正弦定理和余弦定理课件PPT人教版

合集下载

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

高考数学一轮复习第三章三角函数解三角形第六节正弦定理和余弦定理课件新人教版

3 2.
由sin A= 3sin B及正弦定理得a= 3b.
于是3b22+b32b-2 c2= 23,由此可得b=c.
由③c= 3b,与b=c矛盾.
因此,选条件③时问题中的三角形不存在.
应用正、余弦定理的解题技能
技能 边化

角化 边
和积 互化
解读
将表达式中的边利用公式a=2Rsin A,b=2Rsin B,c=2Rsin C化为角的关系
得cos A·(sin B+sin C)=0,在△ABC中,sin B+sin C≠0,
则cos A=0,所以△ABC为直角三角形.
判断三角形形状的常用技能 若已知条件中既有边又有角,则 (1)化边:通过因式分解、配方等得出边的相应关系,从而判断三 角形的形状. (2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形 的形状.此时要注意应用A+B+C=π这个结论.

43 3
.由余弦定理DC2+BC2-
2DC·BCcos∠DCB=BD2,可得3BC2+4
3 ·BC-5=0,解得BC=
3 3

BC=-5 3 3(舍去).故BC的长为
3 3.
求解该题第(2)问时易出现的问题是不能灵活利用“AB⊥BC”, 将已知条件和第(1)问中所求值转化为△BCD内的边角关系.解决 平面图形中的计算问题时,学会对条件进行分类与转化是非常重 要的,一般来说,尽可能将条件转化到三角形中,这样就可以根 据条件类型选用相应的定理求解.如该题中,把条件转化到 △BCD中后,利用正弦定理和余弦定理就可以求出BC的长.
解析:选条件①. 由C=π6和余弦定理得a2+2ba2b-c2= 23. 由sin A= 3sin B及正弦定理得a= 3b. 于是3b22+b32b-2 c2= 23, 由此可得b=c. 由①ac= 3,解得a= 3,b=c=1. 因此,选条件①时问题中的三角形存在,此时c=1.

人教版高中数学必修五正弦定理和余弦定理课件

人教版高中数学必修五正弦定理和余弦定理课件

解的情况
A为钝角或直角
a>b a≤b
一解 无解
a<bsinA
无解
A为锐角
a=bsinA bsinA<a<b
一解 两解
a≥b
一解
思考 : 在ABC中, a x, b 2, A 450,若这个三角形有
两解,则x的取值范围是 _____2_,_2____
正弦定理的推论: =2R (R为△ABC外接圆半径) (边换角)
在已知三边和一个角的情况下:求另一个角 ㈠用余弦定理推论,解唯一,可以免去判断舍取。 ㈡用正弦定理,计算相对简单,但解不唯一,要进行 判断舍取。
练习1:在△ABC中,已知
解:
=31+18 =49
∴b=7
练习2:
在△ABC中, a 7,b 4 3, c 13 ,求△ABC的最小角。
解:
72 (4 13)2 ( 13)2 274 3
二、可以用正弦定理解决的两类三角问题: (1)知两角及一边,求其它的边和角; (2)知三角形任意两边及其中一边的对角,求其它
的边和角(注意判断解的个数)
思考:你能用正弦定理来解释为什么在三角形中越大
的角所对的边就越大吗?
分析:设△ABC的三个角所对边长分别是a、b、c,
且∠A≥∠B≥∠C,
(1)若△ABC是锐角或直角三角形 ∵正弦函数y=sinx在 [0, ]上是增函数 2
2A 2k 2B 或 2A 2k 2B(k Z)
0 A,B ,∴k 0,则A B或A+B=
故△ABC为等腰三角形或直角三角形.
2
针对性练习 1、已知△ABC中,sin2A=sin2B+sin2C,且 b sinB=c sinC,则△ABC的形状是

6.4.3余弦定理、正弦定理(第二课时)课件(人教版)

6.4.3余弦定理、正弦定理(第二课时)课件(人教版)

探究新知
下面先研究锐角三角形的情形. 证明:
由分配律,得 即 也即 所以
探究新知
由分配律,得 即 也即 所以
探究新知
探究新知
证明:
由分配律,得 即 也即 所以 同理可得,
探究新知
文字语言
符号语言
正弦定理给出了任意三角形中三条边与它们各自所对的角的正弦之间的一 个定量关系.利用正弦定理,不仅可以解决“已知两角和一边,解三角形”的问题, 还可以解决“已知两边和其中一边的对角,解三角形”的问题.
课后思考:探索和证明这个定理的方法很多,有些方法甚至比向量法更加简洁. 你还能想到其他方法证明正弦定理吗?
巩固练习
解:由三角形内角和定理,得 由正弦定理,得
跟踪训练
题型一:已知两角及一边解三角形
答案:A.
巩固练习
解:由正弦定理 ,得:
此时,
巩固练习
此时,
跟踪训练
题型二:已知两边及一边的对角解三角形
6.4.3 余弦定理、正弦定理
第2课时 正弦定理
探究新知
探究1:通过对直角三角形的研究,视察它的角和三边之间的关系,猜想它们之间 的联系.1 Nhomakorabeac
思考1:那么对于锐角三角形或钝角三角形,上述关系式是否仍然成立? 猜 想:对于锐角三角形或钝角三角形,上述关系式仍然成立.
探究新知
思考2:向量的数量积运算中出现了角的余弦,而我们需要的是角的正弦.如何实现 转化?
课堂小结
正弦定理
文字语言:在一个三角形中,各边和它所对角的的正弦的比相等

已知两角和一边,解三角形
堂 小
定理应用

已知两边和其中一边的对角,解三角形(注意多解问题)

第七节正弦定理和余弦定理课件人教新课标

第七节正弦定理和余弦定理课件人教新课标

[类题通法]
正、余弦定理的应用原则 (1)正弦定理是一个连比等式,在运用此定理时,只要知道其比 值或等量关系就可以通过约分达到解决问题的目的,在解题时要学 会灵活运用. (2)运用余弦定理时,要注意整体思想的运用.
[演练冲关] 在锐角三角形 ABC 中,a,b,c 分别为内角 A,B,C 所对的边, 且满足 3a-2bsin A=0. (1)求角 B 的大小; (2)若 a+c=5,且 a>c,b= 7,求 AB·AC 的值.
基础盘查二 三角形中常用的面积公式
(一)循纲忆知
会利用三角形的面积公式解决几何计算问题S=12absin
C.
(二)小题查验 1.判断正误
(1)公式 S=12absin C 适合求任意三角形的面积 (2)三角形中已知三边无法求其面积
( √) (× )
(3)在三角形中已知两边和一角就能求三角形的面积
[典题例析]
(辽宁高考)在△ABC 中,内角 A,B,C 的对边分别为 a,b, c,且 a>c .已知BA·BC =2,cos B=13,b=3,求: (1)a 和 c 的值; (2)cos(B-C)的值.
解:(1)由 BA·BC =2 得,c·acos B=2, 又 cos B=13,所以 ac=6. 由余弦定理,得 a2+c2=b2+2accos B. 又 b=3,所以 a2+c2=9+2×2=13. 解aa2c+=c62,=13, 得ca==32, 或ca==23., 因为 a>c,所以 a=3,c=2.
[演练冲关] 已知 a,b,c 分别为△ABC 三个内角 A,B,C 的对边,acos C + 3asin C-b-c=0. (1)求 A; (2)若 a=2,△ABC 的面积为 3,求 b,c.

人教版高中数学必修26.4.3 余弦定理、正弦定理(第1课时)余弦定理 课件(二)

人教版高中数学必修26.4.3 余弦定理、正弦定理(第1课时)余弦定理 课件(二)
余弦定理指出了三角形的三条边与其中的一个角之间的关 系,每一个等式中都包含四个不同的量,它们分别是三角形的三 边和一个角,一般是利用余弦定理的变形式进行边、角互化.
【跟踪训练3】
1.在△ABC 中,内角 A,B,C 的对边分别为 a,b,c,且 a2+b2+ 2ab=c2,则角 C 为( )
π 3π π 2π A.4 B. 4 C.3 D. 3
小试牛刀
1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)
(1)余弦定理只适用锐角三角形
(× )
(2)在△ABC 中,若 a2>b2+c2,则△ABC 一定为钝角三角形
(√ )
(3)在△ABC 中,已知两边和其夹角时,△ABC 不唯一( × )
2.已知在△ABC 中,a=1,b=2,C=60°,则 c 等于 ( )
答案 A
题型三 余弦定理在边角转化中的应用
例 3(1)在△ABC 中,角 A,B,C 所对应的边分别为 a,b,c, 已知 bcos C+ccos B=2b,则ab=________.
(2)在△ABC 中,若 lg(a+c)+lg(a-c)=lg b-lgb+1 c, 则 A=________.
a2+b2-c2 解析 (1)由余弦定理得 bcos C+ccos B=b· 2ab + c·a2+2ca2c-b2=22aa2=a,所以 a=2b,即ab=2.
解析 由余弦定理得
cos
a2+c2-b2 1+3-7 B= 2ac =2×1× 3=-
3 2.
又∵0°<B<180°,
∴B=150°.
答案 150°
2.在△ABC 中,已知 a∶b∶c=2∶ 6∶( 3+1),则 A= ________. 解析 ∵a∶b∶c=2∶ 6∶( 3+1),

6.4.3.3余弦定理、正弦定理应用举例(新教材)PPT课件(人教版)

6.4.3.3余弦定理、正弦定理应用举例(新教材)PPT课件(人教版)
有关的三角形中,建立一个解斜三角形的数学模型; (3)求解:利用正弦定理或余弦定理有序地解出三角形,求得数学模
型的解; (4)检验:检验上述所求的解是否符合实际意义,从而得出实际问题
的解.
a sin .
sin 180 ( ) sin( )
计算出AC和BC后,再在△ABC中,应用余弦定理
计算出AB两点间的距离为
δγ D
α β
C
变式训练 一条河自西向东流淌,某人在河南岸A处看到河北岸两个目标C,D分别在 东偏北45°和东偏北60°方向,此人向东走300米到达B处之后,再看C,D, 则分别在西偏北75°和西偏北30°方向,求目标C,D之间的距离.
sin A a ,sin B b ,sin C c
2R
2R
2R
sin A: sin B : sin C a : b : c
将等式中的角换成 边,注意2R约掉。
1 课程导入
遥不可及的月亮离我们地球究竟有多远呢?在古代,天文学家没有 先进的仪器就已经估算出了两者的距离,是什么神秘的方法探索到这个奥 秘的呢?我们知道,对于未知的距离、高度等,存在着许多可供选择的测 量方案,比如可以应用全等三角形、类似三角形的方法,或借助解直角三 角形等等不同的方法,但由于在实际测量问题的真实背景下,某些方法会 不能实施.如因为没有足够的空间,不能用全等三角形的方法来测量,所 以,有些方法会有局限性.于是上面介绍的问题是用以前的方法所不能解 决的.今天我们开始学习正弦定理、余弦定理在科学实践中的重要应用, 第一研究如何测量距离.
4 测量角度问题
例3:位于某海域A处的甲船获悉,在其正东方向相距20 n mile的B处有 一艘渔船遇险后抛锚等待营救.甲船立即前往救援,同时把消息告知位 于甲船南偏西30°,且与甲船相距7 n mile的C处的乙船.那么乙船前往营 救遇险渔船时的目标方向线(由观测点看目标的视线)的方向是北偏东 多少度(精确到1°)?需要航行的距离是多少海里(精确到1n mile)?

正弦定理和余弦定理ppt课件

正弦定理和余弦定理ppt课件
总结词
正弦定理和余弦定理在物理学中有着 广泛的应用。
详细描述
在物理学中,许多现象可以用三角函数来描 述,如重力、弹力等。通过正弦定理和余弦 定理,我们可以更准确地计算这些力的作用 效果,从而更好地理解和分析物理现象。
06 总结与展望
总结正弦a、b、c与对应的角A、B、C 的正弦值之比都相等,即$frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$。
表达式形式
正弦定理的表达式形式简洁,易于理解和记 忆。相比之下,余弦定理的表达式较为复杂
,需要更多的数学基础才能理解和应用。
定理间的互补性
要点一
解决问题时的互补性
在解决三角形问题时,正弦定理和余弦定理常常是互补使 用的。对于一些问题,使用正弦定理可能更方便;而对于 另一些问题,使用余弦定理可能更合适。通过结合使用两 种定理,可以更全面地理解三角形的性质和关系,从而更 好地解决各种问题。
深入研究正弦定理和余弦定理的性质
可以进一步研究正弦定理和余弦定理的性质,如推广到多边形、高维空间等。
开发基于正弦定理和余弦定理的算法和软件
可以开发基于正弦定理和余弦定理的算法和软件,用于解决实际问题。
如何进一步深化理解与应用
深入理解正弦定理和余弦定理的证明过程
01
理解证明过程有助于更好地理解和应用正弦定理和余弦定理。
02 正弦定理
正弦定理的定义
总结词
正弦定理是三角形中一个重要的定理,它描述了三角形各边与其对应角的正弦值 之间的关系。
详细描述
正弦定理是指在一个三角形中,任意一边与其相对角的正弦值的比值都相等,即 $frac{a}{sin A} = frac{b}{sin B} = frac{c}{sin C}$,其中$a, b, c$分别代表三角形 的三边长度,$A, B, C$分别代表与三边相对应的角。

6.4.3余弦定理与正弦定理课件(人教版)

6.4.3余弦定理与正弦定理课件(人教版)
所以由余弦定理可得,a2=b2+c2-2bccos A=b2+c2-bc,
所以bc=b2+c2-bc,即(b-c)2=0,
所以b=c,结合A=60°可得△ABC一定是等边三角形.
正弦定理
思考:怎么解决AAS型的解三角形问题?
例.在ABC中,已知角 A, B, 边a, 求边b.
A
c
b
C
a
B
b
a
若ABC为直角三角形,有 sin B, sin A
bsin C 72
2
sin B= c =50sin C>sin C= 2 .
所以B>45°,所以B+C>180°,故三角形无解.
反思感悟
(2)在△ABC中,已知a,b和A,以点C为圆心,以边长a为半径
画弧,此弧与除去顶点A的射线AB的公共点的个数即为三角形
解的个数,解的个数见下表:
A为钝角
A为直角
所以
b 2 c 2 a 2 2ca cosC
余弦定理——向量法
余弦定理的文字描述:三角形中任何一边的平方,等于其他两
边的平方的和减去这两边与它们的夹角的余弦的积的两倍. 即
a b c 2bc cos C
2
2
2
b c a 2ca cos C
2
2
2
c a b 2ab cos C
C
B
图6.4-8
| c |2 (a b) (a b) a a b b 2a b a 2 b 2 2 | a | | b | cos C
c 2 a 2 b 2 2ab cosC
同理可得 a 2 b 2 c 2 2bc cosC

第4章第6节正弦定理余弦定理课件共47张PPT

第4章第6节正弦定理余弦定理课件共47张PPT


6+ 4
2 .
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
点评:在△ABC中,若A=m,则B+C=π-m.从而B=π-m-C 或C=π-m-B,由此可消去B或C.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
[跟进训练]
=4或b=5.]
1234
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
02
细研考点·突破题型
考点一 考点二 考点三
利用正、余弦定理解三角形 利用正、余弦定理解决三角形面积问题 判断三角形的形状
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
2.三角形常用面积公式
(1)S=12a·ha(ha 表示边 a 上的高);
(2)S=12absin
1
1
C=___2_a_c_s_in__B___=____2_b_c_s_in__A__;
(3)S=12r(a+b+c)(r 为内切圆半径).
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
因此,选条件②时问题中的三角形存在,此时c=2 3.
第六节 正弦定理、余弦定理
1
2
3
走进教材·夯实基础 细研考点·突破题型 课后限时集训
方案三:选条件③.
由C=π6和余弦定理得a2+2ba2b-c2=
3 2.

正弦定理和余弦定理 PPT课件人教版

正弦定理和余弦定理 PPT课件人教版

6 2<
2.
∴∠A 有两解,∴A=60°或 120°.
当 A=60°时,C=180°-45°-60°=75°,
c=bssiinnBC=
s2isni4n57°5°=
6+ 2
2 .
当 A=120°时,C=180°-45°-120°=15°,
c=bssiinnBC=
s2isni4n51°5°=
6- 2
2 .
其他推导方法
(1)因为涉及边长问题,从而可以考虑用向量来研究 此问题.
提示:
作单位向量j⊥AC,j与AB夹角为锐角. j
由向量的加法可得AB = AC + CB, a
C b
则j·AB = j·(AC + CB),
B
A
所以j·AB = j·AC +j·CB,
j AB cos(90°- A)= 0 + j CB cos(90°- C),
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
C
sinA sinB
同理可得 b = cຫໍສະໝຸດ sinB sinCab
从而 a = b = c . B sinA sinB sinC
DA
(2)钝角三角形 如图,类比锐角三角形,请同学 们自己推导.

高一下学期数学人教A版必修第二册余弦定理、正弦定理应用举例(二)课件

高一下学期数学人教A版必修第二册余弦定理、正弦定理应用举例(二)课件

a sin
sin180 (
)
a sin sin(
)
应用举例
B
例1:如图(1-1),A,B两点都在河的对岸
A
(不可到达),设计一种测量A,B两点间距离的
方法,并求出A,B间的距离.
δ
D
γ
β
图(1-2)
α
C
于是,在△ABC中,由余弦定理可得A,B两点间的距离
AB
AC2 BC2 2AC BC cos
课堂小结
问题3:回顾本节课所学的知识,思考:将实际问题数学化,进而使问题解 决的步骤是怎样的?
追问2:测量底部不可到达的建筑物高度的思路是怎样? 答案:(1)在水平基线上选定两个基点,(2)测得基点距离和两个基 点的仰角,(3)利用正弦定理得到其中一个基点到建筑物顶端距离的表达式, (4)利用锐角三角函数求出建筑物的高度,不要忽略了仪器的高度.
追问6:在上述测量的方案下,还有其他计算A, D
C
图(1-2)
B两点间距离的方法吗?
答案:在测得CD的长度以及 ACB,ACD,CDB 和BDA的角度后,在△ADC 和△BDC中利用余弦定理得到AB的大小.
应用举例
B
例1:如图(1-1),A,B两点都在河的对岸
A
(不可到达),设计一种测量A,B两点间距离的
a2 sin2 ( ) sin2 ( )
sin
a2 sin2 2 (
)
2a2
sin(
sin(
)sin cos )sin(
)
应用举例
B
例1:如图(1-1),A,B两点都在河的对岸
A
(不可到达),设计一种测量A,B两点间距离的

第五章第六节正弦定理和余弦定理课件共58张PPT

第五章第六节正弦定理和余弦定理课件共58张PPT

A,bsin
C=csin
B,
cos
C=a2+2ba2b-c2
2.三角形中常用的面积公式
(1)S=12 ah(h 表示边 a 上的高);
(2)S=12
1
1
bcsin A=___2__a_c_s_in_B____=__2__a_b_si_n_C___;
(3)S=12 r(a+b+c)(r 为三角形的内切圆半径).
解析: 在△ABC 中, 由余弦定理及 a=2 2 ,b=5,c= 13 ,有 cos
C=a2+2ba2b-c2

2 2
π .又因为 C∈(0,π),所以 C= 4
.
π 在△ABC 中,由正弦定理及 C= 4 ,a=2 2 ,c= 13 ,可得 sin A=
a sin C c
=2 1313
.
答案:
π 4
变形
(1)a=2R sin A,b=_2_R_s_in_B___,c= __2_R_s_in_C___;
cos A=b2+2cb2c-a2

(2)a∶b∶c=_si_n_A_∶__s_i_n_B_∶__s_in_C___; cos B=c2+2aa2c-b2 ;
(3)asin B=bsin asin C=csin A
考点·分类突破
⊲学生用书 P84
利用正弦、余弦定理解三角形
(1)(2020·全国卷Ⅲ)在△ABC 中,cos C=23 ,AC=4,BC=3,则
tan B=( )
A. 5
B.2 5
C.4 5
D.8 5
(2)(2020·广东省七校联考)若△ABC 的内角 A,B,C 所对的边分别为 a,
b,c,已知 2b sin 2A=3a sin B,且 c=2b,则ab 等于( )

人教版数学必修五:11正弦定理和余弦定理PPT

人教版数学必修五:11正弦定理和余弦定理PPT

C.60°
D.60°或 120°
[答案] D [解析] 由正弦定理,得sianA=sibnB, ∴sinB=bsainA=4 3×4sin30°= 23, 又∵b>a,∴B>A,∴B=60°或 120°.
三角形形状的判断
的形状.
在△ABC 中,已知ac2osisnBB=bc2osisnAA,试判断△ABC
第一章 1.1 正弦定理和余弦定理 第1课时 正弦定理
1.任意三角形的内角和为________;三条边满足:两边之 和________第三边,两边之差________第三边,并且大边对 ________,小边对________.
2.直角三角形的三边长a,b,c(斜边)满足________定 理,即________.
[分析] 已知两角,由三角形内角和定理第三角可求,已 知一边可由正弦定理求其它两边.
[方法总结] (1)已知任意两角和一边,解三角形的步骤: ①由三角形内角和定理求出第三个角; ②由正弦定理公式的变形,求另外的两边. (2)注意事项: 已知内角不是特殊角时,往往先求出其正弦值,再根据以 上步骤求解.
[分析] 由正弦定理,得 a=2RsinA,b=2RsinB,代入已 知等式,利用三角恒等变换,得出角之间的关系,进而判断△ ABC 的形状.
[方法总结] 利用正弦定理判断三角形形状的方法: (1)化边为角.将题目中的所有条件,利用正弦定理化边为 角,再根据三角函数的有关知识得到三个内角的关系,进而确 定三角形的形状. (2)化角为边.根据题目中的所有条件,利用正弦定理化角 为边,再利用代数恒等变换得到边的关系(如a=b,a2+b2= c2),进而确定三角形的形状.
外接圆的半径 R.
[解析] 已知 B=30°,C=45°,c=1.

第六章6.4.3余弦定理、正弦定理PPT课件(人教版)

第六章6.4.3余弦定理、正弦定理PPT课件(人教版)

训练题
1.[2019·江西九江一中高一检测]若三角形的三边长之比是1∶ 3 ∶2,
则其所对角之比是( A ) A.1∶2∶3 B.1∶ 3 ∶2 C.1∶ 2 ∶ 3 D. 2 ∶ 3 ∶2
2. [2019·江西赣州五校高一联考]已知△ABC中,a∶b∶c=2∶ 6 ∶
( 3 +1),求△ABC中各角的度数.
训练题
1. 2019·江西九江一中高一检测]设△ABC的内角A,B,C的对边分别为
a,b,c,且cos A= 3 ,cos B= 5 ,b=3,则c=
5
13
14 5
.
2. [2019·北京东城区高三二模]在△ABC中,A= ,a2+b2-c2=ab, 4
c=3,则C=
3 ,a=
6.
3.已知两边及一边的对角解三角形 例5在△ABC中,a= 3 ,b= 2 ,B=45°,求A,C,c.
【解】 ∵ A=45°,C=30°,∴ B=180°-(A+C)=105°.
由 a = c 得a= csinA =10 sin45 =10 2 .
sinA sinC
sinC
sin30
由 b = c 得b= csinB =10 sin105 =20sin 75°.
sinB sinC
sinC
sin30
∵ sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=
【解】 由正弦定理及已知条件,有 3 = 2 ,得sin A= 3 .
sinA sin45
2
∵ a>b,∴ A>B=45°.∴ A=60°或120°.
当A=60°时,C=180°-45°-60°=75°,

高一数学人教A版必修二《6.4.3余弦定理、正弦定理》完整课件(78页)

高一数学人教A版必修二《6.4.3余弦定理、正弦定理》完整课件(78页)
第六章 | 平面向量及其应用
6.4.3 余弦定理、正弦定理 (完整课件78页)
高一数学人教A版必修2精品课件
第六章 | 平面向量及其应用
6.4.3.1余弦定理
高一数学人教A版必修2精品课件
第一课时 余弦定理
知识点 余弦定理 (一)教材梳理填空 1.余弦定理: 在△ABC中,角A,B,C的对边分别是a,b,c,则有
(二)基本知能小试
1.判断正误:
(1)余弦定理揭示了任意三角形边角之间的关系,因此,它适用于任何三
角形.
(√ )
(2)在△ABC 中,若 a2>b2+c2,则△ABC 一定为钝角三角形
(√ )
(3)在△ABC 中,已知两边和其夹角时,△ABC 不唯一.
(× )
2.在△ABC 中,已知 B=120°,a=3,c=5,则 b 等于
【学透用活】 1.已知边 a,b 和角 C.
2.已知边 a,b 和角 A.
[典例 1] 在△ABC 中,
(1)若 a=2 3,c= 6+ 2,B=45°,求 b 及 A.
(2)若 A=120°,a=7,b+c=8,求 b,c.
[解] (1)由余弦定理,得 b2=a2+c2-2accos B=(2 3)2+( 6+ 2)2-
()
A.4
B. 15
C.3
D. 17
解析:cos C=-cos(A+B)=-13. 又由余弦定理得 c2=a2+b2-2abcos C
=9+4-2×3×2×-13=17,所以 c= 17.故选 D.
答案:D
2.若 b=3,c=3 3,B=30°,求角 A,C 和边 a. 解:由余弦定理 b2=a2+c2-2accos B, 得 32=a2+(3 3)2-2×3 3a×cos 30°, 即 a2-9a+18=0,所以 a=6 或 a=3. 当 a=6 时,由 cos A=b2+2cb2c-a2=322+×33×332-362=0,可得 A=90°,C =60°.当 a=3 时,同理得 A=30°,C=120°.

人教版数学必修第二册6_4_3余弦定理、正弦定理课件

人教版数学必修第二册6_4_3余弦定理、正弦定理课件
否则可能会出现漏解.
跟踪训练
4.在△ABC中,已知3b=2 3asin B,且cos B=cos C,角A是锐角,
则△ABC的形状是( D )
A.直角三角形
B.等腰三角形
C.等腰直角三角形
D.等边三角形
由3b=2 3asin

2 3
所以

sin
3

2 3
B,得

sin
3
,即sin A=

,根据正弦定理,得
又∵

sin
∴b=
=
sin
sin
=20×

sin


10×sin105°
sin30°
2+ 6
=5(
4
=20sin 75°
2 + 6).
题型二
已知两边及一边的对角解三角形

3
[例2] 在△ABC中,已知a=2,c= 6 ,C= ,求A,B,b.


sin
=

sin
解得sin A=
,∴
2
[例4] 设△ABC的内角A,B,C的对边分别为a,b,c,且
bsin A= 3acos B.
(1)求角B的大小;
∵bsin A= 3acos B,
由正弦定理得sin Bsin A= 3 sin Acos B.
在△ABC中,sin A≠0,
即得tan B= 3 ,
∴B=

.
3
[例4] 设△ABC的内角A,B,C的对边分别为a,b,c,且
(1)第一由正弦定理求出另一边对角的正弦值.
(2)如果已知的角为大边所对的角时,由三角形中大边对大角,

6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)

6.4.3第三课时余弦定理、正弦定理应用举例PPT课件(人教版)

4.如图,两座相距60 m的建筑物AB,CD的高度分别为20 m,
塔顶A的俯角为45°,已知塔高AB=20 m,求山高CD.
解 如图,过点C作CE∥DB,延长BA交CE于点E,
设CD=x m,则AE=(x-20) m,
∵tan
60°=CBDD,∴BD=tanCD60°=
x= 3
3 3x
m.
在△AEC 中,x-20= 33x,解得 x=10(3+ 3)m. 故山高 CD 为 10(3+ 3)m.
解 设缉私船应沿CD方向行驶t h,才能最快截获(在D点)走私船, 则 CD=10 3t n mile,BD=10t n mile. ∵BC2=AB2+AC2-2AB·AC·cos A=( 3-1)2+22-2( 3-1)·2cos 120°=6,
∴BC= 6,
∵sBinCA=sin
∠ACABC,∴sin
【训练 3】 如图,在海岸 A 处发现北偏东 45°方向,距 A 点( 3-1) n mile 的 B 处有一艘走私船,在 A 处北偏西 75°方向,与 A 距离 2 n mile 的我方缉私船,奉 命以 10 3 n mile/h 的速度追截走私船,此时走私船正以 10 n mile/h 的速度,从 B 处向北偏东 30°方向逃窜,问:缉私船沿什么方向行驶才能最快截获走私船?
D.α+β=180°
解析 根据题意和仰角、俯角的概念画出草图,如图,知α=β,故应选B.
答案 B
3.两灯塔A,B与海洋视察站C的距离都等于a km,灯塔A在C北偏东30°,B在C南偏东
60°,则A,B之间的距离为( )
A. 2a km
B. 3a km
C.a km
D.2a km
解析 △ABC 中,AC=BC=a,∠ACB=90°,AB= 2a.

《正弦定理余弦定理》课件

《正弦定理余弦定理》课件

THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。

人教版必修五1.1.1正弦、余弦定理课件

人教版必修五1.1.1正弦、余弦定理课件

B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)若A,B,C是⊿ABC的三个内角,则
sinA+sinB__>__sinC.
(3)在ABC中,C 2B,则sin 3B 等于(B) sin B
A.b/a
B.a/b
C.a/c
D.c/a
正弦定理、余弦定理
正弦定理、余弦定理
例题讲授
例1,在ABC中,已知A 32.0, B 81.8, a 42.9cm,解三角形 解:根据三角形内角和定理, C 180 ( A B) 180 (32.0 81.8 ) 66.2 根据正弦定理,b asin B 42.9sin 81.8 80.1(cm)
c a sin C 20sin 24 13(cm). sin A sin 40
正弦定理、余弦定理
例题讲授
例3 在 ABC 中,B 45,C 60,a 2( 3 1) ,求
ABC的面积S.
解: A 180 (B C ) 75
A
∴由正弦定理得 b a sin B 2(
3
1)(
练习:
(1)在 ABC 中,一定成立的等式是( C )
A. asin A bsinB
B. acos A bcos B
C. asin B bsin A
D. acos B bcos A
(2)在 ABC中,若
a cos
A
b cos B
c cos C
,则 ABC 是(
D)
2
2
2
A.等腰三角形
B.等腰直角三角形
sin A sin 32.0 根据正弦定理,c asin C 42.9sin 66.2 74.1(cm)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课堂典例讲练
思路方法技巧
已知两边和夹角解三角形
在△ABC 中,边 a、b、c 所对的角分别为 A、
B、C,b=3,c=5,A=120°,则 a=( )
A.7
B. 19C.49源自D.19[答案] A[解析] a2=b2+c2-2bccosA=9+25-2×3×5cos120°= 49,∴a=7.
[点评] 已知两边及其夹角解三角形时,先用余弦定理求 出第三边,再用正弦定理求其它角,或用余弦定理求其它角.
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
新课引入
问题:在△ABC 中,AC=2,BC= 3,C=30°,能否直接利 用正弦定理求得 AB?
[答案] 不能直接利用正弦定理求得 AB. 为了解决上面的问题,本节我们将学习另一个很重要的定理 ——余弦定理.
自主预习
1.余弦定理 在三角形中任何一边的平方等于其他两边的平方的和减去这 两边与它们夹角的余弦的积的两倍,即 a2=__b_2_+__c_2-__2_b_c_c_o_s_A__, b2=_c_2_+__a_2_-__2_a_cc_o_s_B__,c2=__a_2+__b_2_-__2_a_b_c_o_s_C___.
(1)在△ABC 中,AB=4,BC=3,B=60°,则 AC 等于________.
[答案] 13
[解析] 由条件已知三角形的两边及其夹角,故可以直接利用 余弦定理求得边 AC,即 AC2=AB2+BC2-2AB·BCcosB=16+9- 2×4×3×12=13.
∴AC= 13.
(2)解答新课引入中的问题.
第一章
解三角形
第一章
1.1 正弦定理和余弦定理
第一章
第 2 课时 余弦定理
温故知新
在△ABC 中,AC=2,BC= 3,A=60°,则 AB=________.
[答案] 1
[解析] 由正弦定理,得sBinCA=sAinCB, ∴ 33=si2nB,∴sinB=1,
2 ∴B=90°.∴C=30°,∴AB=1.
在△ABC 中,sinA B C=
,则△ABC 是( )
A.锐角三角形
B.直角三角形
C.钝角三角形
D.无法确定
[答案] C
[解析] 由正弦定理,得 a b c=
B C=
设 a=3k,b=5k,c=7k(k>0),由于 c>b>a,故角 C 是△ABC 中最大的角,
因为 cosC=b2+2aa2b-c2=5k22+×53kk×2-3k7k2 =-12<0, 所以 C>90°,即△ABC 为钝角三角形
建模应用引路
判断三角形的形状
在 △ ABC 中 , 若 b2sin2C + c2sin2B = 2bccosBcosC,试判断△ABC 的形状.
[分析] 思路一,利用正弦定理将已知等式化为角的关 系;思路二,利用余弦定理将已知等式化为边的关系.
[解析] 解法一:∵b2sin2C+c2sin2B=2bccosBcosC, ∴利用正弦定理可得 sin2Bsin2C+sin2Csin2B=2sinB·sinC·cosB·cosC, ∵sinBsinC≠0,∴sinB·sinC=cosBcosC, ∴cos(B+C)=0,∴cosA=0, ∵0<A<π,∴A=2π,∴△ABC 为直角三角形.
已知△ABC 中,a=1,b=1,C=120°,则边 c=________.
[答案] 3 [解析] 由余弦定理,得 c2=a2+b2-2abcosC=1+1- 2×1×1×(-12)=3,∴c= 3.
已知三边解三角形
在△ABC 中:(1)a=3,b=4,c= 37,求最 大角;
(2)a:b:c=1: 3:2,求 A、B、C. [解析] (1)∵ 37>4>3,边 c 最大,则角 C 最大, 又 cosC=a2+2ba2b-c2=322+×432×-437=-12. ∴最大角 C=120°.
边长为 5、7、8 的三角形中,最大角与最小角的和是________.
[答案] 120°
[解析] 设中间角为 θ,由于 8>7>5,故 θ 的对边的长为 7, 由余弦定理,得 cosθ=522+×852×-872=12.所以 θ=60°,故另外两角和 为 180°-60°=120°.
3.余弦定理与勾股定理的关系 在△ABC 中,由余弦定理,得 c2=a2+b2-2abcosC,若角 C =90°,则 cosC=0,于是 c2=a2+b2-2a·b·0=a2+b2,这说明勾 股定理是余弦定理的特例,余弦定理是勾股定理的推广. 规律:设 c 是△ABC 中最大的边(或 C 是△ABC 中最大的角), 则 a2+b2<c2⇔△ABC 是钝角三角形,且角 C 为钝角; a2+b2=c2⇔△ABC 是直角三角形,且角 C 为直角; a2+b2>c2⇔△ABC 是锐角三角形,且角 C 为锐角.
[解析] 由余弦定理,得 AB2=AC2+BC2-2AC·BCcosC=4+ 3-2×2× 3× 23=1,∴AB=1.
2.余弦定理的推论
b2+c2-a2
根据余弦定理,可以得到以下推论:cosA=_____2_b_c__,cosB
a2+c2-b2
a2+b2-c2
=____2_a_c___,cosC=____2_a_b___.
[分析] 根据 x 的范围,比较 x2+x+1,x2-1 及 2x+1 的 大小,确定出最大边,再利用余弦定理计算.
[解析] ∵x>1,∴(x2+x+1)-(x2-1)=x+2>0, (x2+x+1)-(2x+1)=x2-x=x(x-1)>0. ∴x2+x+1 是三角形中的最大边. 该边所对的角是最大角,设此最大角为 A, 则 cosA=x2-12+2x22-x+1122x-+x12+x+12=-12, ∵0°<A<180°, ∴A=120°, 即三角形的最大角为 120°.
相关文档
最新文档