快速成型技术介绍

合集下载

四种常见快速成型技术

四种常见快速成型技术

四种常见快速成型技术第一种常见快速成型技术:数控加工技术。

数控加工技术是一种机器控制加工技术,利用计算机及其相应的程序控制生产设备,进行机械加工,使得一次处理能完成的で一台以上的机器工具构成的加工中心,部件在台面上面固定,四个或以上的自动工具装在滑轨上, 根据电脑程序指定的加工参数,自动更换、安装选择夹具,分别做加工工作,从而完成制件定位、撬开、冲孔、攻丝、开槽、铰榫等复杂加工工作。

数控加工技术主要采用机械加工加工,适用于大批量生产或多种多样零件快速、高效率、低成本加工,且图纸精度高、表面光洁度高等。

第二种常见快速成型技术:熔融塑料成型技术。

熔融塑料成型技术首先将原料加工成模板,然后将模板放入机器中,当原料温度到达要求时,机器自动把原料按照设定的温度、时间及力度压入模具内,形成冷却后的成型物体。

这种技术利用塑料的特性,具有效率高,成型精度高,成型时根据原料的特性可以做出不同的加工处理,并且具有强度大,防水,耐高低温的特点,适用于各种塑料制品的快速成型。

第三种常见快速成型技术:射出成型技术。

射出成型技术指在机械压力下将原料熔融输送到射出模具成型模块中,随后由冷却系统冷却,完成制件的快速成型。

这种技术主要用于金属铸件、塑料件等的制造,具有造件精度高,尺寸稳定性好,表面光洁,强度高,厚度一致,成型快,节省材料等优点。

第四种常见快速成型技术:热压成型技术。

热压成型技术是把金属或塑料原料置于型模具内,用压力和热量同时共同作用,使金属和塑料原料发生塑性变形而成型的一种快速成型技术。

该技术采用型模具可以实现造型精度高、制件造型美观,制造完后制件可以免去热处理步骤;并且利用该技术进行多余的金属屑的再生,形成复合制件,极大的降低了制件的生产成本。

快速成型技术名词解释

快速成型技术名词解释

快速成型技术名词解释快速成型技术是一项技术,它可以使制造业的工人以更快的速度制造出更加精细的产品。

近年来,快速成型技术受到越来越多的注意,应用于各种行业,被广泛用于产品设计和制造。

快速成型技术是由计算机控制的,可以控制机器运动,形成有规律的加工过程,以此实现零件的快速成型。

它主要分为三类:数控加工,三维打印以及机器视觉技术。

数控加工是一种用计算机控制机器,根据3D模型和CAM程序来制造产品的技术。

这种技术有助于实现快速的成型,准确的加工尺寸,低成本,高效的加工过程。

三维打印是一种通过添加一层又一层的材料,利用计算机模型制造物品的技术。

它的优点是快速、正确,可以在非常短的时间内创建出复杂的模型,可以根据需要自由更改模型,减少加工时间,并有效地提高产品质量。

机器视觉技术是一种通过计算机分析图像来实现三维定位的技术。

它可以把机器与环境中的物体联系起来,使机器能够捕获到物体的形状、尺寸、位置等信息,用于快速成型。

在快速成型技术中,数控加工是一种关键技术。

它可以准确控制和执行加工程序,使零件具有更高的一致性,并可以实现更精细、更复杂的加工。

三维打印可以用于制造一些复杂的零件,它可以更有效地制造零件,并且具有非常快的速度。

机器视觉技术则可以实现对被加工零部件的快速、精确的过程检测,以便快速成型。

总的来说,快速成型技术的应用可以提高制造业的生产效率,减少成本,提升产品质量,为制造业提供了一种新的制造模式。

它不仅可以大大提高制造业的生产效率,还可以增强了制造业运作的灵活性,满足当下客户对于快速交付的需求。

快速成型技术的应用不仅有利于提高产品质量,也实现了资源的有效利用,促进了社会的可持续发展。

在未来,将会有更多的应用程序和新的技术出现,更好地满足客户的需求,使制造业更加先进和可持续。

快速成型技术

快速成型技术
目前快速成型机的数据输入主要有两种途径:一是设计人员利用计算机辅助设计软件 (如 Pro /Engineering , SolidWo rks, IDEAS, M DT, Auto CAD等 ) ,根据产品的要求设计三维模型 , 或将已有产品的二维三视图转换为三维模型; 另一种是对已有的实物进行数字化 , 这些实物可 以是手工模型、工艺品等。这些实物的形体信息可以通过三维数字化仪、 CT和 MRI等手段采集 处理 ,然后通过相应的软件将获得的形体信息等数据转化为快速成型机所能接受的输入数据 。
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。

快速成型技术

快速成型技术

知识创造未来
快速成型技术
快速成型技术(Rapid Prototyping,RP)是一种快速制造技术,又称为3D打印技术。

它利用计算机辅助设计(CAD)文件为基础,通过逐层堆积材料以构建三维实体模型。

快速成型技术的原理是将CAD文件切割为一系列薄片,并逐层堆积材料形成实体模型。

常用的堆积方式包括层叠堆积、液体固化和粉末烧结等。

材料可以是塑料、金属、陶瓷等。

快速成型技术具有快速、灵活、低成本等优点。

它可以迅速制造出产品的样品,帮助设计师进行实物验证和功能测试。

同时,快速成型技术也可以用于批量生产少量产品或个性化定制产品。

目前,快速成型技术已广泛应用于各个领域,包括汽车、航空航天、医疗器械、消费品等。

它在产品开发和制造过程中起到了重要的作用,提高了设计效率和产品质量,同时缩短了产品上市时间。

1。

快速成型技术概述

快速成型技术概述

和其他几种快速成型方法相比,该方一法也存在着许多缺点。主要有:
三、光固化成型工艺
四、叠层实体制造工艺
叠层实体制造工艺的基本原理
四、叠层实体制造工艺
2.叠层实体制造技术的特点 其主要特点如下: ( 1 )原型精度高。 ( 2 )制件能承受高达200℃ 的温度,有较高的硬度和较好的力学性能,可进行各种切削加工。 ( 3 )无须后固化处理。 ( 4 )无须设计和制作支撑结构。 ( 5 )废料易剥离。 ( 6 )可制作尺寸大的制件。 ( 7 )原材料价格便宜,原型制作成本低。
( 1 )能承受一定高温。 ( 2 )与成型材料不浸润,便于后处理。 ( 3 )具有水溶性或者酸溶性。 ( 4 )具有较低的熔融温度。 ( 5 )流动性要好。
五、熔融沉积快速成型工艺
选择性激光烧结工艺的基本原理
当一层截面烧结完后,工作台下降一个层的厚度,铺料辊又在上面铺上一层均匀密实的粉末,进行新一层截面的烧结,直至完成整个模型。
01
1940年,Perera提出相似的方法,即沿轮廓线切割硬纸板,然后堆叠,使这些纸板形成三维地貌图。
02
1964年,Zang进一步细化了该方法,建议用透明的纸板,每一块均带有详细的地貌形态标记。
03
1972年,Matsubara使用光固化材料,光线有选择地投射或扫射到这个板层,将规定的部分硬化,没有扫描或没有一硬化的部分被某种溶剂溶化。
04
五、熔融沉积快速成型工艺
五、熔融沉积快速成型工艺
2.熔融沉积工艺的特点 熔融沉积快速成型工艺之所以被广泛应用,是因为它具有其他成型方法所不具有的许多优点。具体如下: ( 1 )由于采用了热融挤压头的专利技术,使整个系统构造原理和操作简单,维护成本低,系统运行安全。 ( 2)成型速度快。 ( 3 )用蜡成型的零件原型,可以直接用于熔模铸造。 ( 4 )可以成型任意复杂程度的零件。 ( 5 )原材料在成型过程中无化学变化,制件的翘曲变形小。 ( 6 )原材料利用率高,且材料寿命长。 ( 7 )支撑去除简单,无需化学清洗,分离容易。

快速成型技术介绍

快速成型技术介绍

1、新产品研制开发阶段的试验验证 2、新产品投放市场前的调研和宣传 3、基于快速成型技术的快速制模(RT)技术 由于RP方法对使用材料的限制,并不能够完全替代 最终的产品。在新产品功能检验、投放市场试运行和准确 获得用户使用后的反馈信息等方面,仍需要由实际材料制 造的产品。因此, 需要利用RP原型作母模来翻制模具, 这便产生了基于RP的快速模具制造技术(RT)。 RP+RT技术提供了一条从模具的CAD模型直接制造 模具的新概念和方法。它将模具的概念设计和加工工艺集 成在一个CAD/CAM系统内,并行工程的应用,为信息 流的畅通流动创造了良好的条件。
图12、FDM快出成型支撑结构图
三、快速成型技术的应用
快速成型技术的最初应用主要集中在产品开发中的设 计评价、 功能试验上。 设计人员根据快速成型得到的试 件原型对产品的设计方案进行试验分析、 性能评价 ,借此 缩短产品的开发周期、 降低设计费用。经过十几来的发 展 ,快速成型技术早已突破了其最初意义上的 “原型” 概 念 ,向着快速零件、 快速工具等方向发展。 目前RP技术已得到了工业界的普遍关注, 尤其在家用 电器、汽车、玩具、轻工业产品、建筑模型、医疗器械及 人造器官模型、航天器、军事装备、考古、工业制造、雕 刻、电影制作以及从事CAD 的部门都得到了良好的应用. 其用途主要体现在以下6个方面。
加热丝状材料喷头扫描并喷出半流动状材料材料固化图9fdm原理图喷头是实现fdm工艺的关键部件喷头结构设计和控制方法是否合理直接关系到成型过程能否顺利进行并影响成型的质量另一方面为了提高生产效率可以采用多喷头美国3d公司推出的actua2100其喷头数多达96个
快速成型技术
一、快速成型技术概述 二、快速成型技术加工方法和设备 三、快速成型技术的应用 四、快速成型技术中的问题 五、展望

快速成型技术

快速成型技术

快速成型技术1、快速成型简介快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

2、RP 技术的原理RP 技术是采用离散∕堆积成型的原理, 由CAD 模型直接驱动的通过叠加成型方出所需要零件的计算机三维曲面或实体模型, 根据工艺要求将其按一定厚度进行分层, 把三维电子模型变成二维平面信息(截面信息), 在微机控制下, 数控系统以平面加工的方式有序地连续加工出每个薄层并使它们自动粘接成型, 图1 为RP 技术的基本原理。

图1 RP 技术的基本原理。

RP 技术体系可分解为几个彼此联系的基本环节: 三维CAD 造型、反求工程、数据转换、原型制造、后处理等。

2.1立体光固化成型(SLA)该方法是目前世界上研究最深入、技术最成熟、应用最广泛的一种快速成型方法。

SLA 技术原理是计算机控制激光束对光敏树脂为原料的表面进行逐点扫描, 被扫描区域的树脂薄层( 约十分之几毫米) 产生光聚合反应而固化, 形成零件的一个薄层。

工作台下移一个层厚的距离, 以便固化好的树脂表面再敷上一层新的液态树脂, 进行下一层的扫描加工, 如此反复, 直到整个原型制造完毕。

由于光聚合反应是基于光的作用而不是基于热的作用, 故在工作时只需功率较低的激光源。

此外,因为没有热扩散, 加上链式反应能够很好地控制, 能保证聚合反应不发生在激光点之外, 因而加工精度高, 表面质量好, 原材料的利用率接近100%, 能制造形状复杂、精细的零件, 效率高。

快速成型技术的种类

快速成型技术的种类

快速成型技术的种类
快速成型技术是一种以数字化模型为基础,通过逐层堆积材料,实现快速制造物品的技术。

快速成型技术的种类很多,常见的有以下几种:
1. 光固化快速成型技术:通过紫外线或激光束照射光敏树脂,使其固化成所需形状。

2. 喷墨式快速成型技术:通过喷墨头控制液体喷射,将粉末材料逐层喷涂并加固。

3. 熔融沉积式快速成型技术:将金属丝或粉末熔化,通过火焰或电弧喷射,逐层沉积成型。

4. 熔化层压式快速成型技术:将塑料或金属粉末加热或熔化,通过喷嘴或挤出机,逐层堆叠并加固。

5. 粉末烧结式快速成型技术:将粉末压缩成形,然后通过高温处理或激光束烧结,实现快速成型。

以上是常见的几种快速成型技术,它们各有优劣,可以根据具体需求选择合适的技术。

- 1 -。

快速成型技术及其应用

快速成型技术及其应用

快速成型技术及其应用一、本文概述随着科技的迅速发展和市场竞争的日益激烈,产品的设计、开发和生产周期已经成为决定企业竞争力的关键因素。

在这一背景下,快速成型技术(Rapid Prototyping,简称RP技术)应运而生,以其独特的优势在生产制造领域引发了深刻的变革。

本文旨在全面介绍快速成型技术的基本概念、发展历程、主要类型及其在各行业中的应用实例,分析快速成型技术带来的经济效益与社会影响,并展望其未来的发展趋势和挑战。

通过对这一技术的深入探讨,我们期望能够帮助读者更好地理解并应用快速成型技术,以促进企业创新能力的提升和产业升级的加速。

二、快速成型技术的基本原理与分类快速成型技术(Rapid Prototyping, RP)是一种基于三维计算机辅助设计(CAD)数据,通过逐层堆积材料来制造三维实体的技术。

其基本原理可以概括为“离散-堆积”。

将三维CAD模型进行切片处理,得到一系列二维层面信息;然后,按照这些层面信息,通过特定的成型设备,如激光烧结机、熔融沉积机、光固化机等,将材料逐层堆积起来,最终形成与原始CAD模型一致的三维实体。

根据成型材料的不同和成型方式的差异,快速成型技术可以分为以下几类:熔融沉积成型(Fused Deposition Modeling, FDM):该技术使用热塑性材料,如蜡、ABS塑料等。

材料在喷头中加热至熔融状态,然后按照CAD模型的切片信息,通过喷头逐层挤出材料,冷却后形成实体。

光固化成型(Stereo Lithography, SLA):使用液态光敏树脂作为材料。

在紫外光照射下,液态树脂逐层固化,形成实体。

该技术精度较高,适用于制造复杂结构和高精度的模型。

选择性激光烧结(Selective Laser Sintering, SLS):采用粉末状材料,如塑料粉末、金属粉末、陶瓷粉末等。

在激光的作用下,粉末逐层烧结,形成实体。

该技术可以制造金属和陶瓷等高强度材料的零件。

快速成型技术总结_焊工个人技术总结

快速成型技术总结_焊工个人技术总结

快速成型技术总结_焊工个人技术总结
快速成型技术,简称为RPT,意为Rapid Prototype Technology,也叫快速成形技术,是一项新型的材料制造技术。

它采用了计算机辅助设计和制造技术,可以快速地制造出具有复杂形状的三维实体模型,而无需制作刻板的模具,这也就是所谓的快速原型技术。

下面对传统RPT和新增型RPT作一个简单的介绍:
1. 传统板式RPT
传统板式RPT,是以太阳对光敏树脂成型的一种快速成型技术。

这种快速成型技术的基本原理是利用可快速成型的光学技术在数控设备上精确雕刻出一块基础模板,然后在这个模板上通过光固化技术制造出一层层薄片,直到制造完成整个物体。

优点:精度高,制造速度快。

缺点:成本高,制造材料有限。

2. 新增型RPT
新增型RPT,是一种结合了光固化和喷墨技术的快速成型技术。

这种技术的基本原理是首先制造出一个3D光学组件,利用光固化技术将光照射到成型区域,形成了一个光敏材料层。

然后,根据喷墨技术将所需颜色打印在材料表面,使整个光敏材料被完整的覆盖,然后在一次充分固化后,取下模型。

(也可以采用更多的喷墨技术,如喷墨打印,使得模型的表面更光滑细腻)
优点:成本低,材料多样化。

缺点:精度不高,时间长。

因此,各种RPT技术的应用范围不同,使用方式不同,具体应看具体情况和成本。

在制造过程中,技术优劣决定了制造成果,其具体应用还需要根据不同的产品和工艺采取不同方案,切勿一刀切。

快速成型技术简介

快速成型技术简介

快速成型技术简介作者:中科院广州电子技术有限公司快速成型(Rapid Prototyping) 是近年来发展起来的直接根据CAD模型快速制作样件或零件的技术,它集成了计算机辅助设计(CAD) 技术、数控技术、激光技术和材料技术等现代科技,是先进制造技术的重要组成部分。

与传统制造方法不同,快速成型从零件的CAD 几何模型出发,通过软件分层离散和数控成型系统,用激光束或其他方法将材料堆积而形成实体零件。

由于它把复杂的三维制造转化为一系列二维制造的叠加,因而可以在不用模具和工具的条件下生成几乎任意复杂的零部件,极大地提高了生产效率和制造柔性。

与传统方法相比具有独特的优越性和特点:◆产品制造过程几乎与零件的复杂性无关。

◆产品的单价几乎与批量无关,特别适合于新产品的开发和单件小批量零件的生产。

◆采用非接触加工,没有工具更换和磨损之类的问题,可以做到无人值守。

◆无切割、噪音和振动等,有利于环保。

◆生产过程数字化,与CAD 模型具有直接的关联,零件可大可小,所见即所得,可随时修改,随时制造。

◆与传统方法结合,可实现快速铸造,快速模具制造,小批量零件生产等功能,为传统制造方法注入新的活力。

快速成型技术的应用快速成型应用的领域几乎包括了制造领域的各个行业,在医疗、人体工程、文物保护等行业也得到了越来越广泛的应用。

目前主要是应用于新产品开发的设计验证和模拟样品的试制上,即完成从产品的概念设计→造型设计→结构设计→基本功能评估→模拟样件试制这段开发过程。

对某些以塑料结构为主的产品还可以进行小批量试制,或进行一些物理方面的功能测试、装配验证、实际外观效果审视,甚至将产品小批量组装先行投放市场,达到投石问路的目的。

快速成型技术的主要应用各行业的应用状况如下:◆汽车、摩托车: 外形及内饰件的设计、改型、装配试验,发动机、汽缸头试制。

◆家电: 各种家电产品的外形与结构设计,装配试验与功能验证,市场宣传,模具制造。

◆通讯产品: 产品外形与结构设计,装配试验,功能验证,模具制造。

快速成型技术概述

快速成型技术概述

快速成型技术概述
快速成型技术是一种用于生产快速成型零件的制造技术,它能够使用多种不同的材料,在短时间内产生复杂形状的平面或立体物品。

快速成型技术可以大大减少制造时间,提高生产效率,大大降低成本,并提供更多的可能性来实现复杂的设计。

快速成型技术主要有三类:3D打印,热成型和激光熔融成形。

3D打印技术是一种基于数字模型的直接成型技术,用于制造复杂的塑料零件。

它是一种层层堆积的3D打印技术,通过连续堆积多层薄膜的方式在物料上建立3D零件的模型,从而直接制作出3D零件。

热成型技术是用热力加工膜材,使材料形状发生变形,从而制造出所需的三维形状的一种成型技术。

它是一种快速、简单、经济的加工技术,热成型技术用于制造塑料、橡胶、金属、纤维等多种材料的形状。

激光熔融成型技术是一种采用激光技术,将金属粉末逐层熔融成形的成型加工技术。

它通过激光产生高温熔融,从而将金属粉末熔融到形状模具中,形成三维零件。

快速成型技术介绍PPT课件

快速成型技术介绍PPT课件

新材料
制品
6
RP技术基本原理:离散—堆积(叠加)
三维模型构建: Pro/E、UG、 SolidWorks、 激光扫描、 CT断层扫描等
三维模型的近 似处理:三角形 平面来逼近原
来的模型 (STL文件)
三维模型的切 片处理:加工 方向(Z方向)
进行分层
后处理:打磨、 抛光、涂挂、
烧结等
成型加工:成型 头(激光头或 喷头)按各截面 轮廓信息扫描
间隔一 般取
0.05m-0.5mm,
常用
0.1mm
7
图3、 RP成型过程图
各层固化粘结: 树脂或塑料的链 式反应固化、无 化学反应的熔融 粘结固化和用粘 结剂将片体粘结
的方法。
8
3、RP技术的特点和影响 新产品开发的一般过程:
模具:制模、 试模、修模, 时间,成本
设计
试制
试验
RP:设计、 成型,
时间,成本
征求用户意见
市场推销
生产
修改定型
9
RP技术的主要特点: (1)可以制造任意复杂的三维几何实体 (2)快速性 :几个小时到几十个小时就可制造出零件 (3)高度柔性:无需任何专用夹具或工具 (4)产品结构与性能的及时快速优化 (5)进行小批量生产 (6)RP技术有利于环保
10
二、RP技术加工方法和设备
LOM缺点:材料浪费严重,表面质量差。
19
3、SLS
SLS工艺最初由美国德克萨斯大学奥斯汀分校 (UIIiversity of Texas at Austin)的Carl Deckard于1989年在 其硕士论文中提出,后由Texas大学组建的DTM公司于 1992年推出了该工艺的商业化生产设备Sinterstation。

FDM快速成型技术及其应用

FDM快速成型技术及其应用

感谢观看
4、医疗行业:在医疗领域,FDM技术被用于制造人体植入物、医疗器械等。 由于其制造的材料安全、无毒,且精度高,使得FDM成为医疗行业的重要选择。
5、教育行业:在教育领域,FDM技术常被用于教学示范和实验中,通过打印 出三维模型来帮助学生更好地理解复杂的概念和结构。此外,学生也可以使用 FDM技术来制作自己的设计项目,提高实践能力和创新思维。
六、未来展望
随着科技的快速发展和社会的不断进步,我们期待快速成型技术能够在以下 几个方面有所突破:首先,设备的效率和稳定性还有待提高,以提高生产效率和 质量;其次,材料的种类和性能需要进一步拓展和优化,以满足不同应用场景的 需求;最后,我们期待这种技术能够更好地融入环保理念,以实现可持续的制造 和发展。
(4)材料广泛:光敏树脂种类繁多,可以满足各种不同类型制品的需求。
2、不足
然而,光固化快速成型技术也存在以下不足之处:
(1)成本较高:光固化快速成型技术的设备、材料和维护成本较高,限制 了其广泛应用。
(2)技术难度较大:光固化快速成型技术的技术门槛较高,需要专业人员 进行操作和维护。
(3)环境影响:光固化过程会产生有害的紫外光和挥发性有机化合物,对 环境和操作者的健康有一定影响。
8、环保行业:在环保领域,FDM技术提供了一种可持续的制造方法。通过使 用可降解或可回收的材料进行打印,可以减少废弃物的产生和对环境的影响。此 外,FDM技术还可以用于制造环保设备零件等。
9、科研领域:在科学研究领域,FDM技术常被用于制造实验模型和测试样品。 例如在材料科学中,研究人员可以使用FDM来制造不同材料的复合结构以研究其 物理和化学性能。此外在生物学领域,FDM技术也被用于制造生物组织的复杂结 构以研究其生长和发育的机制。

快速成型技术

快速成型技术

谢谢
Thanks for you attenti速成型技术简介 • 二. 快速成型技术的现状及其应用 • 三. 快速成型技术展望
一.快速成型技术简介
什么是快速成型技术?
答:快速成型技术是在现代 CAD/CAM技术、激光技术、计 算机数控技术、精密伺服驱动技 术以及新材料技术的基础上集成 发展起来的。不同种类的快速成 型系统因所用成型材料不同,成 型原理和系统特点也各有不同。 但是其基本原理都是一样的,那 就是“分层制造,逐层叠加”, 类似于数学上积分过程。
快速成型的种类
• • • • 1.分层实体制造 2.选区激光烧结 3.熔丝沉积制造 4.三维印刷
二. 快速成型技术的现状及其应用
• 快速成型技术的核心竞争力是其制造成本 低和市场响应速度快。 • 生产厂家基于利润和速度的考量,使得快 速成型技术得以迅速发展和推广使用。
快速成型技术的应用
• 1.设计和功能验证 • 通过快速成型技术可以快速制作产品的 物理模型,以验证设计人员的构思,发现 产品设计中存在的问题。从而 迅速完善产 品的结构和性能、相应的工艺及所需模具 的设计。
RP原型 砂套造型
灌陶瓷浆料
结胶硬化
清理抛光
合箱浇注
喷烧
起模
• 小结:目前国内外快速成型技术研究、开 发的重点是其基本理论、新的快速成型方 法、新材料开发、模具制造技术、金属零 件的直接制造以及生物技术与工程的开发 与应用。
三. 快速成型技术展望
• 1.金属零件、功能梯度零件的直接快速成型 制造技术。 • 2.概念创新与工艺改进。 • 3.优化数据处理技术。 • 4.开发专用快速成型设备。 • 5.成型材料系列化、标准化。 • 6.拓展新的应用领域。
• 2.非功能性样品制作 • 在新产品正式投产之前或按照订单制造时, 需要制作产品的展览样品或摄制产品样本 照片。采用快速成型是最为理想的方法。

快速成型技术概述

快速成型技术概述

三、快速成型技术的特点 优点: • 制造任意复杂的三维几何实体。 • 快速成型产品单价与原型的复杂程度和制造 数量无关。 • 高度的柔性。 • பைடு நூலகம்型的快速性 • 信息过程和材料过程一体化。 • 技术的高度集成。
缺点: • 成型后的残余应力难以消除。 • RP技术能够处理的材料种类有限。 • 成型材料和设备价格高 • 只适用小批量生产 • 成型精度和速度不够。
四、快速成型制造工艺分类 按制造工艺原理分:
1)光固化成型(SLA)★ 2)分层实体制造(LOM) 3) 选择性激光烧结(SLS) 4) 熔融沉积制造(FDM) 5) 三维打印(3DP)
五、快速成型技术的应用:
1、在新产品研发中的应用: • 概念模型的可视化、设计评价。 • 结构设计验证与装配干涉校验。 • 性能和功能测试 2、在模具中的应用:(RT—快速模具制造) • 直接快速模具制造(树脂模、陶瓷模、金属模) • 间接快速模具制造(软质模具—硅胶模具、环氧 树脂、低熔点合金模具;硬质模具—精密铸造、 熔模铸造法、电火花加工等)。
3.在快速铸造中的应用 利用快速成型技术直接制造铸造用的蜡膜、消 失模、模样、模板、型芯或型壳等。
4.在艺术领域的应用 工艺品的制造和古文物的仿制。 • 在艺术家的创作中的应用,把创作灵感变成成品, 可以进行修改。 • 在珍稀艺术品复制或修复中的应用。 5.在医学领域的应用 • 设计和制作可植入假体 • 外科手术规划
六、快速成型技术的现状和发展趋势 现状: 快速成型技术工艺日趋成熟。 在功能上从原型制造到批量定制发展; 在应用上集中在产品的设计、测试、装配。 从RP—RM的转变。 发展趋势: 1.材料成型和材料制备 2.生物制造和生长成型 3.计算机外设和网络制造 4.快速成型与微纳米制造 5.直写技术与信息处理

快速成型技术的种类

快速成型技术的种类

快速成型技术的种类
快速成型技术是一种通过计算机辅助设计和制造的方法,可以快速制造出复杂的三维模型。

这种技术已经被广泛应用于各种领域,包括汽车、医疗、航空航天等。

本文将介绍几种常见的快速成型技术。

1. 光固化技术
光固化技术是一种通过紫外线或激光束将液态光敏树脂固化成固体的方法。

这种技术可以制造出非常精细的模型,适用于制造小型零件和精密零件。

光固化技术的优点是制造速度快,精度高,但成本较高。

2. 熔融沉积技术
熔融沉积技术是一种通过将熔融材料喷射到建模平台上,逐层堆积成三维模型的方法。

这种技术适用于制造大型零件和复杂零件。

熔融沉积技术的优点是制造速度快,成本低,但精度较低。

3. 熔融层压技术
熔融层压技术是一种通过将熔融材料喷射到建模平台上,然后用热压力将其压缩成固体的方法。

这种技术适用于制造大型零件和复杂零件。

熔融层压技术的优点是制造速度快,成本低,精度高。

4. 粉末烧结技术
粉末烧结技术是一种通过将金属或陶瓷粉末喷射到建模平台上,然后用激光束或电子束将其烧结成固体的方法。

这种技术适用于制造金属和陶瓷零件。

粉末烧结技术的优点是制造速度快,成本低,精度高。

快速成型技术已经成为现代制造业中不可或缺的一部分。

随着技术的不断发展,这些技术将会越来越成熟,应用范围也会越来越广泛。

《快速成型技术》课件

《快速成型技术》课件

医学领域应用
制作医学模型
01
在医学领域,快速成型技术可以用于制作人体组织、器官或骨
骼的模型,辅助医生进行手术规划和模拟。
定制植入物
02
对于需要植入人体内的医疗设备,如牙齿、骨骼等,可以通过
快速成型技术制作出符合患者需求的个性化植入物。
药物研发
03
在药物研发过程中,快速成型技术可以用于制作药物分子模型
悬浮液喷射成型等 微滴喷射成型
金属粉末激光烧结 喷墨式成型
04
快速成型技术的应用案例
产品原型设计
1 2 3
快速制作产品原型
快速成型技术能够快速、准确地制作出产品原型 ,缩短了产品开发周期,降低了开发成本。
优化产品设计
通过制作原型,设计师可以更直观地评估产品外 观、结构和功能,及时发现和改进设计中的问题 。
数据转换与处理
快速成型的数据来源主要是 CAD(计算机辅助设计)软件
设计的三维模型。
数据处理包括模型切片、坐标转 换等步骤,将三维模型转换为快
速成型机可执行的层片数据。
数据处理过程中,需进行支撑结 构设计和工艺参数设置,以确保
成型过程的稳定性和准确性。
成型材料与特性
快速成型的材料种类繁多,包括塑料、树脂、金 属粉末、陶瓷等。
优点
可加工复杂结构、材料种 类多、加工速度快。
应用
广泛应用于航空航天、汽 车制造、医疗器械等领域 。
三维印刷
原理
类似于二维印刷,通过在特定材料上 逐层印刷粘合剂或特殊墨水,形成三 维实体。
优点
应用
适用于快速原型制造、个性化定制等 领域。
设备简单、操作方便、可快速制造出 原型。
其他快速成型技术

快速成型技术

快速成型技术

快速成型技术快速成型技术简介快速成型技术(Rapid Prototyping Technology-RPT)属于先进制造技术范畴机械工程学科非传统加工工艺(或称为特种加工)是将CAD、CAM、、激光、精密伺服驱动和新材料等先进技术集成的一种全新制造技术。

它通过叠加成型方法可以自动而迅速地将设计的三维CAD模型转化为具有一定结构和功能的原型或直接制造零件。

与传统的制造方法相比,它具有生产周期短,成本低的优势,并且可以灵活地改变设计方案,实现柔性生产,在新产品的开发中具有广阔的应用前景。

目前世界上投入应用的快速成形的方法有十多种,主要包括立体印刷(SLA-StereoLithgraphy Apparatus)、分层实体制造(LOM-Laminated obxxxxject Manufacturing)、选择性激光烧结(SLS—Selective Laser Sintering)、熔化沉积制造(FDM-Fused Deposition Modeling)、固基光敏液相(SGC-Solid Ground Curing)等方法。

其中选择性激光烧结(SLS)技术具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速发展,正受到越来越多的重视。

SLS方法具有以下的优点:由于粉末具有自支撑作用,不需另外支撑;材料广泛,不仅包括各种塑料材料、蜡和覆膜砂,还可以直接生产金属和陶瓷零件。

且材料可重复使用,利用率高。

快速成型技术工作原理使用CO2 激光器烧结粉末材料(如蜡粉、PS粉、ABS粉、尼龙粉、覆膜陶瓷和金属粉等)。

成型时先在工作台上铺上一层粉末材料激光束在计算机的控制下按照截面轮廓的信息对制件实心部分所在的粉末进行烧结。

一层完成后工作台下降一个层厚再进行下一层的铺粉烧结。

如此循环,最终形成三维产品。

快速成型技术应用选择性激光烧结快速成型(Selective Laser Sintering Rapid Prototyping) 技术(简称SLS技术)由于具有成型材料选择范围宽、应用领域广的突出优点,得到了迅速的发展,正受到越来越多的重视。

快速成型(RP)技术

快速成型(RP)技术

快速成型(RP)技术快速成型(RP)技术简介RP技术是80年代后期发展起来的快速成型(Rapid Prototyping 简称RP)技术,被认为是近年来制造技术领域的一次重大突破,其对制造业的影响可与数控技术的出现相媲美。

RP系统综合了机械工程、CAD、数控技术,激光技术及材料科学技术,可以自动、直接、快速、精确地将设计思想物化为具有一定功能的原型或直接制造零件,从而可以对产品设计进行快速评价、修改及功能试验,有效地缩短了产品的研发周期。

而以RP系统为基础发展起来并已成熟的快速模具工装制造( Quick Tooling)技术,快速精铸技术(Quick Casting),快速金属粉末烧结技术(Quick Powder Sintering),则可实现零件的快速成品。

RP技术,迴异于传统的去除成型(如车、削、刨、磨),拼合成型(如焊接),或受迫成型(如铸、锻,粉末冶金)等加工方法,而是采用基于材料累积制造的思想,把三维立体看成是无数平行的、具有不同形状的层面的叠加,能快速制造出产晶原型。

快速原型制造技术(RP)将计算机辅助设计(CAD)、辅助制造(CAM)、计算机辅助控制(CHC)、精密伺服驱动和新材料等先进技术集于一体,依据计算机上构成的产品三维设计模型,对其进行分层切片,得到各层截面的轮廓,激光选择性的切割一层层的纸(或固化一层层的液态树脂、烧结一层层的粉末材料或热喷头选择快速地熔覆一层层的塑料或选择性地向粉末材料喷射一层层粘结剂等),形成各截面轮廓并逐步叠加成三维产品。

目前,它已成为现代制造业的支柱技术,是实现并行工程、集成制造技术和技术开发的必不可少的手段之一。

与传统的切削加工方法相比,快速原型加工具有以下优点:(1)可迅速制造出自由曲面和更为复杂形态的零件,如零件中的凹槽、凸肩和空心部分等,大大降低了新产品的开发成本和开发周期。

(2)属非接触加工,不需要机床切削加工所必需的刀具和夹具,无刀具磨损和切削力影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

喷头是实现FDM工艺的关键部件,喷头结构设计和控 制方法是否合理,直接关系到成型过程能否顺利进行,并 影响成型的质量 ,另一方面为了提高生产效率可以采用 多喷头,美国3D公司推出的Actua2100,其喷头数多达96个。
在成型有支撑制件时单喷头和双喷头的比较:
密实
剥离 单喷头 双喷头 成型材料 支撑材料 疏松
SLS工作原理:
铺粉
激光器扫描
图8、SLS工作原理图
SLS方法中的工艺参数对粉末的熔融有很大影响,如 激光功率、光斑大小、扫描速度、扫描间距、单层厚度、 粉床温度等都会影响烧结件的性能。 激光功率较低时,烧结件的拉伸强度和冲击强度均随 激光功率的增加而增加。激光功率过大时引起粉末的氧化 降解,从而降低了烧结件的强度。 扫描速度决定了激光束对粉末的加热时间,在激光功 率相同的情况下,扫描速度越低,激光对粉末的加热时间越 长,传输的热量多,粉末熔化较好,烧结件的强度高。但过低 的扫描速度导致粉末表面的温度过高,不仅不能提高烧结 件的强度,还会影响成型速度。
二、RP技术加工方法和设备
目前RP技术的快速成型工艺方法有十多种。现简要 介绍四种比较成熟且常用的四种成型方法:光固化成型 (SLA)、分层实体制造(LOM)、选择域激光粉末烧 结成型(SLS)、熔融沉积成型(FDM)。 1、SLA 光固化法是第一个投入商业应用的RP技术,它以美国 3D Systems公司生产的SLA系列成型机为代表。SLA技术 是基于液态光敏树脂的光聚合原理工作的,这种液态材料 在一定波长和强度的紫外光照射下能迅速发生光聚合反应, 分子量急剧增大,材料也就从液态转变成固态。
快速成型技术
一、快速成型技术概述 二、快速成型技术加工方法和设备 三、快速成型技术的应用 四、快速成型技术中的问题 五、展望
一、RP技术概述
1、RP技术的发展历史 快速成型(Rapid Prototyping,简称RP)技术是20世纪 80年代后期发展起来的, 是由CAD模型直接驱动的快速制 造任意复杂形状三维物理实体的技术总称。 1986年美国3D Systems公司率先推出了称为 Stereolithography Apparatus (简称SLA)的激光快速成 型制造系统,引起工业界的广泛兴趣并且RP得到了异乎 寻常的迅猛发展。 目前美国在RP领域处于主导地位,德国、以色列、 日本也处于国际领先水平。在RP领域国内有清华大学、 西安交通大学、南京航空航天大学、华中科技大学,北京 隆源公司等。
4、新材料的研究 在开发RP加工方法的过程中,需要使用一些特殊的材 料,甚至是开发出适用于此方法的新材料,所以在研究 RP加工方法的过程中也研制了新的材料。同时对于新研 究的材料,RP技术提供了检验此材料和其制品性能的一 种方法。 5、修复医学上的应用 快速成型技术在修复医学上的应用主要集中在人工假 体、人工活性骨等方面。比如应用快速成型制作出假体的 原型,而后翻制金属假体,植入人体,取代受伤的器官而达 到康复的目的。快速成型系统能够制作出多孔性结构,首 先使用可降解材料制成内部多孔疏松的代用骨, 疏松孔中 填以活性因子, 臵入人体, 即可代替人体骨骼,经过一段时 间可降解材料被人体降解、吸收、钙化形成新骨。
SLA工作原理
图4、SLA工作原理图
SLA优点: (1)原材料的利用率将近100% ; (2)尺寸精度高( ±0. 1 mm); (3)表面质量优良; (4)可以制作结构十分复杂的模型。 SLA缺点: (1)成型过程中伴随着物理和化学变化,所以制件较易弯曲, 需要支撑,如图5; (2)可使用的材料种类较少; (3)液态树脂具有气味和毒性,并且需要避光保护,以防止 提前发生聚合反应,选择时有局限性。
图12、FDM快出成型支撑结构图
三、快速成型技术的应用
快速成型技术的最初应用主要集中在产品开发中的设 计评价、 功能试验上。 设计人员根据快速成型得到的试 件原型对产品的设计方案进行试验分析、 性能评价 ,借此 缩短产品的开发周期、 降低设计费用。经过十几来的发 展 ,快速成型技术早已突破了其最初意义上的 “原型” 概 念 ,向着快速零件、 快速工具等方向发展。 目前RP技术已得到了工业界的普遍关注, 尤其在家用 电器、汽车、玩具、轻工业产品、建筑模型、医疗器械及 人造器官模型、航天器、军事装备、考古、工业制造、雕 刻、电影制作以及从事CAD 的部门都得到了良好的应用. 其用途主要体现在以下6个方面。
4、FDM FDM工艺由美国工程师ScottCrump于1988年研制成 功。FDM的材料一般是热塑性材料,以丝状供料。材料 在喷头内被加热熔化,喷头沿零件截面轮廓和填充轨迹运 动,同时将熔化的材料挤出,材料迅速凝固,并与周围的 材料凝结。 加热丝状材料 喷头扫描并喷 出半流动状材料 材料固化 图9、FDM原理图
RT方法的分类: 按功能用途可分为:塑料模、铸(型)模、冲压模、锻 造模及石墨电极研磨母模。 按制模材料可分为简易模(也称作软模、经济模或非 钢制模)和钢制硬模。 根据不同的制模工艺方法,快速模具可分直接快速模 具和间接快速模具。 直接快速模具,亦即快速成型模具,以快速成型件直 接作为成形模具。间接快速模具,亦即型腔复制模具,以 快速成型件为母模,通过型腔复制制作模具,包括硅橡胶 复制、金属冷喷涂、精密铸造、树脂材料型腔复制等。
图6、LOM原理图
工作台上升
图7、多余网格部分的去除
头盖骨
薄壳件
LOM 2030 H机器外观
LOM优点: (1)成型效率高,LOM工艺只需在片材上切割出零件截 面的轮廓,而不用扫描整个截面,因此成型厚壁零件的速 度较快,易于制造大型零件; (2)无翘曲变形,工艺过程中不存在材料相变,因此没有 热应力、膨胀和收缩不易引起翘曲变形; (3)无需加支撑,工件外框与截面轮廓之间的多余材料在 加工中起到了支撑作用,所以LOM工艺无需加支撑。 LOM缺点:材料浪费严重,表面质量差。
1、新产品研制开发阶段的试验验证 2、新产品投放市场前的调研和宣传 3、基于快速成型技术的快速制模(RT)技术 由于RP方法对使用材料的限制,并不能够完全替代 最终的产品。在新产品功能检验、投放市场试运行和准确 获得用户使用后的反馈信息等方面,仍需要由实际材料制 造的产品。因此, 需要利用RP原型作母模来翻制模具, 这便产生了基于RP的快速模具制造技术(RT)。 RP+RT技术提供了一条从模具的CAD模型直接制造 模具的新概念和方法。它将模具的概念设计和加工工艺集 成在一个CAD/CAM系统内,并行工程的应用,为信息 流的畅通流动创造了良好的条件。
(3)金属喷涂法
金属喷涂法是以原型作基体样模,将低熔点金属或合 金喷涂到样模表面上形成金属薄壳,然后背衬充填复合材 料而制作模具的方法。 金属喷涂法工艺简单、周期短,型腔及其表面精细花 纹可一次同时成形。模具耐磨性能好、尺寸精度高。制作 过程中要注意的是解决好涂层与原型表面的贴合和脱离问 题。
(4)电成形制模法 电成形制模法又称电铸制模法。其原理和制造过程与 金属喷涂法比较类似,又称电铸制模法。它是采用电化学 原理,通过电解液使金属沉积在原型表面,然后背衬其他 充填材料来制作模具的方法。 电成形法制作的模具复制性好且尺寸精度高,适合于 精度要求较高、形态均匀一致和形状、花纹不规则的型腔 模具,如人物造型模具、儿童玩具和鞋模等。 软质模具的寿命一般为50-5000件,对于上万件乃至 几十万件的产品,仍然需要传统的钢质模具,硬质模具指 的就是钢质模具,利用RP成型制作钢质模具的主要方法 有熔模铸造法、电火花加工法、陶瓷型精密铸造法等。
2、RP技术原理和成型过程 传统加工:去材法、变形法。 RP加工:材料累加法。 计算机科学
CAD/ CAM
数控技术
激光技术 新材料
自动、快速、准确
RP 制品
RP技术基本原理:离散—堆积(叠加)
三维模型构建: Pro/E、UG、 SolidWorks、 激光扫描、 CT断层扫描等 三维模型的近 似处理:三角形 平面来逼近原 来的模型 (STL文件) 三维模型的切 片处理:加工 方向(Z方向) 进行分层
3、SLS SLS工艺最初由美国德克萨斯大学奥斯汀分校
(UIIiversity of Texas at Austin)的Carl Deckard于1989年在 其硕士论文中提出,后由Texas大学组建的DTM公司于 1992年推出了该工艺的商业化生产设备Sinterstation。 该工艺实用高功率的激光加热,把粉末熔化在一起形 成零件,SLS工艺的重要吸引力是可用于多种热塑性塑料 的成型,如尼龙、聚碳酸酯、聚丙烯酸酯类、聚苯乙烯、 聚氯乙烯、高密度聚乙烯等。
单层层厚指铺粉厚度,即工作缸下降一层的高度。对于 某一制品,采用较大的单层厚度,所需制造的总层数少,制造 时间短。但由于激光在粉末中的透射强度随厚度的增加而 急剧下降,单层厚度过大,会导致层与层之间黏结不好,甚至 出现分层,严重影响成型件的强度。 SLS的优点是无需支撑,成型的零件机械性能好,强度 高。缺点是粉末比较松散,烧结后精度不高,尤其是Z轴方 向的精度难以控制。
后处理:打磨、 抛光、涂挂、 烧结等
成型加工:成型 头(激光头或 喷头)按各截面 轮廓信息扫描
间隔一 般取 0.05m-0.5mm, 常用 0.1mm
各层固化粘结: 树脂或塑料的链 式反应固化、无 化学反应的熔融 粘结固化和用粘 结剂将片体粘结 的方法。
图3、 RP成型过程图
3、RP技术的特点和影响 新产品开发的一般过程:
水溶性或低 熔点材料
溶于水或加热
目前,FDM系统采用柱塞式喷头(如图10)和螺杆式 挤出喷头(如图11)。
图10、柱塞式喷头
图11、螺杆式喷头
FDM的优点: (1)由于热融挤压头系统构造原理和操作简单,维护成本低, 系统运行安全; (2)原材料在成型过程中无化学变化,制件的翘曲变形小; (3)原材料利用率高,且材料寿命长。 FDM的缺点: (1)成型件的表面有较明显的条纹; (2)沿成型轴垂直方向的强度比较弱; (3)需要设计与制作支撑结构,如图12。
相关文档
最新文档