2020年数学建模训练题-03moban

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

西安市蔬菜价格变动分析及采购计划的制定

摘要

食品价格是居民消费价格指数的重要组成部分,食品价格波动直接影响居民生活成本和农民收入,是关系国计民生的重要战略问题。在收入增长缓慢的情况下,食品价格上涨将使人民群众明显感到生活成本增加,特别是蔬菜价格的变化关系到千家万户的日常生活,菜价的上涨将严重影响城市低收入群体的生活质量。本文应用时间序列法来研究蔬菜价格的变动以及蔬菜价格指数的编制问题,并运用所构建的模型来进行蔬菜价格的短期预测。

针对问题一,要求根据所选的5种蔬菜近几年的价格数据,建立数学模型研究这5种蔬菜价格随月份的变化规律,并预测2015年这5种蔬菜每月的价格。通过绘制5种蔬菜价格随月份变化的折线图,发现蔬菜价格具有较明显的季节性变动。显然,5种蔬菜价格分别是5个时间序列,利用EViews软件对5个时间序列进行稳定性检验,结果显示全部5个时间序列都是平稳时间序列。因此,本文分别对5个时间序列建立了ARMA模型,利用EViews和MATLAB软件进行参数求解和模型检验得出具体的时间序列模型,并通过所建立的模型对未来一年内的蔬菜价格进行了预测。

针对问题二,本文首先利用SPSS软件对17种蔬菜进行了系统聚类,将17种蔬菜分为三类,通过分别计算三类蔬菜价格的平均值来给各类蔬菜对价格指数的影响程度赋予不同的权重值。然后考虑人们的消费习惯对价格指数的影响,本文查找网上资料,按销量将17种蔬菜分为五类,用各类蔬菜的销量在一定程度上反映人们的消费习惯。通过各类蔬菜的销量来给各类蔬菜对价格指数的影响程度赋予不同的权重值。最后对于上述两种因素,本文凭借生活经验,人为的对两种因素赋予不同的权重值,进而计算每月蔬菜价格的加权平均价格,求出每月的定基价格指数。通过检验发现价格指数仍是一平稳的时间序列,因此同第一问一样建立ARMA模型进行研究。

针对问题三,本文对问题二所得到的蔬菜价格指数进行回归分析,利用SPSS 软件绘制散点图,发现在95%的置信区间内可以进行线性回归分析。然后利用SPSS软件做线性回归,得到显著性水平为0.05时,线性回归模型整体显著。由回归方程可知近几年蔬菜价格总体升高,结合蔬菜价格指数的变动情况可知西安市每年一月至四月蔬菜价格总体处于高位。

针对问题四,本文根据题目要求,在满足所有约束条件的情况下,以采购蔬菜的最大重量为目标函数,分别对四个蔬菜批发市场建立整数规划模型。通过LINGO软件进行求解,得出到胡家庙蔬菜批发市场进行一次采购可以使得当天采购蔬菜的总重量最大。

关键词:蔬菜价格时间序列 ARMA模型价格指数线性回归整数规划

一、问题重述

为监测食品价格的实际变化情况,西安市物价局对食品价格一直进行着严密的监测,每周都会在其官方网站上公布食品价格监测数据。为了跟踪研究西安市农副产品价格变动的规律,请从该网站下载查阅相关监测数据,建立数学模型解决如下问题:

1)请从监测的17种蔬菜数据中任意选取5种蔬菜,并根据这5种蔬菜近几年的价格数据,建立数学模型研究这5种蔬菜价格随月份的变化规律,并预测2015年这5种蔬菜每月的价格。

2)监测17种蔬菜的价格数据给监测人员带来了很大的工作负担,为了综合评价蔬菜价格的总体水平,请建立一个蔬菜价格指数模型,使这个指数的升降能够从总体上较为准确地反映蔬菜价格的水平。注意蔬菜的类型、人们的消费习惯、以及其它因素都可能与这个蔬菜价格指数有关,并说明你所建立指数的合理性。3)根据你在问题2)中建立的蔬菜价格指数模型,研究一下近几年蔬菜价格总体的变化趋势,说明一下对于西安市每年什么时候蔬菜价格总体处于高位。

4)假设你是一家饭店的采购员,每一天都要根据当天西安市四个主要蔬菜批发市场的蔬菜牌价(如附录表1所示),选择到其中一家市场进行一次采购。为满足饭店营业需求,饭店制定了采购单,并对采购量做出如下要求:

每天必须购买的蔬菜有:豆角至少50公斤,青椒至少30公斤,土豆至少20公斤,西红柿至少100公斤,莲花白至少100公斤,胡萝卜至少20公斤,茄子至少10公斤,其余蔬菜品种采购员可以酌情自己选择购买至少5种,如果购买这种蔬菜要求至少购买10公斤。

假设采购所用的汽车是一辆载重量不超过1.5吨的小型三轮货车,因为车辆保养的原因,要求每天车辆的公里吨数(即路程╳载重吨数,空载不计)不得超过8(公里╳吨),每天采购额不得超过4000元,且采购单中要求必须购买蔬菜的采购额至少要达到实际采购总额的80%以上。

请建立数学模型为你今天的采购计划制定最佳方案,即在满足上述所有条件都满足的情况下,到哪一个蔬菜市场区购买蔬菜,购买哪些蔬菜,各多少公斤,使得当天采购蔬菜的总重量最大。假定蔬菜批发的最小单位为1公斤。

二、问题分析

题目要求对建立明确的数学模型,分别用来研究蔬菜价格随月份变化的规律,并对蔬菜价格进行预测;研究近几年蔬菜价格总体变化趋势;以及确定蔬菜采购的最优方案。

问题一,要根据所选的5种蔬菜近几年的价格数据,建立数学模型研究这5种蔬菜价格随月份的变化规律,并预测2015年这5种蔬菜每月的价格。需要绘制5种蔬菜价格随月份变化的折线图,仔细观察蔬菜价格随着月份有着什么样的变化。由于5种蔬菜价格分别是5个时间序列,因此可以考虑运用时间序列构建模型来研究蔬菜价格随月份变化的规律,并考虑比较常用的ARMA模型建模。按照建立模型的步骤,首先对序列进行稳定性检验,确定为平稳非白噪声序列后,计算自相关和偏自相关系数,进而进行ARMA模型识别;确定相应的模型后,估计模型中未知参数的值,然后对所得模型进行检验,验证模型是否有效;最后根据所得的模型预测时间序列将来的走势,从而对所选的5种蔬菜价格进行预测。问题二,考虑到蔬菜的种类、人们的消费习惯、季节性变化等多种因素都会对蔬菜的价格指数造成影响,各种影响是一灰色系统,很难建立确定的数学关系。因此本文选取了蔬菜种类以及人们的消费习惯两种因素进行研究。为了减小误差,将17种蔬菜进行聚类分析,用来确定各大类蔬菜对价格指数的影响程度,根据影响程度大小对各大类蔬菜赋予不同程度的权重。由于各类蔬菜的销量在一定程度上可以反映人们的消费习惯,因此本文用蔬菜的销量对价格指数的影响来替代人们的消费习惯对价格指数的影响。为了减小误差,同样将17种蔬菜按照销量分为几大类,通过各大类蔬菜的销量来给各大类蔬菜对价格指数的影响程度赋予

相关文档
最新文档