人教版高中物理选修3-5第18章《原子结构》知识点总结
高中物理_选修3---5_第十八章原子结构_全章课件汇总
q E 1897年得到实验结果:
m B2r
荷质比约为质子的2000倍
实验结果:荷质比约为质子的2000倍
进一步分析实验结果:是电荷比质 子大?还是质量比质子小?(测量)
进一步拓展研究对象:用不同的材料 做阴极做实验,光电效应、热离子发射 效应、射线(研究对象普遍化)。
实验结论:电子是原子的组成部分, 是比原子跟基本的物质单元。
正电荷 电子
汤姆生原子枣糕模型能解释当时 发现的一些现象,如原子的发光等, 因而曾被广泛接受。
但勒纳德1903年做了一个实验,使电 子束射到金属模上,发现较高速度的电 子很容易穿透原子。看来原子不是一个 实心球体。稍后一些的α粒子散射实验 则完全否认了汤姆孙的原子模型。
二、 粒子散射实验
1909年~1911年 英国科学家卢瑟福和 他的助手进行了著名
子经加速后从K的小孔中射出时的速度大小为v,下面
说法正确的是:( )
A、
如果A、K间距离减半,电压U、不变,则离开时速率
变为2v
B、如果A、K间距离减半,电压U、不变,则离开时
速率变为v/2
C、如果A、K间距离不变,电压U减半,则离开时速
率变为2v
D、如果A、K间距离不变,电压U减半,则离开时速
率变为0.707v
实验
粒子和电磁波有什么区别? 实验该怎么做?
-
M N
+ 气体放电管 经检验为负电荷 进一步做实验:确定荷质比
一个质量为m,电量为e的带电粒子,以速度v垂直进
入磁场B中,
v2 m
evB
-
r
M
Nቤተ መጻሕፍቲ ባይዱ
在平行板MN间产生竖直向上的电场+ E,在垂直电场向
高中物理第十八章原子结构高效整合课件新人教选修3_5
已知氢原子的基态能量为 E1,激发态能量En= E1/n2,其中n=2,3,….用h表示普朗克常量,c表示真空中的 光速.能使氢原子从第一激发态电离的光子的最大波长为
()
A.-43hEc1
B.-2Eh1c
C.-4Eh1c
D.-9Eh1c
解析: 由 En=E1/n2 知,第一激发态的能量为 E2=E41,
色光
红 橙 黄 绿 蓝—靛 紫
光子能量 1.61~ 2.00~ 2.07~ 2.14~ 2.53~ 2.76~ 范围(eV) 2.00 2.07 2.14 2.53 2.76 3.10
处于某激发态的氢原子、发射的光的谱线在可见光范围内 仅有2条,其颜色分别为( )
A.红、蓝—靛 B.黄、绿 C.红、紫 D.蓝—靛、紫
解析: 由于原子发生跃迁时放出三种不同能量的光子, 故跃迁发生前这些原子分布在2个激发态能级上,即分布在n= 2,n=3两个能级上,因为放出光子的最大能量为12.09 eV, 由E3-E1=12.09 eV得E3=-1.51 eV,故最高能级的能量 值是-1.51 eV.
答案: 2 -1.51
α粒子散射实验
离核以后速度的大小为________(用光子频率ν、电子质量m、
氢的电离能E1与普朗克常量h表示.)
解析: 由题意,hν=12mv2+E1,解得 v=
2hνm-E1.
答案:
2hν-E1 m
大量氢原子处于不同能量激发态,发生跃迁时放 出三种不同能量的光子 ,其能量值分别是: 1.89 eV,10.2 eV,12.09 eV.跃迁发生前这些原子分布在____个激发态能级 上,其中最高能级的能量值是____eV(基态能量为-13.6 eV).
人教版高中物理选修3-5第18章《原子结构》知识点总结
第十八章:原子结构一、研究进程汤姆孙(糟糕模型)→卢瑟福由α粒子散射实验(核式结构模型)→波尔量子化模型 →现代原子模型(电子云模型)二、α 粒子散射实验a 、实验装置的组成:放射源、金箔、荧光屏b 、实验的结果:绝大多数α 粒子基本上仍沿原来的方向前进,少数 α 粒子(约占八千分之一)发生了大角度偏转,甚至超过了90o 。
C 、卢瑟福核式结构模型内容:①在原子的中心有一个很小的原子核,②原子的全部正电荷和几乎全部质量集中在原子核里,③带负电的电子在核外空间里旋转。
原子直径的数量级为m 1010-,而原子核直径的数量级约为m 1015-。
c 、卢瑟福对实验结果的解释电子对α粒子的作用忽略不计。
因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。
极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。
d 、核式结构的不足认为原子寿命的极短;认为原子发射的光谱应该是连续的。
三、氢原子光谱1、公式:)11(122n m R -=λ m=1、2、3……,对于每个m ,n=m+1,m+2,m+3…… m=2时,对应巴尔末系,其中有四条可见光,一条红色光、一条是蓝靛光、 另外两条是紫光。
2、线状光谱:原子光谱(明线光谱)是线状光谱,比如霓虹灯发光。
3、吸收光谱(主要研究太阳光谱):吸收光谱是连续光谱背景上出现不连续的暗线。
吸收谱既不是线状谱又不是带状光谱(连续光谱)4、实验表明:每种原子都有自己的特征谱线。
(明线光谱中的亮线与吸收光谱中的暗线相对应,只是通常在吸收光谱中的暗线比明线光谱中的两线要少一些)5、光谱分析原理:根据光谱来鉴别物质和确定它的化学组成。
6、连续光谱(带状光谱):炽热的固体、液体或高压气体的光谱是连续光谱。
三、波尔模型1、电子轨道量子化r=n 2r 1 , r 1=0.053nm ——针对原子的核式结构模型提出。
电子绕核旋转可能的轨道是分立的。
人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构
人教版高中物理选修3-5知识点梳理重点题型(常考知识点)巩固练习原子结构【学习目标】1.知道电子是怎样发现的;2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验;5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想.【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线(1)气体的导电特点:通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电.平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象.(2)1858年德国物理学家普里克发现了阴极射线.①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线.②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子(1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流).电子的电量()191.602177334910C e =⨯-,电子的质量319.109389710kg m =⨯-,电子的比荷111.758810C/kg em=⨯.电子的质量约为氢原子质量的1 1836.3.汤姆孙对阴极射线的研究(1)阴极射线电性的发现.为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷.(2)测定阴极射线粒子的比荷.4.密立根实验美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍.5.电子发现的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕.6.19世纪末物理学的三大发现对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子.要点二、原子的核式结构模型1.汤姆孙的原子模型“枣糕模型”.“葡萄干布丁模型”(如图所示).“葡萄干面包模型”.汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均匀分布在球内,电子像枣糕里的枣子一样,镶嵌在原子里面,所以汤姆孙的原子模型也叫枣糕式原子结构模型.【注意】汤姆孙的原子结构模型虽然能解释一些实验事实,但这一模型很快就被新的实验事实——仅粒子散射实验所否定.2.α粒子散射实验1909~1911年卢瑟福和他的助手做α粒子轰击金箔的实验,获得了重要的发现. (1)实验装置(如图所示)由放射源、金箔、荧光屏等组成.特别提示:①整个实验过程在真空中进行. ②金箔很薄,α粒子(42He 核)很容易穿过.(2)实验现象与结果.绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大角度的偏转,极少数α粒子偏转角超过90︒,有的几乎达到180︒,沿原路返回.仅粒子散射实验令卢瑟福万分惊奇.按照汤姆孙的原子结构模型:带正电的物质均匀分布,带负电的电子质量比α粒子的质量小得多.α粒子碰到电子就像子弹碰到一粒尘埃一样,其运动方向不会发生什么改变.但实验结果出现了像一枚炮弹碰到一层薄薄的卫生纸被反弹回来这一不可思议的现象.卢瑟福通过分析,否定了汤姆孙的原子结构模型,提出了核式结构模型.3.原子的核式结构卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转.4.原子核的电荷与尺度由不同原子对α粒子散射的实验数据可以确定各种元素原子核的电荷.又由于原子是电中性的,可以推算出原子内含有的电子数.结果发现各种元素的原子核的电荷数,即原子内的电子数非常接近于它们的原子序数,这说明元素周期表中的各种元素是按原子中的电子数来排列的.原子核的半径无法直接测量,一般通过其他粒子与核的相互作用来确定,α粒子散射是估算核半径最简单的方法.对于一般的原子核半径数量级为1510m -,整个原子半径的数量级是1010m -,两者相差十万倍之多,可见原子内部是十分“空旷”的. 5.解题依据和方法(1)解答与本节知识有关的试题,必须以两个实验现象和发现的实际为基础,应明确以下几点: ①汤姆孙发现了电子,说明原子是可分的,电子是原子的组成部分.②卢瑟福“α粒子散射实验”现象说明:原子中绝大部分是空的,原子的绝大部分质量和全部正电荷都集中在一个很小的核上.(2)根据原子的核式结构,结合前面所掌握的动能、电势能、库仑定律及能量守恒定律等知识,是综合分析解决d 粒子靠近原子核过程中,有关功、能的变化,加速度,速度的变化所必备的知识基础和应掌握的方法.6.对α粒子散射实验的理解如果按照汤姆孙的“枣糕”原子模型,α粒子如果从原子之间或原子的中心轴线穿过时,它受到周围的正负电荷作用的库仑力是平衡的,α粒子不产生偏转;如果α粒子偏离原子的中心轴线穿过,两侧电荷作用的库仑力相当大一部分被抵消,α粒子偏转很小;如果α粒子正对着电子射来,质量远小于α粒子的电子不可能使α粒子发生明显偏转,更不可能使它反弹.所以α粒子的散射实验结果否定了汤姆孙的原子模型.按卢瑟福的原子模型(核式结构),当α粒子穿过原子时,如果离核较远,受到原子核的斥力很小,仅粒子就像穿过“一片空地”一样,无遮无挡,运动方向改变极少,由于原子核很小,这种机会就很多,所以绝大多数α粒子不产生偏转;只有当α粒子十分接近原子核穿过时,才受到很大的库仑斥力,偏转角才很大,而这种机会很少;如果α粒子几乎正对着原子核射来,偏转角就几乎达到180︒,这种机会极少.如图所示.卢瑟福根据α粒子散射实验,不仪建立了原子的核式结构,还估算出了原子核的大小.220121(1)4sin 2m Ze r Mv θπε=⋅+(θ为散射角).原子核的商径数量级在1510m -.原子直径数量级大约是1010m -,所以原子核半径只相当于原子半径的十万分之一.原子的核式结构初步建立了原子结构的正确图景,但跟经典的电磁理论发生了矛盾.(见玻尔的原子模型)7.原子结构的探索历史(1)发现原子核式结构的过程.实验和发现 说明了什么 电子的发现说明原子有复杂结构α粒子散射实验说明汤姆孙(枣糕式)原子模型不符合实际,卢瑟福重新建立原子的核式结构模型(2)原子的核式结构与原子的枣糕式结构的根本区别.核式结构枣糕式结构原子内部是非常空旷的,正电荷集中在一个很小的核里 原子是充满了正电荷的球体 电子绕核高速旋转 电子均匀嵌在原子球体内【典型例题】 类型一、原子结构例1.关于阴极射线的本质,下列说法正确的是( ). A .阴极射线本质是氢原子 B .阴极射线本质是电磁波 C .阴极射线本质是电子 D .阴极射线本质是X 射线【思路点拨】阴极射线基本性质.【答案】C【解析】阴极射线是原子受激发射出的电子,关于阴极射线是电磁波、X 射线都是在研究阴极射线过程中的一些假设,是错误的.【总结升华】对阴极射线基本性质的了解是解题的依据.举一反三:【变式】如图所示,在阴极射线管正上方平行放一通有强电流的长直导线,则阴极射线将( ).A .向纸内偏转B .向纸外偏转C .向下偏转D .向上偏转【答案】D【解析】本题综合考查电流产生的磁场、左手定则和阴极射线的产生和性质.由题目条件不难判断阴极射线所在处磁场垂直纸面向外,电子从负极射出,由左手定则可判定阴极射线(电子)向上偏转.【总结升华】注意阴极射线(电子)从电源的负极射出,用左手定则判断其受力方向时四指的指向和射线的运动方向相反.例2.汤姆孙用来测定电子的比荷(电子的电荷量与质量之比)的实验装置如图所示.真空管内的阴极K 发出的电子(不计初速、重力和电子间的相互作用)经加速电压加速后,穿过A '中心的小孔沿中心轴1O O 的方向进入到两块水平正对放置的平行极板P 和P '间的区域.当极板间不加偏转电压时,电子束打在荧光屏的中心O 点处,形成了一个亮点;加上偏转电压U 后,亮点偏离到O '点(O '点与O 点的竖直间距为d ,水平间距可忽略不计).此时,在P 和P '间的区域,再加上一个方向垂直于纸面向里的匀强磁场.调节磁场的强弱,当磁感应强度的大小为B 时,亮点重新回到O 点.已知极板水平方向的长度为1L ,极板间距为b ,极板右端到荧光屏的距离为2L (如图所示). (1)求打在荧光屏O 点的电子速度的大小. (2)推导出电子的比荷的表达式.【答案】(1)UBb(2)2121(/2)Ud B bL L L +【解析】(1)当电子受到的电场力与洛伦兹力平衡时,电子做匀速直线运动,亮点重新回到中心O点,设电子的速度为v ,则evB eE =, 得E v B =, 即U v Bb =. (2)当极板间仅有偏转电场时,电子以速度v 进入后,竖直方向做匀加速运动,加速度为eUa mb =. 电子在水平方向做匀速运动,在电场内的运动时间11L t v=。
人教版物理选修3-5课件 第十八章 原子结构 1电子的发现
液滴编号 1 2 3 4 …
电荷量/C 6.41×10-19 9.70×10-19 1.6×10-19 4.82×10-19
…
解析:表格中的数据与电子电量的比值关系为: qe1=61.4.61××1100--1199=4,
qe2=91.7.60××1100--1199=6, qe3=11..66××1100--1199=1, qe4=41.8.62××1100--1199=3.
(1)调节两金属板间的电势差 U,当 U=U0 时,使得 某个质量为 m1 的油滴恰好做匀速运动.该油滴所带电荷 量 q 为多少?
(2)若油滴进入电场时的速度可以忽略,当两金属板 间的电势差 U=U1 时,观察到某个质量为 m2 的油滴进入 电场后做匀加速运动,经过时间 t 运动到下极板,求此油 滴所带电荷量 Q.
得出结论:电荷是量子化的,电荷的电荷量都是元 电荷 e 的整数倍.
答案:电荷是量子化的,电荷的电荷量都是元电荷 的整数倍
【学习力-学习方法】
优秀同龄人的陪伴 让你的青春少走弯路
小案例—哪个是你
忙忙叨叨,起早贪黑, 上课认真,笔记认真, 小A 就是成绩不咋地……
好像天天在玩, 上课没事儿还调皮气老师, 笔记有时让人看不懂, 但一考试就挺好…… 小B
第十八章 原子结构
1 电子的发现
学习目标
1.知道电子是怎样发现 的及其对人类探索原子 结构的重大意义. 2.了解汤姆孙发现电子 的研究方法,知道电子 的电荷量和质量. 3.能运用所学知识解决 电子在电场和磁场中的 运动问题.
重点难点 重点 1.电子的发现
过程及其意义. 2.电荷的量子 化. 难点
C.保持步骤 B 中的电压 U 不变,对 M1、M2 区域 加一个大小、方向合适的磁场 B,使荧屏正中心处重现 亮点,试问外加磁场的方向如何?
人教版高中物理选修3-5知识点汇总_一册全_
人教版高中物理选修3—5知识点总结第十六章动量守恒定律动16.1实验探究碰撞中的不变量碰撞的特点:1、相互作用时间极短。
2.相互作用力极大,即内力远大于外力。
3、速度都发生变化。
一、实验的基本思路1、一维碰撞:我们只研究最简单的情况——两个物体碰撞前沿同一直线运动,碰撞后仍沿同一直线运动。
2、猜想与假设:一个物体的质量与它的速度的乘积是不是不变量?3、碰撞可能有很多情形。
例如两个物体可能碰后分开,也可能粘在一起不再分开。
二、需要考虑的问题①如何保证碰撞是一维的?即两个物体在碰撞之前沿同一直线运动,碰撞之后还沿同一直线运动。
在固定的轨道上做实验——气垫导轨。
②怎样测量物体的质?用天平测量。
③怎样测量两个物体在磁撞前后的速度?速度的测量:可以充分利用所学的运动学知识,如利用匀速运动、平抛运动,并借助于斜槽、气垫导轨、打点计时器和纸带等来达到实验目的和控制实验条件。
④数据处理:列表。
参考案例一气垫导轨和光电门研究碰撞。
参考案例二利用单摆研究碰撞参考案例三利用打点计时器研究碰撞参考案例四利用平抛运动研究碰撞研究能量损失较小的碰撞时,可以选用参考案例二;研究碰撞后两个物体结合在一起的情况时,可以选用参考案例三。
参考案例四测出小球落点的水平距离可根据平抛运动的规律计算出小球的水平初速度。
实验设计思想巧妙之处在于用长度测量代替速度测量。
16.2动量定理一、动量1、定义:把物体的质量m和速度ʋ的乘积叫做物体的动量p,用公式表示为p = mʋ2、单位:在国际单位制中,动量的单位是千克米每秒,符号是kg•m/s3、动量是矢量:方向由速度方向决定,动量的方向与该时刻速度的方向相同。
4、注意:物体的动量,总是指物体在某一时刻的动量,即具有瞬时性,故在计算时相应的速度应取这一时刻的瞬时速度。
5、动量的变∆p①某段运动过程(或时间间隔)末状态的动量p',跟初状态的动量p的矢量差,称为动量的变化(或动量的增量),即p = p' - p。
选修3-5原子结构整章知识点
选修3—5第十八章原子结构第一节电子的发现第二节原子的核式结构模型第三节氢原子光谱第四节玻尔的原子模型二. 知识内容(一)1. 阴极射线:阴极射线的本质是带负电的粒子流,后来,组成阴极射线的粒子被称为电子。
2. 电子的发现:1897年英国的物理学家汤姆孙发现了电子,并求出了这种粒子的比荷。
(二)1. 汤姆孙的原子模型:原子是一个球体,正电荷弥漫性地均匀分布在整个球体内,电子镶嵌其中,有人形象地把汤姆孙模型称为“西瓜模型”或“枣糕模型”。
2. a粒子散射实验:(1)a粒子:a粒子是从放射性物质中发射出来的快速运动的粒子,带有两个单位的正电荷,质量为氢原子质量的4倍。
(2)实验现象:绝大多数a粒子穿过金箔后,基本上仍沿原来的方向前进,但有少数a粒子(约占八千分之一)发生了大角度偏转,偏转的角度甚至大于900,也就是说它们几乎被“撞了回来”。
(3)卢瑟福核式结构模型:原子中带正电的部分体积很小,但几乎占有全部质量,电子在正电体的外面运动。
按照卢瑟福的理论,正电体被称为原子核,卢瑟福的原子模型因而被称为核式结构模型。
3. 原子核的电荷与尺度:(1)电荷:原子核是由质子和中子组成的,原子核的电荷数就是核中的质子数。
(2)尺度:对于一般的原子核,核半径的数量级为10-16m,而整个原子半径的数量级是10-10m,两者相差十万倍之多,可见原子内部是十分“空旷”的。
(三)1. 光谱:(1)定义:把光按波长的大小分开,获得光的波长(频率)成分和强度分布的记录。
即光谱。
(2)分类:光谱分为线状谱和连续谱。
(3)特征:线状谱是一条条分立的亮线;连续谱是一条连续的光带。
2. 原子光谱:(1)定义:各种原子的发射光谱都是线状谱,不同原子的亮线位置不同,把这些亮线称为原子的特征谱线。
(2)光谱分析:每种原子都有自己的特征谱线,我们可以用它来鉴别物质和确定物质的组成成分,这种方法称为光谱分析。
3. 氢原子光谱:巴耳末公式:,式中R是里德伯常量,其值为R=1.10×l07m-1,n只能取整数,不能连续取值,波长也只会是分立的值。
高中物理 第18章 原子结构 新人教版选修3-5
人教版 ·选修3-5
路漫漫其修远兮 吾将上下而求索
第十八章 原子结构
1 情景切入 2 知识导航 3 学法指导
情景切入
ቤተ መጻሕፍቲ ባይዱ
世界是物质的。物质是绚丽多彩的:火红的太阳,蔚蓝的 大海。还有一些物质是肉眼无法感知到的。物质是有结构的, 组成物质的原子可以再分吗?它有什么样的结构呢?道尔顿、 汤姆孙、卢瑟福、玻尔等物理学家心目中的原子是什么样的 呢?学了本章内容,你就能回答以上问题了。
本章的重点是原子的核式结构及氢原子的能级跃迁。本章 的难点是人类研究微观世界的方法、原子的能级跃迁。
学法指导
知识导航
本章内容以人们认识微观世界的过程为线索,介绍了历史 上著名的实验及根据实验得出的关于电子的发现、原子结构、 原子光谱和激光的产生的基础知识。
本章内容可分为二个单元:第一单元(第1~2节)主要介绍 了电子及原子结构的发现、发展过程。第二单元(第3~4节)主 要讲了氢原子光谱的实验规律及玻尔理论。
最新人教版高中物理选修3-5第十八章原子结构整合
-9-
1.1 DNA重组技术的基本工具
专题一 专题二
首 页
随堂练习 S专题归纳 知识网络 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
B.正电荷在原子内是均匀分布的 C.原子中存在着带负电的电子 D.原子只能处于一系列不连续的能量状态中 解析:卢瑟福 α 粒子散射实验中使卢瑟福惊奇的就是 α 粒子发生了较 大角度的偏转,这是由于 α 粒子带正电,而原子核极小,且原子核带正电,选项 A 正确,选项 B 错误;α 粒子能接近原子核的机会很小,大多数 α 粒子都从核 外的空间穿过,而与电子碰撞时如同子弹碰到尘埃一样,运动方向不会发生 改变。选项 C、D 的说法没错,但与题意不符。 答案:A
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
(1)能级图中的横线表示氢原子可能的能量状态——定态。 (2)横线左端的数字“1,2,3,…”表示量子数,右端的数字“-13.6,-3.4,…”表 示氢原子的能级。 (3)相邻横线间的距离,表示相邻的能级差,量子数越大,相邻的能级差 越小。 (4)带箭头的竖线表示原子由较高能级向较低能级跃迁,原子跃迁条件 为 :hν=Em-En。
-5-
1.1 DNA重组技术的基本工具
专题一 专题二
首 页
随堂练习 S专题归纳 知识网络 J 基础知识 Z 重点难点
ICHU ZHISHI
HONGDIAN NANDIAN
UITANG LIANXI
【例题 1】 在卢瑟福 α 粒子散射实验中,有少数 α 粒子发生大角度偏 转,其原因是( )
A.原子的正电荷和绝大部分质量集中在一个很小的核上
人教版高二物理选修3-5 第十八章 原子结构基础知识梳理
第十八章原子结构18.1 电子的发现一、阴极射线1.辉光放电现象(1)放电管中若有稀薄气体,在放电管两极加上高电压可看到辉光放电现象。
但若管内气体非常稀薄即接近真空时,不能使气体电离发光,辉光放电现象消失。
(2)辉光放电的应用:如利用其发光效应制成的霓虹灯、日光灯,以及利用其正常辉光放电的电压稳定效应制成的氖稳压管。
2.阴极射线的产生在研究0.1Pa气压以下的气体导电的玻璃管内有阴、阳两极,当两极间加一定电压时,阴极便发出一种射线,这种射线能使玻璃管壁发出荧光,称为阴极射线。
在稀薄气体的辉光放电实验中,若不断地抽出管中的气体,当管中的气压降到0.1Pa的时候,管内已接近真空,不能使气体电离发光,这时对着阴极的玻璃管壁却发出荧光,如果在管中放一个十字形金属片,荧光中会出现十字形阴影,如图所示:3.阴极射线的特点(1)在真空中沿直线传播;(2)碰到荧光物质能使其发光;(3)本质上是高速电子流。
二、电子的发现1.汤姆孙对阴极射线的研究从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究。
为了研究阴极射线的带电性质,他设计了如图所示的装置,从阴极K发出的带电粒子通过阳极A和小孔O形成一束细射线,它穿过两片平行的金属板P、P’,到达右端带有标尺的荧光屏上.通过射线产生的荧光位置断定,它的本质是带负电粒子流。
2.发现电子的意义以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒,现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电的,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子是如何构成原子的呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕。
三、密立根“油滴实验”1.密立根实验的原理(1)如图所示,两块平行放置的水平金属板A、B与电源相连接,使A板带正电,B板带负电.从喷雾器嘴喷出的小油滴经上面的金属板中间的小孔,落到两板之间的匀强电场E中。
物理选修3-5人教新课标第十八章原子结构章末复习课件.
•
1. 如图 3 - 1 - 2 所示为卢瑟福和他的同事
们做α粒子散射实验的装置示意图,荧光屏 和显微镜分别放在图中的 A、B、C、D四个
位置时,下述对观察到现象的说法中正确
的是( • )
A .放在 A 位置时,相同时间内观察到屏
8
•解析:α粒子散射实验的结果是,绝大多数 α粒子穿过金箔后基本上仍沿原来的方向前
亮线
成分 ,这样的光谱叫做
•
和 分布的记录,即光谱. 线状谱.
• 有的光谱是连在一起的
,这样的光谱 5
• 2.氢原子的能级、能级公式
• • (1)氢原子的能级和轨道半径 ①氢原子的能级公式: En = E1(n =
1,2,3,…),其中E1为基态能量E1=-13.6 eV. • ② 氢 原 子 的 半 径 公 式 : rn = n2r1(n =
•
•
(1) 放射强度容易控 (1) 工业部门使用射线测厚度 ——利用γ射线的
制; 穿透特性;
18
• 3.放射性污染与防护 污染 举例与 与防 措施 护
说 明
核爆炸的最初几秒钟辐射出 核爆炸 来的主要是强烈的γ射线和中 污染 子流,长期存在放射性污染 核工业生产和核科学研究中 核泄漏 使用放射性原材料,一旦泄 露就会造成严重污染 医疗中如果放射线的剂量过 19 医疗照
• 二、原子核的衰变
• 衰变类 1.原子核衰变规律 α衰变 β衰变 型 衰变方 程 2个质子和2个中子 中子转化为质子 衰变实 结合成一个整体射 和电子 出 质
15
• 2. 确定衰变次数的方法
• 方法一:设放射性元素 经过n次α衰变 ,
和m次β衰变后,变成稳定的新元 素
则
为:
2018-2019学年高中物理(人教版)选修3-5课件:第十八章 原子结构 章末复习总结18
[典例指津 1]
(多选)在 α 粒子散射实验中,当 α 粒子 )
穿过金箔时,下列理解正确的是( 转
A.与金原子核相距较远的 α 粒子,可能发生大角度偏 B.与金原子核相距较近的 α 粒子,可能发生大角度偏 转 C.α 粒子与金原子核距离最近时,系统的能量最小 D.α 粒子与金原子核距离最近时,系统的电势能最大
[总结提升]
(1)如果是一个 n 能级的氢原子, 跃迁辐射
出的光子最多为(n-1)种。 (2)如果是一群 n 能级的氢原子,能发出的光子种类为 nn-1 2 Cn= 。 2
[变式训练2] 用能量为 15 eV 的光子照到某种金属上, 能发生光电效应,测得其光电子的最大初动能为 12.45 eV, 2.55 则该金属的逸出功为________ eV。 氢原子的能级如图所示, 现有一群处于 n=3 能级的氢原子向低能级跃迁,在辐射出 的各种频率的光子中, 能使该金属发生光电效应的频率共有
[解析] 从 n=2 能级电离所需的最小能量等于 E∞-E2 =0 eV-(-3.40 eV)=3.4 eV, 吸收光子的能量 3.6 eV 高于 此值,故能引起电离,故选项 A 正确;氢原子从 n=4 的能 级向 n=3 的能级跃迁时辐射出光子的能量为-0.85 eV - (-1.51 eV)=0.66 eV,故选项 B 错误;根据跃迁规律可知 从 n=4 向 n=2 跃迁时辐射光子的能量大于从 n=3 向 n=2 跃迁时辐射光子的能量,则可见光 a 的光子能量大于可见 光 b 的, 又根据光子能量 ε=hν 可得可见光 a 的频率大于可 见光 b 的,故可见光 a 比可见光 b 的波长短,故选项 C 错 误;大量氢原子从 n=4 的能级跃迁时,能发出 C2 4=6 种频 率的光子,故选项 D 错误。
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
2、估算原子尺度
原子半径
数量级
10-10 m
原子核半径 数量级
10-15 m
3、你怎么理解原子核占据原子内部 空间的多少?
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
1、如何确定各种元素原子核的电荷
原子
原 子核
电子
中子
电子(一) 正电荷?
汤姆生原子模型
汤姆逊发现电子之后,许多科学家 对于原子中正负电荷的分布情况进行 了进一步的探究,提出了许多模型, 现介绍具有代表性的,比如,原子是 一个球体,正电荷弥漫性的均匀分布 整个球体内,电子镶嵌其中形象的称 为“西瓜模型”或“枣糕模型”。
西瓜模型
枣糕模型
汤姆生的原子模型
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT 物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT 物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT 物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
物理选修3-5第十八章 第2节 原子的核式结构模型25张PPT
2、实验现象: 绝大多数α粒子穿过金箔后,基本上沿原方向前进 少数α粒子发生了较大角度的偏转 极少数α粒子偏转角度大于900 ,甚至有个别达到 1800(反弹回来) 说明: (1)原子中绝大部分是空的 (2)α 粒子受到较大的库仑力作用 (3)α粒子在原子中碰到了比他质量大得多的东西
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十八章:原子结构
一、研究进程
汤姆孙(糟糕模型)→卢瑟福由α粒子散射实验(核式结构模型)→
波尔量子化模型 →现代原子模型(电子云模型)
二、α 粒子散射实验
a 、实验装置的组成:放射源、金箔、荧光屏
b 、实验的结果:
绝大多数α 粒子基本上仍沿原来的方向前进,
少数 α 粒子(约占八千分之一)发生了大角度偏转,
甚至超过了90o 。
C 、卢瑟福核式结构模型内容:
①在原子的中心有一个很小的原子核,
②原子的全部正电荷和几乎全部质量集中在原子核里,
③带负电的电子在核外空间里旋转。
原子直径的数量级为m 10
10-,而原子核直径的数量级约为m 1015-。
c 、卢瑟福对实验结果的解释
电子对α粒子的作用忽略不计。
因为原子核很小,大部分α粒子穿过原子时离原子核很远,受到较小的库仑斥力,运动几乎不改变方向。
极少数α粒子穿过原子时离原子核很近,因此受到很强的库仑斥力,发生大角度散射。
d 、核式结构的不足
认为原子寿命的极短;认为原子发射的光谱应该是连续的。
三、氢原子光谱
1、公式:)11(1
2
2n m R -=λ m=1、2、3……,对于每个m ,n=m+1,m+2,m+3…… m=2时,对应巴尔末系,其中有四条可见光,一条红色光、一条是蓝靛光、 另外两条是紫光。
2、线状光谱:原子光谱(明线光谱)是线状光谱,比如霓虹灯发光。
3、吸收光谱(主要研究太阳光谱):吸收光谱是连续光谱背景上出现不连续的暗线。
吸收谱既不是线状谱又不是带状光谱(连续光谱)
4、实验表明:每种原子都有自己的特征谱线。
(明线光谱中的亮线与吸收光谱中的暗线相对应,只是通常在吸收光谱中的暗线比明线光谱中的两线要少一些)
5、光谱分析原理:根据光谱来鉴别物质和确定它的化学组成。
6、连续光谱(带状光谱):炽热的固体、液体或高压气体的光谱是连续光谱。
三、波尔模型
1、电子轨道量子化r=n 2r 1 , r 1=0.053nm ——针对原子的核式结构模型提出。
电子绕核旋转可能的轨道是分立的。
2、原子能量状态量子化(定态)假设——针对原子稳定性提出。
电子在不同的轨道对应原子具有不同的能量。
原子只能处于一系列
不连续的能量状态中,这些状态中原子是稳定的,电子虽然绕核旋
转,但不向外辐射能量,这些状态叫定态。
取氢原子电离时原子能量为0,用定积分求得E 1= -13.6ev. 21n
E E n =,E 1 = —13.6ev 3、原子跃迁假设(针对原子的线状谱提出)
电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出光子。
电子吸收光子时会从能量较低的定态轨道跃迁到能量较高的轨道。
末初E -E hv =。
注:电子只吸收或发射特定频率的光子完成原子内的跃迁。
如果要使电子电离,光子的能量 与氢原子能量之和大于等于零即可。
4、局限性
保留了经典粒子的观念,把电子的运动仍然看成经典力学描述下轨道运动,没有彻底摆脱经典理论的框架。
→无法解释较为复杂原子的光谱。
5、现代原子模型:
电子绕核运动形成一个带负电荷的云团,对于具有波粒二象性的微观粒子,在一个确定时刻其空间坐标与动量不能同时测准,这是德国物理学家海森堡在1927年提出的著名的测不准原理。
习题
1、对α粒子散射实验装置的描述,你认为正确的有:()
A.实验器材有放射源、金箔、荧光屏、显微镜
B.金箔的厚度对实验无影响
C.如果不用金箔改用铝箔,就不会发生散射现象;
D.实验装置放在空气中和真空中都可以
2、在卢瑟福的α粒子散射实验中,有极少数α粒子发生大角度偏转,其原因是()
A.原子的正电荷和绝大部分质量集中在一个很小的核上
B.正电荷在原子中是均匀分布的
C.原子中存在着带负电的电子
D.原子只能处于一系列不连续的能量状态中
3、在α粒子散射实验中,如果两个具有相同能量的α粒子,从不同大小的角度散射出来,则散射角度大的这个α粒子()
A.更接近原子核B.更远离原子核.
C.受到一个以上的原子核作用D.受到原子核较大的冲量作用
4、卢瑟福通过对a粒子散射实验结果的分析,提出
A.原子的核式结构模型 B.原子核内有中子存在.
C.电子是原子的组成部分 D.原子核是由质子和中子组成的.
5、图中的圆点代表α粒子散射实验中的原子核,带箭头的曲线代表α粒子的径迹,其中不可能发生的是:()
6、根据α粒子散射实验,卢瑟福提出了原子的核式结构模型,图中虚线表示原子核所形成的电场的等势线,实线表示一个α粒子的运动轨迹。
在α粒子从a运
动到b、再运动到c的过程中,下列说法正确的是( )
A.动能先增大,后减小
B.电势能先减小,后增大
C.电场力先做负功,后做正功,总功等于零
D.加速度先变小,后变大
7、用光子能量为E 的单色光照射容器中处于基态的一群氢原子。
停止照射后,发现该容器内的氢能够释放出三种不同频率的光子,它们的频率由低到高依次为ν1、ν2、ν3,由此可知,开始用来照射容器的单色光的光子能量可以表示为:①hν1;②hν3;③h (ν1+ν2);④h (ν1+ν2+ν3) 以上表示式中
A .只有①③正确
B .只有②正确
C .只有②③正确
D .只有④正确
8、现有1200个氢原子被激发到量子数为4的能级上,若这些受激氢原子最后都回到基态,则在此过程中发出的光子总数是多少?假设处在量子数为n 的激发态的氢原子跃迁到各较低能级的原子数都是处在该激发态能级上的原子总数的11-n 。
A .2200
B .2000
C .1200
D .2400
9、氢原子处于基态时,原子的能量为eV 6.131-=E ,问:
(1)氢原子在n =4的定态时,可放出几种频率的光?其中最小频率等于多少Hz ?
(2)若要使处于基态的氢原子电离,至少要用多大频率的电磁波照射此原子?
10、对于基态氢原子,下列说法正确的是( )
A 、它能吸收10.2eV 的光子
B 、它能吸收11eV 的光子
C 、它能吸收14eV 的光子
D 、它能吸收具有11eV 动能的电子的部分动能
11、设氢原子的基态能量为E 1。
某激发态的能量为E ,则当氢原子从这一激发态跃迁到基态 时,所________________(填“辐射”或“吸收”)的光子在真空中的波长为________。
12、一些氢原子都处于量子数n=4的激发态,这些氢原子在能级跃迁时
(1)能释放出多少种频率不同的光子?
(2)在这些光子波长中的最小值是多少?请画能级图来回答这些问题
1
2
3。