线性规划与单纯形法
单纯形法与线性规划问题
单纯形法与线性规划问题线性规划是一种优化问题,其基本形式是在给定的约束条件下,使目标函数最大或最小。
这种问题在工业、商业、农业和社会等领域有着广泛的应用。
在解决线性规划问题时,单纯形法是一种经典和常用的算法。
本文将介绍单纯形法和其在线性规划问题中的应用。
一、单纯形法概述单纯形法是一种基于向量空间的方法,其基本思想是沿着可行解空间中的边缘逐步搜索找到最优解。
单纯形法的运算是建立在基向量的概念上,基向量是指满足线性不可约条件的可行解基组成的向量。
单纯形法的步骤如下:1. 构造首行,确定初始基向量。
2. 选择离目标函数最远并且为正的变量,称为入基变量。
3. 选择离约束最近的基变量,称为出基变量。
4. 通过 Gauss-Jordan 消元法计算新的基向量组,确定更新后的基向量。
5. 重复步骤 2-4 直至无法选择入基变量为止。
6. 找到目标函数的最优解。
二、线性规划问题线性规划问题的一般形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}f(x_1,x_2,\dots,x_n)$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$其中,$f(x_1,x_2,\dots,x_n)$ 为线性目标函数,$a_{ij}$ 和$b_i$ 均为常数。
三、单纯形法解决线性规划问题1. 转化为标准型单纯形法只能用于标准型的线性规划问题,因此需要将原始问题转化为标准型。
标准型的形式如下:$$\max_{x_1,x_2,\dots,x_n\ge0}\sum_{j=1}^nc_jx_j$$$$\text{s.t.}\begin{cases}\sum_{j=1}^na_{1j}x_j\le b_1\\\sum_{j=1}^na_{2j}x_j\le b_2\\\dots\dots\\\end{cases}$$2. 添加松弛变量将约束条件转化为等式形式时需要添加松弛变量,松弛变量是一种关于决策变量的人工变量,其值可以取负数。
第一章 线性规划及单纯形法
线性规划问题的标准形式: 线性规划问题的标准形式:
max f = ∑ c j x
j =1 j n
n ∑ aij x j = bi , i = 1,2,L , m j =1 x j ≥ 0, j = 1,2,L , n
日产量( 日产量(吨) 9 5 7 21
11
)(模型 例2(运输问题)(模型) (运输问题)(模型)
minf = 2 x11 + 9 x12 + 10 x13 + 7 x14 + x21 + 3 x22 + 4 x23 + 2 x24 + 8 x31 + 4 x32 + 2 x33 + 5 x34 x11 + x12 + x13 + x14 = 9 x +x +x +x =5 23 24 21 22 x31 + x32 + x33 + x34 = 7 x11 + x21 + x31 = 3 s.t. x12 + x22 + x32 = 8 x13 + x23 + x33 = 4 x14 + x24 + x34 = 6 xij ≥ 0(i = 1,2,3; j = 1,2,3,4)
18
3、(线性规划)数学模型的三要素 、(线性规划) 、(线性规划 变量/决策变量 决策变量; ①变量 决策变量; 目标函数( ②目标函数(max/min); ); 约束条件。 ③约束条件。
19
决策变量: ①变量/决策变量:指决策者为实现规划目标采 变量 决策变量 取的方案、措施,是问题中要确定的未知量; 取的方案、措施,是问题中要确定的未知量;
线性规划与单纯形法
线性规划与单纯形法线性规划(Linear Programming)是一种在资源有限的情况下,通过最优化目标函数来确定最佳解决方案的数学优化方法。
而单纯形法(Simplex Method)则是一种常用的求解线性规划问题的算法。
本文将介绍线性规划与单纯形法的基本概念和运算步骤,以及实际应用中的一些注意事项。
一、线性规划的基本概念线性规划的基本思想是在一组线性不等式约束条件下,通过线性目标函数的最小化(或最大化)来求解最优解。
其中,线性不等式约束条件可表示为:```a1x1 + a2x2 + ... + anxn ≤ b```其中,x1、x2、...、xn为决策变量,a1、a2、...、an为系数,b为常数。
目标函数的最小化(或最大化)可表示为:```min(c1x1 + c2x2 + ... + cnxn)```或```max(c1x1 + c2x2 + ... + cnxn)```其中,c1、c2、...、cn为系数。
二、单纯形法的基本思想单纯形法是由乔治·丹尼尔·丹齐格尔(George Dantzig)于1947年提出的求解线性规划问题的算法。
其基本思想是通过逐步迭代改进当前解,直至达到最优解。
三、单纯形法的运算步骤1. 初等列变换:将线性规划问题转化为标准型,即将所有约束条件转化为等式形式,并引入松弛变量或人工变量。
2. 初始化:确定初始可行解。
通常使用人工变量法来获得一个初始可行解。
3. 检验最优性:计算当前基础解的目标函数值,若目标函数值小于等于零,则该基础解即为最优解。
否则,进入下一步。
4. 基本可行解的变换:选择一个入基变量和一个出基变量,并进行基本变换,得到新的基础解。
5. 迭代求解:根据目标函数值是否小于等于零,判断是否达到最优解。
若达到最优解,则算法终止;若未达到最优解,则返回步骤3进行下一轮迭代。
四、单纯形法的实际应用注意事项1. 线性规划问题的约束条件必须是线性的,且可行解集合必须是有界的。
线性规划的解法
线性规划的解法线性规划是现代数学中的一种重要分支,它是研究如何在一定约束条件下优化某种目标函数的一种数学方法。
在现实生活中,许多问题都可以用线性规划求解。
如在生产中,如何安排产品的产量才能最大化利润;在运输中,如何安排不同的运输方式最大程度降低成本等等。
线性规划的解法有多种,下面我们就来对其进行详细的介绍。
1. 单纯形法单纯形法是线性规划中最重要的求解方法之一,它是由Dantzig于1947年提出的。
单纯形法的基本思路是从某一个初始解出发,通过挑选非基变量,使得目标函数值逐步减少,直到得到一个最优解。
单纯形法的求解过程需要确定初始解和逐步迭代优化的过程,所以其求解复杂度较高,但是在实际中仍有广泛应用。
2. 对偶线性规划法对偶线性规划法是一种将线性规划问题转化为另一个线性规划问题来求解的方法。
这种方法的主要优势是,它可以用于求解某些无法用单纯形法求解的问题,如某些非线性规划问题。
对偶线性规划法的基本思路是将原问题通过拉格朗日对偶性转化为对偶问题,然后求解对偶问题,最终得到原问题的最优解。
3. 内点法内点法是一种由Nesterov和Nemirovsky于1984年提出的方法,它是一种不需要寻找可行起点的高效的线性规划求解方法。
内点法的基本思路是通过不断向可行域的内部靠近的方式来求解线性规划问题。
内点法的求解过程需要实现某些特殊的算法技术,其求解效率高,可以解决一些规模较大、约束条件复杂的线性规划问题。
4. 分枝定界法分枝定界法是一种通过逐步将线性规划问题分解成子问题来求解的方法。
这种方法的基本思路是,在求解一个较大的线性规划问题时,将其分解成若干个较小的子问题,并在每个子问题中求解线性规划问题,在不断逐步求解的过程中不断缩小问题的规模,最终得到问题的最优解。
总之,不同的线性规划解法各有千秋,根据实际问题的需要来选择合适的求解方法是非常重要的。
希望本文能够对您有所帮助。
运筹学线性规划与单纯形法
整理课件
16
Max Z= x1-2x2+3x3' -3x3" + 0x4 +0x5 s.t. x1+x2+ x3' - x3" +x4 =7
x1-x2+ x3' - x3" -x5=2
-3x1+x2+2x3' -2x3" =5 x1, x2,x3',x3", x4,x5 0
第一节小结:建立模型;三个组成要素;四种形式; 化为标准形(4个条件5点)
.
9x1+4x2 ≤ 360
90 80 60 40 20
4x1+5x2 ≤200
B C
HI G
Z=70x1+120x2 3x1+10x2 ≤300
0
20 D40 E 60
80 1F00 x1
整理课件
30
二、解的几种可能情况
1.唯一最优解。目标函数直线与凸多边形只有 一个切点; 2.无穷多最优解,目标函数图形与某个约束条 件平行。 3.无界解(无最优解)----可行域无界。一般是 漏了一些约束条件。 4.无可行解----可行域为空。
Ⅰ
Ⅱ 计划期可用能力
2
2
12
1
2
8
4
0
16
0
4
12
2
3
问:应如何安排生产计划,才能使总利润最大?
整理课件
3
解:用数学的语言进行描述:
1.决策变量:设产品I、II的产量分别为 x1、x2 2.目标函数:问题要求获取利润最大,该公司获取
利润为2 x1 + 3 x2,令z = 2 x1 + 3 x2,则max z = 2 x1 + 3 x2, max z 是该公司获取利润的目标 值,它是变量x1、 x2的函数,称为目标函数。
线性规划及单纯形法
2021/8/17
25
例1 max Z 2 x1 3 x 2
x1 2 x2 8
s .t . 4 x1
16 4 x 2 12
x1 , x 2 0
可化为
2021/8/17
maZx 2x13x2 0x3 0x40x5
x1 2x2 x3
8
4x1
4x2
x4
16
x5 12
xj 0(j 1,,5)
n
4
1 B1 3
2 5
,
1 B2 3
1 0
,
B3
1 3
0 1
,
B4
2 5
1 0
,
B5
2 5
0 1
,
B6
1 0
0 1
根 2021/8/17 据 基 B 1 B 的 6 均 L 定 为 问 P义 题, 的 基 30 。
a11 令Ba21
a12
a22
a1m a2m=
( P1,P2,,Pm)
②
无公共区域(可行域) 产生原因:
有相互矛盾的 约束条件。
③
①
x1
15
4. 图解法的作用
揭示了线性规划问题有关规律和结论。
(1)规律:
有可行解 LP问题
有最优解
唯一解 无穷多解
无最优解(可行域为无界)
无可行解(无解)
(2)结论:若LP问题有最优解,则要么最优解唯一(对
应其中一个顶点),要么有无穷多最优解(对
原 A 约 料4 束 x 10x : 216
原 B 约 料0 束 x 14x : 212
2021变 /8/17 量非负约 x1 束 0, x: 2 0
线性规划-单纯形法
选x2为入基变量。
2. 出基变量的确定
要在原来的3个基变量s1,s2,s3中确定一个出基变量 如果把s3作为出基变量,则新的基变量为x2,s1,s2,
x2 +s1=300,
bj 350 125 350 125
s3
zj
0
2
-2M
1
-M
0
M
0
M
1
0
0
600
300
0 -M -M
σj=cj-zj
-2+2M -3+M -3+M -M 0
0
0
-475M
cB a1 1 x1 -M -2
x1
x2
s1
s2
s3
a1
a2
-2
0 1
-3
1 0
0
-1 0
0
1 -1
0
0 0
-M -M
1 0 -1 1
x1 10
3 5 5 10
x2 9
2 5 6 9
x3 4
4 1 3 4
x4 6
2 3 1 6
x5 0
1 0 0 0
x6 0
0 1 0 0
x7 0
0 0 1 0
bj
bj/aj1
70 70/3 60 60/5 25 25/5
0
σj=cj-zj
cB x5 x6 x1 0 0 10
x1 10
0 0 1 0
z1 z0 j x j
jJ
x j≥ 0 j ≤0
第一章 线性规划与单纯形法
第一章线性规划与单纯形法线性规划的英文名称为“Linear Programming”,简称LP,它是运筹学中发展最早、理论与计算方法最成熟的分支,应用十分广泛。
线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好(如产量最多,利润最大,成本最小)。
简单地讲,也就是资源的最优利用问题。
这类问题是在生产管理和经营活动中经常会遇到的。
早在1823年法国数学家傅里叶(Fourier)就提出了与线性规划有关的问题。
1939年,前苏联的经济学家康托洛维奇(Канторович)发表了重要著作《生产组织与计划中的数学方法》,书中针对生产的组织、分配、上料等一系列问题,提出了线性规划的模型,并给出了“解乘数法”的求解方法。
当时这个工作未引起足够的重视。
1947年美国数学家丹捷格(Dantzig)提出了线性规划的一般数学模型和求解线性规划问题的通用方法——单纯形法(Simplex method),这标志着线性规划这一运筹学的重要分支的诞生。
此后,对线性规划的研究日渐受到关注。
1960年康托洛维奇再次发表了《最佳资源利用的经济计算》一书,受到国内外的重视,为此他获得了诺贝尔经济学奖。
此外,阿罗、萨缪尔逊、西蒙、多夫曼和胡尔威茨等一批经济学家也因在线性规划研究中的贡献而获得了诺贝尔奖。
在这批经济学家的努力下,线性规划的理论得到了不断的完善,已发展成为一门成熟的理论。
今天,它已成为一个标准的工具,被广泛地应用于工业、农业、交通运输、军事和经济等各种决策领域,为世界上许多具有相当规模的公司和商业企业节省了数千乃至数百万美元的成本。
本章首先通过几个应用实例,引出线性规划问题并建立其数学模型,介绍线性规划的一些基本概念以及简单情形下的几何解法图解法,然后介绍线性规划的基本理论,讨论它的一般求解方法单纯形法,最后,介绍运用软件WinQSB解线性规划问题。
第一节线性规划问题的数学模型一、线性规划问题的实例在生产管理和经营活动中,通常需要对“有限的资源”寻求“最佳”的利用或分配方案。
第一章线性规划及单纯形法
第一章线性规划及单纯形法6.6单纯形法小结Drawingontheexampl,thetwoaxisinterceptsareplotted.2、求初始基可行解并进行最优性检验Cj比值CBXBb 检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000令非基变量x1=0,x2=0,找到一个初始基可行解:x1=0,x2=0,x3=8,x4=12,x5=36,σj>0,此解不是最优(因为z=3x1+5x2+0x3+0x4+0x5)即X0=(0,0,8,12,36)T,此时利润Z=03、寻找另一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9主元首先确定入基变量再确定出基变量检验数?j81010060101/2012300-21x3x2x5050-30300-5/20Cj比值CBXBb检验数?jx1x2x3x4x53500081010012020103634001x3x4x5000035000-12/2=636/4=9令x1=0,x4=0,得x2=6,x3=8,x5=12,即得基可行解X1=(0,6,8,0,12)T此时Z=30σ1=3>0,此解不是最优迭代4、寻找下一基可行解Cj比值CBXBb检验数?jx1x2x3x4x53500081010060101/2012300-21x3x2x5050-30300-5/208-4检验数?j40012/3-1/360101/204100-2/31/3x3x2x1053-42000-1/2-1令x4=0,x5=0,得x1=4,x2=6,x3=4,即X0=(4,6,4,0,0)T?j<0最优解:X=(4,6,4,0,0)T最优值:Z=42小结:单纯形表格法的计算步骤①将线性规划问题化成标准型。
②找出或构造一个m阶单位矩阵作为初始可行基,建立初始单纯形表。
数学建模 - 第二章 线性规划及单纯形法
T
max s.t.
p
j 1
n
j
xj b
x0
13
§2 线性规划问题的图解法
max s.t.
z cx Ax b x0
(1) (2) (3)
定义1 在LP 问题中,凡满足约束条件(2)、(3)的 解 x = (x1,x2,…,xn)T 称为LP 问题的可行解, 所有可行解的集合称为可行解集(或可行域)。 记作 D={ x | Ax = b ,x≥0 }。 定义2 设LP问题的可行域为D,若存在x*∈D,使得 对任意的x∈D 都有c x*≥c x,则称x*为LP 问题
设 xj 没有非负约束,若 xj ≤0,可令 xj = - xj’ ,
则 xj’ ≥0;
又若 xj 为自由变量,即 xj 可为任意实数,
可令 xj = xj’ - xj’’,且 xj’ , xj’’ ≥0
11
第二章
线性规划及单纯形法
max z’= x1-2x2+3x4- 3x5 s.t. x1+x2+x4-x5+x6=7 x1-x2+x4-x5-x7=2 3x1-x2-2x4+2x5=5 x1,x2,x4,x5,x6,x7≥0
x2
2x1 x2 2
x1 4x2 4
max z = 2x1 + 2x2 s.t. 2x1 – x2 ≥ 2 -x1 + 4x2≤ 4 x1,x2 ≥ 0
Note:
可行域为无界区域,
目标函数值可无限
增大,即解无界。
(1,0)
O
A
x1
称为无最优解。
第二章 线性规划及单纯形法
标准形式
目标函数: 目标函数: 约束条件: 约束条件: Max z = c1 x1 + c2 x2 + … + cn xn s.t. a11 x1 + a12 x2 + … + a1n xn = b1 a21 x1 + a22 x2 + … + a2n xn = b2 …… …… am1 x1 + am2 x2 + … + amn xn = bm x1 ,x2 ,… ,xn ≥ 0,bi ≥0 ,
(一)一般式
Max(min)Z=C1X1+ C2X2+…+CnXn a11X1+ a12X2+…+ a1nXn ≥(=, ≤)b1 a21X1+ a22X2+…+ a2nXn ≥(=, ≤)b2 … … … am1X1+ am2X2+…+ amnXn ≥(=, ≤)bm Xj ≥0(j=1,…,n) 0( )
三、线性规划问题的标准形式 线性规划问题的标准形式
2、约束条件不是等式的问题: 约束条件不是等式的问题: 设约束条件为
ai1 x1+ai2 x2+ … +ain xn ≤ bi
可以引进一个新的变量s ,使它等于约束右边与左 边之差
s=bi–(ai1 x1 + ai2 x2 + … + ain xn ) (
一、问题提出
Ⅰ 设备A 设备 设备B 设备 调试工序 利润 0 6 1 2
例1生产计划问题
Ⅱ 5 2 1 1 每天可用能力 15 24 5
两种家电各生产多少, 可获最大利润? 两种家电各生产多少, 可获最大利润
运筹学第四版第二章线性规划及单纯形法
方案的制定受到那些现实条件制约:
确定约束条件
人力资源(劳动力)的限制: 9x1 4x2 360
设备工时的限制:
4x1 5x2 200
原材料资源的限制:
3x1 10x2 300
此外,决策变量的取值不应为负值即 x1 0, x2 0
6
综上所述,我们得到了这个问题的数学模型
目标函数 约束条件
大?
项目
Ⅰ
设备A (h)
0
设备B (h)
6
调试工序(h) 1
利润(元) 2
Ⅱ 每天可用能力
5
15
2
24
表1-2
1
5
1
12
其数学模型为:
max Z 2x1 x2
5x2 15
6xx11
2x2 x2
24 5
x1, x2 0
13
例3:捷运公司在下一年度的1~4月份的4个月内拟租用仓库
堆放物资。已知各月份所需仓库面积列于下表1-3。仓库租
借费用随合同期而定,期限越长,折扣越大,具体数字见表
1-4。租借仓库的合同每月初都可办理,每份合同具体规定
租用面积和期限。因此该厂可根据需要,在任何一个月初办
理租借合同。每次办理时可签一份合同,也可签若干份租用
面积和租用期限不同的合同。试确定该公司签订租借合同的
最优决策,目的是使所租借费用最少。
14
max Z 70 x1 120 x2
9x1 s.t. 43xx11
x1,
4x2 5x2 10x2 x2 0
360 200 300
资源约束
非负约束
其中 约束条件可记 s.t (subject to), 意思为“以… 为条件“、”假定“、”满足“之意。
线性规划单纯形法
线性规划单纯形法线性规划是一种优化问题求解方法,它通过建立数学模型,来寻找使目标函数达到最优的决策变量取值。
线性规划的主要特点是目标函数和约束条件都是线性的。
单纯形法是线性规划中最常用的求解方法之一,它是由美国数学家Dantzig在1947年提出的。
单纯形法通过迭代计算的方式,逐步优化目标函数的值,直到找到最优解为止。
单纯形法的步骤如下:1. 建立线性规划模型:确定决策变量、目标函数和约束条件,并确定它们的线性关系。
2. 初始可行解:选择一个初始可行解,使得所有的约束条件都得到满足。
一般来说,可以通过将约束条件全部转化为等式约束,从而求解出一个初始可行解。
3. 判断最优解:计算当前可行解对应的目标函数值,判断是否是最优解。
如果是最优解,则终止算法;如果不是最优解,则进入下一步。
4. 寻找进入变量:选择一个进入变量,即目标函数可以通过增加该变量的值而增大。
5. 寻找离开变量:选择一个离开变量,即通过增加进入变量来保持其他约束条件满足的同时,尽可能减小目标函数的值。
6. 更新可行解:根据进入变量和离开变量的取值更新可行解,并转化为下一个迭代的初始可行解。
7. 重复以上步骤,直到找到最优解为止。
单纯形法的优势在于它可以在有限的迭代次数内找到最优解。
然而,单纯形法的缺点也是显著的,它在处理大规模问题时计算复杂度很高,可能需要大量的计算时间。
总结来说,线性规划单纯形法是一种求解线性规划问题的有效方法。
通过迭代计算,单纯形法不断改进可行解,最终找到使目标函数达到最优的决策变量取值。
虽然单纯形法在处理大规模问题时存在一定的局限性,但在许多实际问题中仍然得到广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
讲师:熊熊
第一章至第四章的思维导图
第一章、线性规划与单纯形法
基本内容: • 掌握线性规划的数学模型的标准型 • 掌握线性规划的图解法及几何意义 • 了解单纯形法原理 • 熟练掌握单纯形法的求解步骤 • 能运用大m法与谅解短发求解线性规划问题 • 熟练掌握线性规划几种解的性质及判定定理
重点: • 单纯形法求解线性规划问题 • 解的性质 • 线性规划问题建模 难点: • 单纯形法问题建模 • 线性规划问题建模
要点: 1. 化标准型 2. 图解法 3. 单纯形法的原理 4. 单纯形法的计算步骤 5. 单纯形法的进一步讨论
要点一:化标准型
线性规划的共同特征:
1、பைடு நூலகம்策变量:每个问题都用 一组决策变量表示某种方案
典型例题1
典型例题2
2、决策变量:决策标量的取 值一般都是非负且连续的
3、约束条件:与决策变量 不矛盾的条件,用线性等式 或不等式表示
4、目标函数:决策变量与价 值细数组成,一般要求实现 最大化或最小化
• 建模思路 1. 确定决策变量 2. 写出目标函数 3. 找出约束条件
• 线性规划的标准型 1. 目标函数最大 2. 约束条件等式 3. 决策变量肺腑 4. 资源限量非负