量子力学波函数的统计解释
量子力学专题讲座-1-波函数的统计解释与薛定鄂方程
![量子力学专题讲座-1-波函数的统计解释与薛定鄂方程](https://img.taocdn.com/s3/m/08d575c39ec3d5bbfd0a74d3.png)
一、波函数的统计解释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。
如何从波函数得到微观粒子的信息是量子力学的一个主要内容。
波恩的统计解释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。
由于这个性质,波函数必须满足1. 是归一化的1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)2. 满足波函数的标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。
);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t ,坐标x 有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。
由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是dx x 2⎰ψ是你所得到结果的平均值。
而是相反:第一次测量(其结果是不确定的)将使波函数坍塌至位于实际获得的测量值处的一个尖峰,以后的测量(如果它们立即进行)将得到同样的结果。
.测量引起波函数的坍塌而x是所有测量都是对处在ψ态的粒子所进行的平均值,这意味着你要么发现某种方法使测量后粒子的状态回到ψ态,要么你准备一个系综,其中每个粒子都处在ψ态,然后测量每个粒子的位置, x是所有结果的平均值。
(你们可以想象在一个书架上放一行瓶子,每个瓶子中放一个处在ψ态(相对瓶子的中心)的粒子,每一个学生被分配拿一把尺子测量一个瓶子中粒子的位置,一声令下他们同时开始测量自己瓶子中粒子的位置。
计算平均值,它应该符合x。
简短而言,期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。
量子力学讲义chapter2波函数的统计解释培训讲学
![量子力学讲义chapter2波函数的统计解释培训讲学](https://img.taocdn.com/s3/m/6d5416a4bed5b9f3f90f1cf7.png)
2020/7/31
• 将势场曲线正题右移a,波函数和能级怎么变?
2020/7/31
2020/7/31
2020/7/31
2020/7/31
2020/7/31
2020/7/31
一维方势阱偶宇称能谱图
2020/7/31
2020/7/31
一维方势阱奇宇称能谱图
2020/7/31
2020/7/31
具有不同的深度 但是宽度相同的方势阱(1)
nxNne1 22x2Hnx
Nnቤተ መጻሕፍቲ ባይዱ
1/22n
1/2 n!
2020/7/31
2020/7/31
2020/7/31
§2.5 一维谐振子
产生湮灭算符
2020/7/31
2020/7/31
2020/7/31
§2.5 一维谐振子
➢思考题: • 半壁振子(两种情况)(图)(暂缺)
2020/7/31
§2.5 一维谐振子
2020/7/31
§2.1 波函数的统计解释
➢粒子性 颗粒性(V) 轨道(X)
➢波动性 物理量周期分布(V and X) 将”粒子分布”视为物理量 叠加性->干涉,衍射(V)
2020/7/31
2020/7/31
2020/7/31
2020/7/31
2020/7/31
2020/7/31
2020/7/31
波函数的统计解释
![波函数的统计解释](https://img.taocdn.com/s3/m/e34ea499f424ccbff121dd36a32d7375a417c6c7.png)
波函数的统计解释在经典力学中,我们可以准确地跟踪粒子的位置和速度,因此可以明确地描述粒子的位置和运动。
然而,量子力学表明,在微观尺度上,粒子不能准确地同时拥有确定的位置和动量。
代替位置和动量,我们用波函数来描述粒子的状态。
波函数是一个复数函数,它包含了有关粒子的全部信息。
波函数本身并没有实际物理意义,而是通过它的平方来得到概率分布。
具体来说,波函数的模方给出了在不同位置或状态上找到粒子的概率。
设想一个简单的例子,一个自由粒子在一维空间中运动。
我们可以用一个波函数ψ(x)来描述粒子在不同位置x处的概率分布。
在这种情况下,波函数的模方,ψ(x),²表示在位置x处找到粒子的概率。
在量子力学中,我们用概率波给出了粒子的运动方式。
当我们对粒子进行测量时,波函数会坍缩到一个确定的状态上,这个状态是与测量结果相对应的。
比如,在上述自由粒子的例子中,当我们在一些位置x处进行测量时,波函数会坍缩到只在这个位置上有非零值的状态上。
这就意味着,在测量后,我们可以确定粒子在这个位置x上。
波函数的统计解释也包括了不确定性原理的概念。
根据不确定性原理,位置和动量不能同时被准确地测量。
如果我们知道粒子的位置,我们对其动量的测量将有不确定性,并且相反地,如果我们知道粒子的动量,我们对其位置的测量也将是不确定的。
这是由于波函数的局域性和不连续性导致的。
值得注意的是,波函数的统计解释并不是唯一的解释。
历史上,有多种对波函数的解释,如哥本哈根解释和波函数坍缩解释等。
而且,波函数的实际物理意义仍然是一个有待深入研究的问题。
总结起来,波函数的统计解释是量子力学中一种描述粒子概率分布的工具。
通过波函数的模方,我们可以得到粒子在不同位置或状态上的概率分布。
波函数的统计解释还涉及到不确定性原理,指出了位置和动量不能同时被准确地测量的事实。
然而,波函数的具体物理意义仍然是一个待解决的问题。
§1.6 波函数的统计解释 量子力学课件
![§1.6 波函数的统计解释 量子力学课件](https://img.taocdn.com/s3/m/5166c64a80eb6294dc886c08.png)
|Ψ (r)|2 Δx Δy Δz 表示在 r 点处,体积元Δx Δy Δz 中找到粒子的几率。波函数在空间某点的强度(振幅 绝对 值的平方)和在这点找到粒子的几率成比例,
据此,描写粒子的波可以认为是几率波,反映微观客体运 动的一 种统计规律性,波函数Ψ (r)有时也称为几率幅。 这就是首先由 Born 提出的波函数的几率解释,它是量子 力学的基本原理。
称为几率密度。
在体积 V 内,t 时刻找到粒子的几率为: W(t) = ∫V dW = ∫Vω( r, t ) dτ= C∫V |Ψ (r,t)|2 dτ
(2) 平方可积
由于粒子在空间总要出现(不讨论粒子产生和湮灭情况), 所以在全空间找到粒子的几率应为一,即:
C∫∞ |Ψ (r , t)|2 dτ= 1, 从而得常数 C 之值为:
电子究竟是什么东西呢?是粒子?还是波? “ 电子既不是粒子也 不是波 ”,既不是经典的粒子也不是经典的波, 但是我们也可 以说,“ 电子既是粒子也是波,它是粒子和波动二重性矛盾的统 一。” 这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
经典概念中 粒子意味着
经典概念中 波意味着
1.有一定质量、电荷等“颗粒性”的属性; 2.有确定的运动轨道,每一时刻有一定
单位换算:
1ev~12.000K(温度表能量) ~2.410 14HZ(频率表能量)
~8.00c0m1(波长)
附录 量子力学的建立及相关科学家传略础之一,是研究微观粒 子运动规律的科学,使人们对物质世界的认识从宏观层次跨进 了微观层次。自1900年普朗克提出量子假设以来,量子力学便 以前所未有的速度发展起来,紧接着是1905年爱因斯坦提出光 量子假说,直接推动了量子力学的产生与发展。而玻尔运用量 子理论和核式结构模型解决了氢原子光谱之谜。之后德布罗意 的物质波理论使经典物理学的卫道士们大吃一惊。海森堡的矩 阵力学、“不确定原理”和薛定谔的波动力学成了量子力学独 当一面的基础。而数学高手狄拉克在此基础上进一步实现了量 子力学的统一,建立了著名的“狄拉克方程”。泡利的“不相 容原理”又给量子力学抹上了灿烂的一笔。
量子物理2
![量子物理2](https://img.taocdn.com/s3/m/2411bc727fd5360cba1adbb6.png)
三、波函数的标准化条件
归一化条件:整个空间内,粒子在各处出现的几率 之和为1。
total
2
d
2
dxdydz 有限值
| | d
2
粒子在d中出现的概率
| |
total
2
d
可令 : A, 使
A d 3r 1
归一化的波函数
2
total
归一化因子
r n
应用德布罗意公式
t )
即 即
的自由粒子的波函数为
p (r , t ) Ae
i ( r P Et )
即
自由粒子的波函数 自由粒子的能量和动量为常量,其波函数所描述的德布 罗意波是平面波。 对于处在外场作用下运动的非自由粒子,其能量和动量 不是常量,其波函数所描述的德布罗意波就不是平面波。 外场不同,粒子的运动状态及描述运动状态的波函数也 不相同。 微观客体的运动状态可用波函数来描述,这是量子力学 的一个基本假设。
2 2 i (r , t ) [ U (r )]ψ (r , t ) t 2m
哈密顿算符: ˆ (能量算符) H 从而可得薛定谔方程(波动方程)的普遍形式:
ˆ i Hψ t
3.关于薛定谔方程的一些说明
① 揭示了微观世界中物质运动的基本规律;
此式即自由粒子的薛定谔方程。
2.势场中粒子的薛定谔方程
对于在势场U(r)中运动的粒子,其能量关系式:
p2 E U r 2m
则对波函数求导后可得:
2 2 i (r , t ) [ U (r )]ψ (r , t ) t 2m
波函数的统计解释
![波函数的统计解释](https://img.taocdn.com/s3/m/5dfb01c0ddccda38366baf7d.png)
决于波强的绝对值。
各点的振幅同时增大 C倍, 则个处的能流密度增大 C 倍,变为另一种能流密度
因此,将波函数在空间各点的 振幅同时增大 C倍,不影响粒子 的概率密度分布,即 和C 所
分布状态。
描述德布罗意波的状态相同。
波动方程无归一化问题。 波函数存在归一化问题。
关于波粒二象性的两种错误观点:
错误之一:粒子是基本的,把电子波与经典波 (如声波)相类比,认为电子波是大量电子相互作
扫描隧道显微镜下的48个Fe原子在Cu的表面排列成直径为 14.3nm的圆圈构成一个“量子围栏”,照片中反映的是电子密 度的高低,围栏内是电子密度波的驻波,直观证明了电子的波动 性
微观粒子波粒二象性的正确理解
1) 粒子性 •整体性 •不是经典的粒子 没有“轨道”概 2) 波动性 念 •“可叠加性”:有干涉、衍射等现象 •不是经典的波 不代表实在物理量的波动
德布罗意波(概率波)不同于 经典波(如机械波、电磁波)
经典波
德布罗意波
是振动状态的传播
不代表任何物理量的传播
波强(振幅的平方)代表 通过某点的能流密度
波强(振幅的平方)代表粒 子在某处出现的概率密度
能流密度分布取决于空 概率密度分布取决于空间
间各点的波强的绝对值。 各点波强的比例,并非取
因此,将波函数在空间
即
续上 在波动学中,描述波动过程的数学函数都是空间、自时由间粒二子元函的数
一列沿 X 轴正向传播的平面单色简谐波的波动方波程函数
在量自子由力粒学子中用的复能数量表和达动式:量为常量,其波函数所应描用述欧的拉德公布式
罗意波是平面波。
沿速直不对X方线是于向运常处匀动量在的,外自其场由粒波作子函 用的数下波所运函描动数为述的的非德自布由罗粒意子波,应就其用取德不能实布是量部罗平和意面动公波量式。
波函数的统计解释
![波函数的统计解释](https://img.taocdn.com/s3/m/024c5294581b6bd97e19ea41.png)
子弹 水波 光波
}{ 双缝衍射
子弹:P=P1+P2 波:I≠I1+I2
电子
电子:
1。与宏观粒子运动不同。 2。电子位置不确定。 3。几率正比于强度,即
(rr , t) 2
结论:
波函数的统计解释:波函数在空间某一点的强度(振幅绝对 值的平方)和在该点找到粒子的几率成正比。
数学表达: (r,t) | (r,t) |2
遮住缝1
遮住缝2
双缝都打开
遮住缝1
遮住缝2
双缝都打开
2.2 测不准原理
一. 宏观粒子运动状态确定,各种力学量同时具有确定值。但微观粒子的运动 从根本上讲不具有这种特点。
海森伯 1927年
共轭量
x px
t E
J
二.量子力学中的测量过程
1.海森伯观察实验
2.测量过程 被测对象和仪器,测量过程即相互作用过程,其影响不可控制和预测。
三.一对共轭量不可能同时具有确定的值是微观粒 子具有波动性的必然结果。
并不是测量方法或测量技术的缺陷。而是在本质上它们就不可能同时 具有确定的值
(r , t)
c(
p,
t
)
p
(r )dpx
dpy
dpz
e
p (r )
1
(2) 2 3
i pr
§2.3 态迭加原理
测不准原理和态迭加原理是量子力学的两个基本原理,反映了微观粒子运动的根 本特性,是和量子力学对微观粒子描述的整个数学框架相一致的。
经典物理中,波的迭加只不过是将波幅迭加(波幅代表实际物体的运动 等),并在合成波中出现不同频率的波长的子波成分。微观粒子的波动性的迭加 性其实质是什么呢?
波函数及其统计解释
![波函数及其统计解释](https://img.taocdn.com/s3/m/4a1a66a87f1922791688e877.png)
在实验中可以控制电子枪的电压,使发出的电子束的 强度十分微弱,以至电子是一个一个通过。假如时间不 长,则落在屏幕上的是一个个的点,而不是扩散开的衍 射图案。就这个意义而言,电子是粒子而不是扩展开的 波。
但时间一长,则感光点在屏幕上的分布显示衍射图样, 与强度较大的电子束在较短时间内得到的图样相同。可 以认为:尽管不能确定一个电子一定到达照相底片的什 么地方,但它到达衍射图样极大值的几率必定较大,而 到达衍射图样极小值的地方的几率必定较小,甚至为零。
在量子物理中,却将这种波方程的复数表示借用过来, 并不再取它的实部,而赋予它新的物理意义。即 用它表示微观客体的波粒子二象性,它就是波函数。
在量子力学中,粒子的状态用波函数来描写,根据薛 定谔方程得出波函数的变化规律。如果已知波函数,则 可由它求出所有描述粒子状态的物理量。
在量子物理中,波函数常用ψ(x,y,z,t)表示,它的最简 单的一个表示式为
3.3 波函数及其统计解释
一、波函数 二、波函数的统计解释 三、波函数的标准条件和归一化
一、波函数
在经典力学中,我们只要知道了质点的运动 方程及其初始条件,就可以知道它的确切位置 和动量。这种方法在宏观世界取得很大的成功, 但不能适用于具有波粒二象性的微观粒子。
量子力学原理之一:微观粒子的状态可用 波函数来描述。
在经典物理中,为了计算方便,常将波方程表示成 复数,如单色平面波
y( x, t) Acos(t kx)
表示为Y ( x, t ) Aei(tkx)
显然,y(x,t)等于Y(x,t)的实部,这样计算时 用Y(x,t),算完后再取它的实部,这样做在经典物 理中是为了计算的方便,在物理学中并无新意。
22-2 波函数及统计解释
![22-2 波函数及统计解释](https://img.taocdn.com/s3/m/0bc3df2c2f60ddccda38a0a7.png)
玻恩 (M. Born , 1882 - 1970) 在这个观念的启 发下,马上将其推广到 Ψ 函数上: |Ψ|2 必须是电子 (或其它粒子)的几率密度” 。
第22章 量子力学
22-2 波函数及统计解释
(r,t)的物理意义:
波函数的模的平方(波的强度)代表时刻 t、在 空间r点处,单位体积元中微观粒子出现的概率。
( x, t ) 0e
第22章 量子力学
22-2 波函数及统计解释
或由关系
E ,
可将波函数改写为
p k
( x, t ) 0e
i ( Et px )
——0为待定常数
若粒子为三维自由运动,波函数可表示为
(r , t ) 0 e
i
( pr E t)
•
第22章 量子力学
22-2 波函数及统计解释
波函数应满足的条件
统计诠释对波函数提出的要求
1 有限:
根据波函数的统计诠释,要求在空间任何有 限体积元中找到粒子的概率为有限值*
第22章 量子力学
22-2 波函数及统计解释
2
归一化条件
粒子出现在dV 体积内的几率为:
(r , t )dV (r , t ) dV
粒子在空间各点的概率总和应为 l
* (r , t ) (r , t )dV 1
2
(x,t)
x
—( 全空间)
第22章 量子力学
22-2 波函数及统计解释
3
单值
从而保证概率密度——|ψ(r)|2在任意时刻t 都是 确定的单值
4 连续
波函数满足的微分方程为二阶的(见后),要 求波函数的一阶导数连续,波函数本身必须连续。 总之,波函数应满足的条件: 单值、有限、连续和归一
波函数及其统计解释
![波函数及其统计解释](https://img.taocdn.com/s3/m/203bb224cd7931b765ce0508763231126edb7726.png)
动量分布概率(1)
设子设有平出 动 面pr现 量波 px在的ixip点波的y函pjr概y数j附z率k为近p如,zk的何则为概表(|粒r率示)(子r。?) 的|2eip动|r /量(x,,y, z那) |2么表粒示子粒具
任意粒子的波函数可以按此平面波做傅立叶展开
(r )
1
(2)3
2
( p)eipr / d 3 p
*
(
p)
p
(
p)d
3
p
p
*
(r )
pˆ
(r )d
3r
,
pˆ
力学量用算符表示
A
*
(r )
Aˆ
(r )d
3r
20
三、力学量用算符表示(5)
力学量 A 的平均值为
A
*
(r )
Aˆ
(r )d
3r
其 问中 题,:Aˆ坐为标力r学的量平A均的值算符r 。
*
(r )r
(r )d
该如何理解波函数的物理意义?为此,人们
提出了波函数的统计诠释来作为对波函数物
理意义的一种理解。
4
量子力学的基本假定之一
基本假定Ⅰ:波函数假定 微观粒子的状态可以被一个波函数完全 描述,从这个波函数可以得出体系的所 有性质。波函数一般满足连续性、有限 性和单值性三个条件。 说明:波函数一般是粒子坐标和时间的 复函数,波函数的模方代表粒子空间分 布的概率密度。
量子力学
波函数及其统计解释 粒子的动量分布 不确定度关系——进一步讨论
1
简短回顾
1、自由粒子的波函数 既然粒子具有波动性,那么就应该用一
个反映波动的函数来加以描述。 由平面波公式 Asin(kxt)
12-6波函数及其统计解释
![12-6波函数及其统计解释](https://img.taocdn.com/s3/m/e7cf3c120066f5335a812150.png)
电磁波
E(x,t)
E0
cos
2π
(t
x
)
H
( x, t )
H
0
cos 2π
(t
x
)
经典波为实函数
i 2π( t x )
y(x, t) Re[ Ae
]
第十二章 量子物理
12-6 波函数及其统计解释
2)自由粒子平面波函数
自由粒子能量 E 和动量
p
是确定的,其德布罗
意频率和波长均不变 ,可认为它是一平面单色波 .
某一时刻出现在某点附近在体积元 dV 中的粒子
的概率为
Ψ 2 dV ΨΨ*dV
某一时刻在整个空间内发现粒子的概率为
归一化条件
2
Ψ dV 1
第十二章 量子物理
波函数
i2π( t x )
(x,t) 0e
微观粒子的波粒二象性
E
h
h
p
i 2π (Et px)
Ψ (x,t) 0e h
第十二章 量子物理
12-6 波函数及其统计解释 二、波函数的统计解释 德布罗意波又称为概率波.
波函数的统计意义:在空间某处波函数绝对值的二 次方 2与粒子在该处单位体积中出现的概率成正 比.
12-6 波函数及其统计解释
薛定谔(Erwin Schrodinger,1887~1961)奥 地利物理学家.
1926年建立了以薛定谔 方程为基础的波动力学,并建 立了量子力学的近似方法 .
第十二章 量子物理
12-6 波函数及其统计解释
一、自由粒子的波函数
1)经典的波与波函数
波函数及其统计解释资料课件
![波函数及其统计解释资料课件](https://img.taocdn.com/s3/m/3c501640df80d4d8d15abe23482fb4daa58d1d12.png)
柱面波函数具有恒定的振幅和相位,并且传播方向与波数 k垂直。
应用
柱面波函数在声学、电磁学和天文学等领域都有广泛的应 用。
04
波函数的物理意义
波函数的粒子性
粒子位置与波函数的关联
波函数可以被视为一个概率幅,描述了粒子在空间中的概率分布 。
粒子动量与波函数的关联
波函数的傅里叶变换描绘了粒子的动量分布。
相干性是波动性质的重要表现之 一,它可以产生明暗相间的条纹
,即干涉现象。
波函数的对称性
波函数的对称性是指波函数在空间上的 分布是否具有某种对称性。
常见的对称性包括:轴对称、面对称、 旋转对称等。
波函数的对称性与其波动性质密切相关 ,不同的对称性会导致不同的干涉现象
。
03
波函数的分类
平面波函数
定义
象。
波函数是一种复数函数,其模方 表示粒子在某个位置出现的概率
密度。
波函数的统计解释的重要性
波函数的统计解释是理解量子力学的基础之一,它提供了从概率角度描述粒子的方 法。
通过波函数的统计解释,我们可以计算出粒子在某个位置出现的概率,以及测量某 个物理量的期望值和方差等统计性质。
波函数的统计解释还与量子纠缠、量子计算等重要概念密切相关。
波函数与量子态的关系
描述量子态的函数
波函数是描述量子态的函 数,它可以表示出量子态 的叠加原理和相干性。
波函数的模平方
波函数的模平方可以表示 出某个物理量的概率分布 ,如位置、动量等。
测量问题
波函数与测量问题密切相 关,测量会导致波函数塌 缩,进而影响后续的测量 结果。
波函数与测量问题
测量导致波函数塌缩
06
结论与展望
8.7.1 波函数及其统计解释
![8.7.1 波函数及其统计解释](https://img.taocdn.com/s3/m/82891397336c1eb91b375dd5.png)
微观粒子的运动状态 描述微观粒子运动基本方程
波函数
薛定谔方程
波函数及其统计解释
一、波函数
用某种函数表达式来表述与微观粒子相联系的 物质波,该函数表达式称为物质波的波函数。
1、一维自由粒子的波函数
一个沿 x 轴正向传播的频率为 的平面简谐波:
y Acos 2 (vt x )
i 2 (vt x )
也可用复数形式表示: y Ae
波的强度: I A2 y 2 y * y
波函数及其统计解释
一、波函数
1、一维自由粒子的波函数
对于动量为P 、能量为 E 的一维自由微观粒子,其物 质波的波函数相当于单色平面简谐波,类比可写成:
波函数及其统计解释
要确定一个宏观物体(质点)的运动状态,可以同时
指 程出(它F在某m一a 时)刻就的是位描置述和宏速观度物(或体动运量动)的,普牛遍顿方运程动。方
对微观粒子而言,由于微观粒子具有波粒二象性, 经典力学描述质点运动的方法已不再适用,那么微观粒 子的运动状态如何描述呢?微观粒子的运动基本方程又 是什么呢?
二 、波函数的统计意义
若粒子只在一维空间(设沿x 轴)运动:
概率密度: w Ψ (x,t) 2 Ψ (x,t)Ψ *(x, t)
粒子出现在 x~ x + dx 区间内概率:
dW Ψ (x,t) 2 dx
粒子出现在 x1~ x2 区间内概率:
W x2 Ψ ( x, t ) 2 dx x1
波函数及其统计解释
i2 (vt x )
Ψ (x,t) 0e
i 2 (Et px)
波函数的统计解释
![波函数的统计解释](https://img.taocdn.com/s3/m/cbcf4641178884868762caaedd3383c4ba4cb45e.png)
波函数的统计解释
在波函数的统计解释中,波函数的平方(ψ^2)被解释为找到某个特
定状态的概率。
换句话说,ψ^2描述了一个量子系统存在于某个特定状
态的可能性。
以一个粒子的波函数为例,假设该粒子的波函数为ψ(某),描述了
位置某上粒子的状态。
则ψ(某)^2表示在位置某上找到该粒子的概率。
这意味着在测量时,粒子出现在位置某的概率正比于ψ(某)^2、这类似
于经典物理中的概率分布函数。
波函数的统计解释还可以扩展到描述多个粒子系统。
例如,对于一个
由两个粒子组成的体系,波函数可以写为ψ(某1,某2),其中某1和某2
分别表示第一个和第二个粒子的位置。
则ψ(某1,某2)^2表示在位置(某1,某2)同时找到这两个粒子的概率。
需要注意的是,波函数的统计解释是概率性的,并不意味着该粒子一
定会出现在波函数ψ(某)^2所描述的某个位置。
测量时,粒子只会选择
一个位置出现,但在模拟大量实验的统计平均下,粒子出现在该位置的概
率就是ψ(某)^2。
值得一提的是,波函数的统计解释并不适用于所有的量子物理现象。
在一些特殊情况下,例如量子叠加态和量子纠缠态,波函数的统计解释可
能不足以完全描述系统的行为。
这些情况涉及到更复杂的概念,如量子态
的叠加和观测等。
总而言之,波函数的统计解释是量子力学中描述量子系统状态和行为
的重要概念。
它通过平方波函数得到一个量子系统在某个状态的概率分布。
这一解释提供了量子力学研究和实验预测的基础,为我们更好地理解量子世界提供了工具。
波函数的统计诠释的概念
![波函数的统计诠释的概念](https://img.taocdn.com/s3/m/de72e274a22d7375a417866fb84ae45c3b35c2c4.png)
波函数的统计诠释的概念波函数的统计诠释是量子力学中描述微观粒子行为的一种理论解释。
波函数是量子力学中的基本概念,它可以描述粒子的位置、动量以及相应的概率分布。
波函数的统计诠释是指通过波函数的模的平方来描述粒子在不同位置的概率分布,而不是用经典物理学中的确定性描述。
在经典物理学中,我们可以用牛顿运动定律来描述物体的运动规律,而量子力学中的波函数则描述了微观粒子的运动规律。
波函数的统计诠释认为,粒子的物理状态在某一给定时刻是不确定的,而只能用概率来描述。
通常情况下,粒子的运动状态由波函数表示,波函数的平方的绝对值表示了粒子在不同位置上的概率。
波函数的统计诠释最早由德国物理学家马克斯·玻恩(Max Born)于1926年提出。
他通过研究波动方程和波函数的性质,得出了波函数的平方表示了测量粒子位置的概率密度。
根据这一理论,波函数的平方的绝对值越大,粒子在该位置出现的概率就越大。
这就解释了为什么在双缝干涉实验中,粒子在干涉条纹上的概率更大,而在暗区的概率很小。
波函数的统计诠释揭示了微观粒子行为的非经典性质。
在经典物理学中,粒子的位置和动量是可以同时确定的,而量子力学中却存在不确定原理的限制,即海森堡不确定性原理。
根据不确定性原理,我们无法完全确定粒子的位置和动量,只能得到它们的概率分布。
这就意味着,我们无法预测粒子在某一时刻的确切位置和动量,只能通过波函数的统计诠释来获得它们的概率分布。
波函数的统计诠释也带来了量子纠缠和量子隐形传态等奇特现象。
由于波函数的统计诠释,当两个或多个粒子处于量子纠缠态时,它们之间的相互作用会导致它们的状态处于相关的状态。
这就意味着,当我们测量其中一个粒子的状态时,另一个粒子的状态也会瞬间塌缩到与之相关的状态上。
这种现象违反了经典物理学中的因果关系,被称为“量子非局域性”。
波函数的统计诠释还揭示了量子测量的本质。
根据量子测量原理,当我们对粒子的某一物理量进行测量时,其波函数将塌缩到与测量结果相对应的本征态上。
量子力学薛定谔方程及理论(2)
![量子力学薛定谔方程及理论(2)](https://img.taocdn.com/s3/m/6f07c492da38376baf1faec0.png)
在量子力学中,不可能同时用粒子坐标和动量的 确定值来描述粒子的量子状态,因为粒子具有波 粒二象性,粒子的坐标和动量不可能具有确定值。
波函数描述粒子的状态,波函数的模的平方表示粒 子在空间一点出现的概率。 并且粒子在空间中个点出现的概率总和等于1,另外 要注意要是把波函数乘上一个常数后,所描写的粒 子的状态并不改变
分理出变量后,我们很容易给出两个方程解的形式,大大简化 了方程的求解
f (t)满足i
df
(t )
=cf
(t ),则f
(t )可写为f
-
(t )=Ae
i
ct,
dt
与自由粒子波函数
Ae
i
(
pr
Et
)
i
=A e
pr
+A
-
e
i
Et
比较
我们可以知道c=E
所以有
i df (t) =Ef (t) dt
量子力学第二章
• 波函数的统计解释 • 态叠加原理 • 薛定谔方程 • 粒子流密度和粒子守恒定律 • 定态薛定谔方程 • 一维无限深势阱 • 线性谐振子 • 势垒贯穿
1、波函数的统计解释
自由粒子的波函数
指数形式:E =E0e-it-k r
正余弦形式:E=E0 cos t-k r
k= 2 ,r=k n
ak+2
k
所以方程可写为 n 2n+1 an+2 n -2 n 1 an1 n+1+ -1 an n
n0
n0
n0
各项合并
2a2 1 a0 2 6a3 2a1 1 a0 ... n 2n+1 an+2 2nan 1 an n
波函数的统计解释
![波函数的统计解释](https://img.taocdn.com/s3/m/84d75e51cd7931b765ce0508763231126edb77bf.png)
波函数的统计解释波函数是量子力学中描述粒子状态的数学函数。
它包含了粒子的可能位置、动量等信息,但并不直接表示物理实体。
波函数的统计解释是指通过波函数计算出的统计规律,用来预测大量粒子的行为。
1.概率解释:波函数的模的平方表示在一些空间点找到粒子的概率。
例如,对于一维运动的粒子,在其中一时刻,波函数的模的平方在一些位置上的积分就给出了粒子在该位置出现的概率。
这一概率解释使得波函数的统计解释与经典物理中的概率概念有了相似之处。
2.叠加解释:波函数的叠加原理使得多个波函数之间可以相互叠加。
这意味着多个波函数所代表的可能状态同时存在,并以一定的概率进行叠加。
这种叠加解释可以用来解释干涉和衍射等现象,这些现象是波粒二象性的体现。
3.线性解释:波函数的时间演化可以通过薛定谔方程进行描述。
根据薛定谔方程,波函数的演化是线性的,即满足叠加率和线性性质。
这一线性解释意味着多个波函数之间可以相互干涉和叠加,形成新的波函数。
4.统计解释:波函数可以用来确定粒子的期望值和方差等统计量。
例如,位置算符对应的期望值可以表示粒子的平均位置,动量算符对应的期望值可以表示粒子的平均动量。
通过对波函数进行数学计算,可以得到这些统计量,并与实验结果进行比较。
5.状态解释:波函数可以表示粒子的状态,包括其位置、动量和自旋等特征。
通过对波函数进行适当的测量,可以得到特定的物理量。
测量过程会导致波函数的坍缩,从而使得粒子的状态变为测量得到的特定值。
这一解释与量子力学的测量原理密切相关。
需要注意的是,波函数的统计解释并不是完美的,它依赖于量子力学中的一些基本假设和数学工具。
例如,波函数的坍缩是一个不可逆的过程,且测量结果具有一定的不确定性。
波函数的统计解释只能给出概率分布等统计规律,而无法提供关于单个粒子行为的具体预测。
总而言之,波函数的统计解释通过描述波函数的数学属性,从而预测大量粒子的行为。
它包括概率解释、叠加解释、线性解释、统计解释和状态解释等多个方面,为我们理解量子力学中的粒子行为提供了重要的物理和数学工具。
1-波函数的统计解释与薛定鄂方程
![1-波函数的统计解释与薛定鄂方程](https://img.taocdn.com/s3/m/f8327f639b6648d7c1c746ec.png)
专题1−波函数的统计诠释在量子力学中,我们用波函数),(t x ψ来描述一个微观粒子的状态,从这个波函数我们可以得到微观粒子的所用信息。
如何从波函数得到微观粒子的信息是量子力学的一个主要内容。
波恩的统计诠释:{}2.(,)baa b x t dx t ψ=⎰在时刻发现粒子处于和之间的几率也就是说,ψψ=ψ*2),(t x 是几率密度,它给出在t 时刻粒子处于x 处单位体积内的几率。
由于波函数的诠释,物理上的波函数必须是归一化1),(2=ψ⎰∞∞-dx t x(或者说是可归一化的,dx t x ⎰∞∞-ψ2),( 积分为有限值)由波函数的统计诠释,波函需要满足标准条件:有限性(不排除在个别点上,ψ和它的微商在保持平方模可积条件下可以趋于无限大。
);单值性(ψ应该是坐标和时间的单值函数,这样才能使粒子的几率密度在时刻t,坐标x有唯一确定值);连续性(由于几率密度应当连续,波函数和它的微商也必须连续,不排除微商在势能为无限大处不连续)。
由波函数的统计解释,对处于ψ态的一个粒子,对其坐标多次测量的平均值(期待值)是期待值是对含有相同体系的一个系综中不同体系的重复测量的平均值,而不是对同一个体系的重复测量的平均值。
.测量引起波函数的坍塌存在两类完全不同的物理过程:“正常”类,波函数按薛定鄂方程“从容不迫”的演化,“测量”类,由于测量,波函数突然和不连续的坍塌。
对于坐标这个力学量,由波函数我们可以得出它的信息(几率密度、期待值),那么其他力学量呢? 力学量的期待值当粒子处于态),(t x ψ时,对于一个力学量,如果我们还想知道测量这个力学量可以得到那些特定值,得到某个特定值的几率是多少,那么该如何做?波函数的统计解释(广义统计解释)给出。
首先,我们需要知道这个力学量的本征函数。
,n n n F Φ=Φ∧λ ,...3,2,1=n 分立谱本征函数满足正交归一条件(分立谱)nm n mdx δ=ΦΦ⎰∞∞-*将体系的状态波函数ψ用算苻ˆF的本征函数nΦ展开nnncΦ=ψ∑则在ψ态中测量力学量ˆF得到结果为nλ的几率是2n c,在测量后波函数坍塌为nΦ。
量子力学第二章波函数
![量子力学第二章波函数](https://img.taocdn.com/s3/m/f3e23c3a580216fc700afd61.png)
第二章波函数和薛定谔方程2.1 波函数的统计解释与态叠加原理1、波函数的统计解释上一章已说到,为了表示粒子的波粒二象性,可以用复数形式的平面波束描写自由粒子。
自由粒子是不受力场作用的,它的能量与动量都是常量。
如果粒子受到随时间及位置等变化的力场的作用,它的能量和动量就不再是常量,或者不再都是常量。
这时,粒子就不能用平面波来描写,设这时描写粒子的波是某一个函数,这个函数就称为波函数。
它描写粒子所处的状态,所以也称为态函数,它通常是一个复数。
究竟怎样理解波函数和它所描写的粒子之间的关系呢?对于这个问题,曾经有过各种不同的看法。
例如,将波看作是由它所描写的粒子构成的,这种看法是不对的。
我们知道,衍射现象是由波的干涉而产生的,如果波果真是由它所描写的粒子构成,则粒子流的衍射现象应当是由于构成波的这些粒子相互作用而形成的。
但事实证明,在粒子流的衍射实验中,照片上所显示出来的衍射图形与入射粒子流的强度无关,如果减少入射粒子流强度,即使粒子是一个一个地被衍射,虽然一开始照片上的点子看起来是毫无规则的,但当足够长的时间后,如果落在照片上的粒子数基本上保持不变,则所得到的衍射图形是相同的。
这说明每一个粒子被衍射的现象与其他粒子无关,衍射图形不是由粒子之间的相互作用而产生的。
除了上面的看法外,还有其他一些企图解释波函数的尝试,但都因与实验事实不符而被否定。
为人们所普遍接受的对波函数的解释,是由玻恩(Born)首先提出的统计解释:波函数在空间某一点的强度(振幅绝对值的平方)和在该点找到粒子的几率成比例。
按照这种解释,描写粒子的波及是几率波。
按照波函数的几率解释,很容易理解衍射实验:每一个粒子都具有波性,所以每一个粒子都被衍射。
但如果粒子数很少,则统计性质显示不出来,所以在照片上的点子看起来好象是毫无规则的;如果粒子数目足够大,则在波的强度最大的地方,粒子投射在这里的几率也最大,便出现衍射极大,在波的强度最小的地方,粒子投射在这里的几率也最小,便出现衍射极小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
波由粒子组成的看法仅注意到了粒子性的一面,而抹杀了 粒子的波动性的一面,具有片面性。
(2) 粒子由波组成
电子是波包。把电子波看成是电子的某种实际结构,是三维
空间中连续分布的某种物质波包。因此呈现出干涉和衍射等
波动现象。波包的大小即电子的大小,波包的群速度即电子
的运动速度。
3
§2.1 波函数的统计解释(续3)
必须注意
称为几率密度(概率密度)
(1)“微观粒子的运动状态用波函数描述,描写粒子的波是概 概波”,这是量子力学的一个基本假设(基本原理)。
知道了描述微观粒子状态的波函数,就可知道粒子在空间各 点处出现的概率,以后的讨论进一步知道,波函数给出体系的一 切性质,因此说波函数描写体系的量子状态(简称状态或态)
设粒子状态由波函数 (r , t) 描述,波的强度是
(r ,t) 2 *(r ,t)(r ,t)
则微观粒子在t 时刻出现在 r 处体积元dτ内的概率
dW (r ,t) C2 (r ,t) 2 d
这表明描写粒子的波是几率波(概率波),反映微观客体运
动的一种统计规律性,波函数 r,t 有时也称为概率幅。
实验上观测到的电子,总是处于一个小区域内。例如一个
原子内的电子,其广延不会超过原子大小≈1
0
A
。
电子究竟是什么东西呢?是粒子?还是波?
“ 电子既不是粒子也不是波 ”,既不是经典的粒子也不是 经典的波,但是我们也可以说,“ 电子既是粒子也是波,它 是粒子和波动二重性矛盾的统一。”
这个波不再是经典概念的波,粒子也不是经典概念中的粒子。
Chapter 2 The wave function and Schrödinger Equation
什么是波包?波包是各种波数(长)平面波的迭加。平面波
描写自由粒子,其特点是充满整个空间,这是因为平面波振
幅与位置无关。如果粒子由波组成,那么自由粒子将充满整
个空间,这是没有意义的,与实验事实相矛盾。
§2.1 波函数的统计解释
Chapter 2 The wave function and Schrödinger Equation
1.微观粒子状态的描述 微观粒子因具有波粒二象性,其运动状态的描述必有
别于经典力学对粒子运动状态的描述,即微观粒子的运动 状态不能用坐标、速度等物理量来描述。这就要求在描述 微观粒子的运动时,要有创新的概念和思想来统一波和粒 子这样两个在经典物理中截然不同的物理图像。
微观粒子的运动状态可用一个复函数 (r ,t) 来描述,
函数 (r ,t) — 称为波函数。
描写粒子状态的波
★ 描述自由粒子的波是具有确定能量和动量的函个平数复面,函波它数通。常是一
i ( Pr Et )
P (r , t) Ae
★如果粒子处于随时间和位置变化的力场
U (rr,t )中运动,它
(2)波函数一般用复函数表示。
(3)波函数一般满足连续性、有限性、单值性。
3.波函数的归一化条件
令
(r,t) C(r,t)
7
§2.1 波函数的统计解释(续7)
Chapter 2 The wave function and Schrödinger Equation
t 时刻,在空间任意两点
是:
波意味着 2.干涉、衍射现象,即相干叠加性。
▲ 玻恩的解释:
衍射实验事实:
P
P
O
电子源 感
Q光
Q
屏
(1)入射电子流强度小,开始显示电子的微粒性,长时
间亦显示衍射图样;
(2) 入射电子流强度大,很快显示衍射图样.
波动观点
粒子观点
明纹处: 电子波强(x,y,z,t)2大 电子出现的概率大
暗纹处: 电子波强(x,y,z,t)2小 电子出现的概率小 5
经典概念 中粒子意
味着
1.有一定质量、电荷等“颗粒性”的属性;
2.有确定的运动轨道,每一时刻有一定 位置和速度。
4
§2.1 波函数的统计解释(续4)
Chapter 2 The wave function and Schrödinger Equation
经典概念中 1.实在的物理量的空间分布作周期性的变化;
的动量和能量不再是常量(或不同时为常量)粒子的状态就 不能用平面波描写,而必须用较复杂的波描写,一般记为:
(r ,t)
1
§2.1 波函数的统计解释(续1)
• 三个问题?
(1) 是怎样描述粒子的状态呢? (2) 如何体现波粒二象性的? (3) 描写的是什么样的波呢?
2.波函数的统计解释
r1 和
r2
§2.1 波函数的统计解释(续5)
Chapter 2 The wave function and Schrödinger Equation
可见,波函数模的平方 r ,t 2与粒子 t 时刻在 r 处附近
出现的概率成正比。
1926年,玻恩(M.Born)首先提出了波函数的统计解释:
波函数在空间中某一点的强度(波函数模的平方)与 粒子在该点出现的概率密度成比例。
(1) 波由粒子组成
如水波,声波,由物质的分子密度疏密变化而形成的一种分布。
这种看法与实验矛盾,它不能解释长时间单个电子衍射实验。 电子一个一个的通过小孔,但只要时间足够长,底片上
仍可呈现出衍射花纹。这说明电子的波动性并不是许多电子 在空间聚集在一起时才有的现象,单个电子就具有波动性。
事实上,正是由于单个电子具有波动性,才能理解氢原 子(只含一个电子!)中电子运动的稳定性以及能量量子 化这样一些量子现象。
按Born提出的波函数的统计解释,粒子在空间中某一点 r
处出现的概率与粒子的波函数在该点模的平方成比例
6
§2.1 波函数的统计解释(续6)
Chapter 2 The wave function and Schrödinger Equation
w(r ,t) dW (r ,t) C2 (r,t) 2 d
P
Chapter 2 The wave function and Schrödinger Equation
电子小孔衍射实验
P
电子源
X
O
感
Q光
Q
屏
v
P
a
1 0
I
电子单缝衍射实验
2
§2.1 波函数的统计解释(续2)
▲ 两种错误的看法
Chapter 2 The wave function and Schrödinger Equation