我认为高中学习的特点是跨 度大,思维能力要求高。因此,在题目的设置上,加大了思维的含 量,如例4,让学生体会到二项式定理形成过程中的思维方式,培 养了学生的知识迁移能力,因此,我认为习题的搭配应力求让学生 处理每一个问题都必须有所思考,使学生体会到:数学不能生搬硬 套,应该用数学的思想方法去学习数学、认识数学。 3、以学生为主体,让学生自己去探索、发现、再创造,最能调 动学生的积极性,最有利于培养数学能力,特别是创造性能力,从 数学教育对人的发展的意义看,有效理解、主动探索的认识过程必 然伴随着学生心理意志、情感、品质的成长与完善,数学教学的最 终目标并非唯一地指向数学具体知识本身,其潜在的也是最重要的 恰是指向学生的人性品质、生命成长。
二项式定理说课稿
《二项式定理》说课稿尊敬的各位评委老师:大家好,我是2015级的数学教师——,我今天说课的题目是人教版选修2-3第一章第三节《二项式定理》。
下面我将从考纲分析,学情分析,教法学法分析,教学过程等几个方面阐述我对本节课的理解,不恰当之处,请大家批评指正。
一、考纲分析:本节在高考中要求学生能够用计数原理证明二项式定理,会用二项式定理解决与二项展开式有关的简单问题。
在近几年的高考题中主要以选择题或者填空题的形式考察以下三个方面的知识:1、利用二项式定理求展开式的特定项和特定项的系数,2、求展开式的二项式系数和项的系数问题,最值问题,3、运用二项式定理解决整除和余数问题。
在考查基本运算、基本概念的基础上注重考查方程思想、等价转化思想.并且注意对赋值法的运用。
基于以上分析我将本节课的教学目标制定如下:1、理解二项式定理及其推导过程,识记二项展开式的有关特征,并能运用二项式定理计算特定项和特定项系数。
2、在学生对二项式定理的推导及理解的参与过程中,培养学生观察,猜想,归纳的能力,以及学生的化归意识和知识迁移的能力。
二、学情分析:我的学生是理科平行班的学生,基础比较薄弱,在运算和公式的理解应用上不够灵活,作为高三一轮复习,我们平时的教学应立足于让绝大多数同学理解并掌握基础题型,而二项式定理在高考中属于简单题或中档题,绝大多数学生必须掌握,基于以上学情,我将本节课的教学重难点制定如下:1、教学重点:理解掌握二项式定理和通项公式的特点,能够利用通项公式法解决某些特定项和特定项系数的问题。
2、教学难点:利用二项式定理解决多项式和几个二项式乘积的特定项问题。
三、教法与学法分析本节课主要采取启发式教学原则和讲练结合的教学原则,让学生去阅读教材,体会二项式定理的推导过程,以小组为单位去总结二项式定理的特点和性质,课堂上教师做补充和强调。
学生在理解和推导二项式定理的过程中进一步去体会了公式的形成过程而不是死记公式,在归纳公式的特点时,又进一步对公式进行了全面理解,在整个过程中不仅可以培养学生由特殊到一般,经过观察分析来解决问题的数学思想,培养学生总结归纳的能力,不仅注重知识的结果,更注重知识的形成和发展过程,贯彻了新课标的教学理念。
二项式定理说课稿
二项式定理(说课稿)一、教材分析:1教材内容:所用教材是北京师范大学出版社出版选修2-3第一章第五节第一课时2作用和地位:二项式定理是安排在高中数学排列组合内容后的一部分内容,其形成过程是组合知识的应用,同时也是自成体系的知识块,为随后学习的概率知识及高三选修概率与统计,作知识上的铺垫。
二项展开式与多项式乘法有密切的联系,本节知识的学习,必然从更广的视角和更高的层次来审视初中学习的关于多项式变形的知识。
运用二项式定理可以解决一些比较典型的数学问题,例如近似计算、整除问题、不等式的证明等。
3 说教学目标:(1)知识和技能:使学生参与并探讨二项式定理的形成过程,掌握二项式系数、字母的幂次、展开式项数的规律.能够应用二项式定理对所给出的二项式进行正确的展开. (2) 过程与方法:通过学生自主参与和探讨二项式定理的形成过程,培养学生观察,猜想,归纳的能力以及分类讨论的能力.(3)通过二项式定理的探讨,培养学生“理论源于实践,用于实践”的观点 . 培养学生解决数学问题的兴趣和信心.使学生体会到数学内在的和谐对称美.4、重点难点分析:重点:(1)使学生参与并深刻体会二项式定理形成过程,掌握二项式,系数,字母的幂次,展开式项数的规律。
2)能够应用二项式定理对二项式进行展开。
难点:掌握运用多项式乘法以及组合知识推导二项式定理的过程。
二、教情分析从学生熟悉的 公式入手的,接着考虑 的展开式,虽然在初中并未作为公式的提出,但运用整式的乘法法则很容易写出其展开式。
再进一步研究 的展开式,这是归纳二项式定理的关键一步,也是学生理解的一个难点,要分析清楚式子展开并进行同类项合并后有哪些项,以及各项系数的规律。
三、教法学法分析1 教法为了完成本节课的教学目标,掌握并能正确运用二项式定理,让学生主动探索展开式的由来是关键。
本节课的教法贯穿启发式教学原则,采用“多媒体引导点拨”的教学方法以多媒体演示为载体,以“引导思考”为核心,设计课件展示,并引导学生沿着积极的思维方向,逐步达到即定的教学目标,发展学生的 逻辑思维能力;同时,考虑到学生的个体差异,在教学的各个环节进行分层施教,实现“有差异”的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二项式定理说课讲义
————————————————————————————————作者:————————————————————————————————日期:
课题:二项式定理
性质:说课稿
一、教材分析
1.教材的地位和作用
二项式定理一节,分四个课时.这里讲的是第一课时,重点是公式的推导,其次是二项式定理及二项展开式通项公式的简单应用,至于二项式定理及二项展开式的通项公式的灵活运用和二项式系数的性质留在第二、三、四课时.
二项式定理是初中学习的多项式乘法的继续,它所研究的是一种特殊的多项式——二项式的乘法的展开式,这一小节与不少内容都有着密切联系,特别是它在本章学习中起着承上启下的作用.学习本小节的意义主要在于:
(1)由于二项式定理与概率理论中的三大概率分布之一-----二项分布有内在联系,本小节是学习后面的概率知识以及进一步学习概率统计的准备知识.(2)由于二项式系数都是一些特殊的组合数,利用二项式定理可得到关于组合数的一些恒等式,从而深化对组合数以及计数原理的认识.
(3)基于二项式展开式与多项式乘法的联系,本小节的学习可对初中学习的多项式的变形起到复习、深化的作用.
(4)二项式定理是解决某些整除性、近似计算问题的一种方法.
2.教学的重点·难点
根据以上分析和新课标的教学要求确定了以下:
重点:二项定理的推导及运用
难点:二项式定理及通项公式的运用
二、三维教学目标分析
知识目标掌握二项式定理及二项展开式的通项公式,并能熟练地进行二项式的展开及求解某些指定的项.
能力目标通过探索二项式定理,培养学生观察问题发现问题,归纳推理问题的能力.
情感目标激发学生学习兴趣、培养学生不断发现,探索新知的精神,渗透事物相互转化和理论联系实际的辩证唯物主义观点,并通过数学的对称美,培养学生的审美意识.
三、教法分析:
新的数学课程标准提出:掌握数学知识只是结果,而掌握知识的活动过程才是途径,通过这个途径,来挖掘人的发展潜能才是目的,结果应让位于过程.因此,在教学中,必须贯彻好过程性原则.也就是说,在教学过程中,充分揭示每一个阶段的思维活动过程,通过思维活动过程的暴露和数学创新活动过程的演变,使教学活动成为思维活动的教学,由此来启发、引导学生直接或间接地感受和体验知识的产生、发展和演变过程.
变传统的“接受性、训练性学习”为新颖的“探究式、发现式的学习”,变教师是传授者为组织者、合作者、指导者,在学习过程中,教师想尽办法激发学生探究式、发现式学习的兴趣,并使其作为一种教学方式应用于概念、定理、公式和解题教学中,让学生在探究、发现中获取知识,发展能力.从而增强学生的主体意识,提高学生学习的效果.
四、教学过程:
(一)创设情境,激发兴趣
提出问题:“今天是星期六,我能很快知道再过810天的那一天是星期几,你能想出来吗?”
设计意图:根据教学内容特点和学生的认识规律,给学生提出一些能引起思考和争论性的题目,即一些内容丰富、背景值得进一步探究的诙谐有趣的题目、给学生创造一个“愤”和“悱”的情境,利用问题设下认知障碍,激发学生的求知欲望.
(二)问题初探
(1)、从具体问题入手,启发学生将这个问题转化成一个数学问题:“求810被7除的余数是多少?”因为8=7+1,82=(7+1)2=72+2﹡7+1,83=(7+1)3=73+3 72+3 ﹡7+1,那810=(7+1)10又如何展开呢?更一般的(a+b)10、(a+b)n 如何展开?从而产生研究问题从特殊到一般的转化.
1、先让学生自己动手运用多项式乘多项式的法则写出(a+b)
2、(a+b)
3、(a+b)4的展开式,然后提出用这种方法写出(a+b)10的展开式容易吗?(a+b)100、(a+b)n呢?对于这个问题,我们如何解决?
设计意图:复习旧知识,提问设疑,逐步推进,引起学生对学习的注意,为学生学习新课内容作知识上、方法上、心理上的准备.
(三)理性探究
引导学生对写出的(a+b)2、(a+b)3、(a+b)4的展开式进行下列四个方面的探究:①项数;②各项次数;③字母a、b指数的变化规律;④各项系数等.在此过程中提创学生小组讨论,自由发表见解.在教学中发现,学生虽然注意到各展开式的结构特征,也很快能得出:①项数;②各项次数;③字母a、b指数的变化规律,但还缺乏丰富的联想意识,即学生的观察往往不具有见微知著的联想能力,并且对各项系数的探究出现困难.于是进一步启发学生从多项式乘以多项式的过程中去发现思路,即研究a4、a3b……这些项的形成过程中去寻找解决问题的方法,学生才领悟到a4是从(a+b)(a+b)(a+b)(a+b)四个括号中,每个括号都取a然后相乘而得到,即每个括号都不取b,最后学生根据刚学过的组合数的算法得到共有C (或)种情况,因此a4的系数是C .利用同样的办法学生探究得到含a3b、a2b2、ab3、b4这些项的系数分别为、C、、 ,所以学生不难得到(a+b)4的展开式,还可用组合数表示为:(这些符号是大家熟悉的组合数自己补充)
设计意图:学生通过对三个展开式的自主探讨,亲历了知识的发生、发展、形成的过程,从而发现问题,提出问题,并在老师的引导下解决问题,达到了“创造性地使用教材,培养学生的创新意识”教学目的.
(三)归纳、猜想
学生通过对(a+b)2、(a+b)3、(a+b)4三个展开式探究,由学生归纳得出(a+b)n展开式有如下特性:
(1)共有n+1项;
(2)各项的次数都等于二项式的次数n;
(3)字母a的指数由n递减到0;同时字母b的指数由0递增到n;
(4)各项的系数依次为.
到此,学生大胆合理的猜想得到(a+b)n的展开式:--------
这就是二项式定理.
设计意图:学生在探究过程中通过观察、发现,类比从而是进行必要的归纳和合理的猜想得出结论,这是数学教学提创培养的,是一种创造性的思维活动,是掌握探求新知识的一种手段,也是进一步提高学生的归纳、推理、猜想能力的一种途径.
(四)分析定理的结构特点
1、展开式的项数;
2、学习通项;
3、分二项式系数与项的系数.
(五)尝试应用
1、回到引例:810=(7+1)10用二项式定理展开,前10项的和是7的倍数,第11项是1.所以,当今天是星期六,再过810天后是星期天.然后把8改为6,15,13,2,3,或把10改为100,1000结果又如何呢?学生运用二项式定理很快得到答案.
设计意图:回归问题,体现了知识的实际应用价值,学生的学习热情自然达到高潮.
2、例题展示
例1:展开= .(变式:把分式中的分子1改写为-2) 设计意图:例1是二项式定理简单顺向应用,目的在于熟悉二项式定理.变式体现知识的多样性.
例2: .
设计意图:例2是二项式定理逆向运用,主要在于训练学生对二项展开式有几项,有哪些项进一步的探讨,然后对照本例题,考察题目中项数是否完备,若不完备应如何处理,从而深化对二项式定理的理解,体现知识的严谨性.
例3:求的展开式的第5项(变式:求常数项或有理项;或含的项);
设计意图:例3是用二项展开式的通项公式求给定项.变式是让学生从多方面多角度去应用二项式的通项公式,求展开式中的特定项,在教学中也可要求学生自己单独或小组合作的方式探究原题,然后增删原题中的条件或改写其结论,
尽可能多演变出一些题目,并加以验证,从而培养学生的创造性思维和发散性思维能力.
例4: 求(x+3y-z)8展开式中含x2y3z3的项的系数.
设计意图:例4是引导学生用推导二项式定理的思路去探索例4的解法,意在启发学生不但要重视定理的结论,而且要重视定理的推导过程,推导思路和方法,并且把推导方法在不知不觉中应用于解题,由此进一步深化本节课的重点. (六)归纳与提高
1、小结二项式定理的推导,体现组合思想的应用;
2二项式定理的结构及其注意问题.
设计意图:小结不只是对课堂内容的简单回顾,还应对所用数学思想、方法加以总结.
(七)作业:(略,体现因材施教)
五教学评价
本节课的设计理念遵循以下原则
以学生为主体,以情趣为载体,以合作交流为手段,以能力提高为目的,重视知识的形成探索过程,学生通过自主探究,合作交流,体会合作学习的乐趣。
六板书设计:(略,简洁明了)。