微积分的思想和方法

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分的思想和方法

(部分讲义)

黄荣

第四讲

第四章定积分与不定积分

[教学目标]

1、了解定积分产生的历史、实际背景,理解定积分的概念,掌握定积分的性质;

2、理解原函数与不定积分的概念;

3、掌握不定积分性质与其本积分公式;

4、掌握定积分的牛顿一莱布尼兹公式;

5、了解定积分在实际问题中的应用;

6、了解简单微分方程的概念。

[重点难点]

定积分、不定积分的概念、牛顿一莱布尼兹公式。

[学习建议]

1、学习定积分概念时,应充分注意体现微积分的基本思想。

2、学员学习不定积分时,要注意加强练习,尽量做到掌握不定积分的计算方法。

3、牛顿一莱布尼兹公式,建立了微分和积分之间的联系,学员应适当练习,切实掌握。

4、为了掌握计算技能,学员必须做适当的练习。

[课时分配]

面授8课时,自学16 课时。

[面授辅导]

1、不定积分 1.1不定积分定义

1.1.1原函数

▲如果函数f(x)与f(x)定义在同一区间(a,b),并且处处都有:F1(x)=f(x)

或df(x)=f(x)dx

则称f(x)是f(x)的一个原函数。

下列是一些简单函数的原函数:

出数原函数

cosx sinx

sinx -cosx

ex ex

en xn+1

▲设函数f(x)与F(x)定义在同一区间(a,b) 内。苦F(x)是f(x)的一个原函数,则F(x)+c也是f(x)的原函数,c为常数。

例1:求2x的原函数F(x),且使F(2)=7。

解:∵ x2=2x

∴x2是2x的一个原函数。

2x的全体原函数为

F(x)=x2+c (c为常数)

F(2)=22+c=7

c=3

∴F(x)=x2+3为所求。

例2:求sinx的原函数F(x),且使F(0)=4。

解:由于 (-cosx)=sinx

因此-cosx就是 sinx的一个原函数。

sinx的全体原函数记为

F(x)=-cosx+c

依题意有:F(o)=-cosD+c=4

c=5

所求F(x)=-cosx+5

例3:求f(x)=x3-3x2+2x+7的原函数。

解:f(x)的一个原函数为

x4-x3+x2+7x

则f(x)的全部原函数为

F(x)= x4-x3+x2+7x+c (c为常数)

1.1.2不定积分定义

函数F(x)的原函数的全体称为f(x)的不定积分,记为 (x) dx。

其中称为积分号,x称的积分变量,(x) 称为被积函数。虽然 (x)dx=F(x)+c

(c为任意常数,称为积分常数)

注意:“不定积分”与“求导数”、“求微分”互为逆运算。

例 1 已知自由落体的运动速度gt v =,求自由落体的路程公式。

解 设自由落体的路程公式为()t f s =。由导数的力学意义可知,速度gt

t f v ==)('。联想到gt gt =⎪⎭⎫ ⎝⎛'221,并且常数的导数为0,所以gt C gt =⎪⎭⎫ ⎝⎛+'221。于是路程公式为

()C gt t f s +==221 (C 为任意常数) 又因当0=t 时()00=s ,代入上式,可得0=C ,故所求的路程公式为 ()221gt t f s ==

该物理问题是已知速度求路程。抽象为数学问题,就是已知导数求原来的函数,这是求导数的逆运算。数学中的逆运算我们已经碰到过不少,比如相对于加法的减法,相对于乘法的除法,相对于乘方的开方等。这里需要解决两个问题:一是逆运算是否存在?二是如果逆运算存在的话,结论有几个?现在就来围绕这两个问题解决求导数(或微分)的逆运算问题。

首先我们要知道什么是原函数。

根据导数公式或微分公式,我们很容易得出一些简单函数的原函数。如

函数 原函数

x cos x sin

x sin x cos -

x e x

e

n x 111++n x n

从这些例子不难看出,x sin 是x cos 的原函数,)(sin C x +也是x cos 的原函数,这里C 是任意常数。于是产生这样一个问题:同一个函数究竟有多少原函数?

定理 设函数)(x f 与)(x F 定义在同一区间),(b a 内。若)(x F 是)(x f 的一个原函数,则C x F +)(也是)(x f 的原函数,这里C 是任意常数;而且C x F +)(包含了)(x f 的全部原函数。

证明 因为

)()(')')((x f x F C x F ==+

所以C x F +)(是)(x f 的原函数。

下面证明C x F +)(包含了)(x f 的一切原函数。而这只需证明,)(x f 的任一原函数 )(x G 必然有C x F +)(的形式。

证明 根据假设

)()('x f x G =,)()('x f x F =,

从而

0)()()(')('=-=-x f x f x F x G ,

由中值定理推理2得

C x F x G =-)()(,

C x F x G +=)()( 。

例1 求x 2的原函数)(x F ,且使7)2(=F 。

解 我们知道x x dx d 22=,因此2x 就是x 2的一个原函数,x 2的全体原函

相关文档
最新文档