12.1全等三角形教案设计
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
11.1全等三角形
教学目标:
1了解全等形及全等三角形的的概念;
2 理解全等三角形的性质;
3 在图形变换以及实际操作的过程中发展学生的空间观念,培养学生的几何直觉;
4 学生通过观察、发现生活中的全等形和实际操作中获得全等三角形的体验在探索和运用全等三角形性质的过程中感受到数学的乐趣。
重点:探究全等三角形的性质
难点:掌握两个全等三角形的对应边,对应角
教学过程:
观察下列图案,指出这些图案中中形状与大小相同的图形
问题:你还能举出生活中一些实际例子吗?
这些形状、大小相同的图形放在一起能够完全重合。能够完全重合的两个图形叫做全等形
能够完全重合的两个三角形叫做全等三角形
思考:
引导学生完成课本P
3
归纳:
一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,即平移、翻折、旋转前后的图形全等。
“全等”用“≌”表示,读作“全等于”
两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如⊿ABC 和⊿DEF全等时,点A和点D,点B和点E,点C和点F是对应顶点,记作⊿ABC ≌⊿DEF。把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角
思考图11.1-1中,⊿ABC≌⊿DEF,对应边有什么关系?对应角思考:如课本P
3
呢?
归纳:
全等三角形性质:
全等三角形的对应边相等;
全等三角形的对应角相等。
思考:
(1)下面是两个全等的三角形,按下列图形的位置摆放,指出它们的对应顶点、对应边、对应角
(2)将⊿ABC 沿直线BC 平移,得到⊿DEF ,说出你得到的结论,说明理由?
(3)如图,⊿ABE ≌⊿ACD, AB 与AC ,AD 与AE 是对应边,已知:∠A=43°,∠B=30°,求∠ADC 的大小。
作业:P4习题11.1第1,2,3题。
D
D
D
B
E B C