很全的晶振知识

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无源晶振无源晶振与与有源晶振
无源晶振无源晶振((Crystal :):内只有一片按一定轴向切割的石英晶体薄片内只有一片按一定轴向切割的石英晶体薄片内只有一片按一定轴向切割的石英晶体薄片,,供接入运放供接入运放((或微处理器的Xtal 端)以形成振荡以形成振荡。

((依靠配合其他依靠配合其他IC 内部振荡电路工作内部振荡电路工作))
有源晶振有源晶振((Oscillator )::内带运放内带运放内带运放,,工作在最佳状态工作在最佳状态,,送入电源后送入电源后,,可直接输出一定频率的等可直接输出一定频率的等幅幅正弦波(。

(晶振晶振+振动电路振动电路,,封装在一起封装在一起,,加上电源加上电源,,就有波形输出就有波形输出))
※无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来无源晶振需要用微处理器片内的振荡器,在datasheet 上有建议的连接方法。

无源晶振没有电压的问题,信号电平是可变的,也就是说是根据起振电路来决定的,同样的晶振可以适用于多种电压,可用于多种不同时钟信号电压要求的微处理器,而且价格通常也较低,因此对于一般的应用如果条件许可建议用晶体,这尤其适合于产品线丰富批量大的生产者。

无源晶振相对于晶振而言其缺陷是信号质量较差,通常需要精确匹配外围电路(用于信号匹配的电容、电感、电阻等),更换不同频率的晶体时周边配置电路需要做相应的调整。

使用时建议采用精度较高的石英晶体,尽可能不要采用精度低的陶瓷晶体。

※有源晶振有4只引脚,是一个完整的振荡器,里面除了石英晶体外,还有晶体管和阻容元件 。

有源晶振不需要微处理器的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源
滤波,通常使用一个电容和电感构成的PI 型滤波网络,输出端用一个小阻值的电阻过滤信号即可)
,不需要复杂的配置电路。

相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,价格相对较高。

对于时序要求敏感的应用,还是有源的晶振好,因为可以选用比较精密的晶振,甚至是高档的温度补偿晶振。

有些微处理器内部没有起振电路,只能使用有源的晶振,如TI 的6000系列等。

有源晶振相比于无源晶体通常体积较大,但现在许多有源晶振是表贴的,体积和晶体相当,有的甚至比许多晶体还要小。

在电子学上,通常将含有晶体管元件的电路称作“有源电路”(如有源音箱、有源滤波器等),而仅由阻容元件组成的电路称作“无源电路”。

电脑中的晶体振荡器也分为无源晶振和有源晶振两种类型。

无源晶振与有源晶振的英文名称不同,无源晶振为crystal (晶体),而有源晶振则叫做oscillator (振荡器)。

无源晶振是有2个引脚的无极性元件,需要借助于时钟电路才能产生振荡信号,自身无法振荡起来,所以“无源晶振”这个说法并不准确;有源晶振有4只引脚,是一个完整的振荡器,其中除了石英晶体外,还有晶体管和阻容元件,因此体积较大。

有源晶振型号纵多,而且每一种型号的引脚定义都有所不同,接发也不同,下面我介绍一下有源晶振引脚识别,以方便大家。

有个点标记的为1脚,按逆时针(管脚向下)分别为2、3、4。

有源晶振通常的用法:一脚悬空,二脚接地,三脚接输出,四脚接电压。

有源晶振不需要微处理器的内部振荡器,信号质量好,比较稳定,而且连接方式相对简单(主要是做好电源滤波,通常使用一个电容和电感构成的PI 型滤波网络,输出端用一个小阻值的电阻过滤信号即可),不需要复杂的配置电路。

相对于无源晶体,有源晶振的缺陷是其信号电平是固定的,需要选择好合适输出电平,灵活性较差,而且价格高。

有源晶振是由石英晶体组成的,石英晶片之所以能当为振荡器使用,是基于它的压电效应:在晶片的
两个极上加一电场,会使晶体产生机械变形;在石英晶片上加上交变电压,晶体就会产生机械振动,同时机械变形振动又会产生交变电场,虽然这种交变电场的电压极其微弱,但其振动频率是十分稳定的。

当外加交变电压的频率与晶片的固有频率(由晶片的尺寸和形状决定)相等时,机械振动的幅度将急剧增加,这种现象称为“压电谐振”。

压电谐振状态的建立和维持都必须借助于振荡器电路才能实现。

图3是一个串联型振荡器,晶体管T1和T2构成的两级放大器,石英晶体XT与电容C2构成LC电路。

在这个电路中,石英晶体相当于一个电感,
C2为可变电容器,调节其容量即可使电路进入谐振状态。

该振荡器供电电压为5V,输出波形为方波。

石英晶体振荡器的频率稳定度可达10^-9/日,甚至10^-11。

例如10MHz的振荡器,频率在一日之内的变化一般不大于0.1Hz。

因此,完全可以将晶体振荡器视为恒定的基准频率源(石英表、电子表中都是利用石英晶体来做计时的基准频率)。

从PC诞生至现在,主板上一直都使用一颗14.318MHz的石英晶体振荡器作为基准频率源。

主板上除了这颗14.318MHz的晶振,还能找到一颗频率为32.768MHz的晶振,它被用于实时时钟(RTC)电路中,显示精确的时间和日期
方形有源晶振引脚分布:
1、正方的,使用DIP-8封装,打点的是1脚。

1-NC;4-GND;5-Output;8-VCC
2、长方的,使用DIP-14封装,打点的是1脚。

1-NC;7-GND;8-Output;14-VCC
BTW:
1、电源有两种,一种是TTL,只能用5V,一种是HC的,可以3.3V/5V
2、边沿有一个是尖角,三个圆角,尖角的是一脚,和打点一致。

Vcc out
NC(点)GND
现在提供一些实际数据:
测试样品为TOYOCOM的711SC 1.000M的输出频率,1脚悬空,2脚接地,3脚输出,4叫接+5V;
1.4V就开始起振,峰值电压1.64V,但是工作频率会有一定的偏差;3V时峰值电压3.24V,工作频率1.000M,输出频率准确;5V时峰值电压为5.6V,工作频率1.000M,输出频率准确。

无源晶振起振电容的选择
关于晶振的匹配电容问题
晶振还是晶体?晶振的话好像不用电容吧?
晶体的话0.1u 和0.01u 的电容有些大了,一般应该100p 到20p 之间
晶振的标称值在测试时有一个“负载电容”的条件,在工作时满足这个条件,振荡频率才与标称值一致。

一般来讲,有低负载电容(串联谐振晶体)
高负载电容(并联谐振晶体)之分。

在电路上的特征为:晶振串一只电容跨接在IC 两只脚上的,则为串联谐振型;一只脚接IC ,一只脚接地的,则为并联型。

如确实没有原型号,需要代用的可采取串联谐振型电路上的电容再并一个电容,并联谐振电路上串一只电容的措施。

例如:4.433MHz 晶振,并一只3300PF 电容或串一只70P 的微调电容。

另一种说法是“损耗值”与“激励电平”之说:
其实,上述原因都可以作为选择晶振的条件作为考虑。

常见的晶振大多是二只脚,3脚的晶振是一种集晶振和电容为一体的复合元件。

由于在集成电路振荡端子外围电路中总是以一个晶振(或其它谐振元件)和两个电容组成回路,为便于简化电路及工艺,人们便研制生产了这种复合件。

其3个引脚中,中间的1个脚通常是2 个电容连接一起的公共端,另外2个引脚即为晶振两端,也是两个电容各自与晶振连接的两端。

由此可见,这种复合件可用一个同频率晶振和两个100~200pF 的瓷片电容按常规连接后直接予以代换。

无源晶振无源晶振串联或并联电阻串联或并联电阻
串电阻是降低驱动功率,避免过激励,并电阻是为了帮助起振,串的电阻一般都是百欧姆级,并的一般都上M 欧姆级。

一份电路在其输出端串接了一个22K 的电阻,在其输出端和输入端之间接了一个10M 的电阻,这是由于连接晶振的芯片端内部是一个线性运算放大器,将输入进行反向180度输出,晶振处的负载电容电阻组成的网络提供另外180度的相移,整个环路的相移360度,满足振荡的相位条件,同时还要求闭环增益大于等于1,晶体才正常工作。

晶振输入输出连接的电阻作用是产生负反馈,保证放大器工作在高增益的线性区,一般在M 欧级,输出端的电阻与负载电容组成网络,提供180度相移,同时起到限流的作用,防止反向器输出对晶振过驱动,损坏晶振。

和晶振串联的电阻常用来预防晶振被过分驱动。

晶振过分驱动的后果是将逐渐损耗减少晶振的接触电镀,这将引起频率的上升,并导致晶振的早期失效,又可以讲drive level 调整用。

用来调整drive level 和发振余裕度。

Xin 和Xout 的内部一般是一个施密特反相器,反相器是不能驱动晶体震荡的.因此,在反相器的两端并联一个电阻,由电阻完成将输出的信号反向 180度反馈到输入端形成负反馈,构成负反馈放大电路.晶体并在电阻上,电阻与晶体的等效阻抗是并联关系,自己想一下是电阻大还是电阻小对晶体的阻抗影响小大?
电阻的作用是将电路内部的反向器加一个反馈回路,形成放大器,当晶体并在其中会使反馈回路的交流等效按照晶体频率谐振,由于晶体的Q 值非常高,因此电阻在很大的范围变化都不会影响输出频率。

过去,曾经试验此电路的稳定性时,试过从100K ~20M 都可以正常起振,但会影响脉宽比的。

晶体的Q值非常高, Q值是什么意思呢?晶体的串联等效阻抗是Ze = Re + jXe, Re<< |jXe|, 晶体一般等效于一个Q很高很高的电感,相当于电感的导线电阻很小很小。

Q一般达到10^-4量级。

避免信号太强打坏晶体的。

电阻一般比较大,一般是几百K。

串进去的电阻是用来限制振荡幅度的,并进去的两颗电容根据LZ的晶振为几十MHZ一般是在20~30P左右,主要用与微调频率和波形,并影响幅度,并进去的电阻就要看IC spec了,有的是用来反馈的,有的是为过EMI的对策
可是转化为并联等效阻抗后,Re越小,Rp就越大,这是有现成的公式的。

晶体的等效Rp很大很大。

外面并的电阻是并到这个Rp上的,于是,降低了Rp值----->增大了Re ----->降低了Q
精确的分析还可以知道,对频率也会有很小很小的影响。

总结并联电阻的四大作用:
1、配合IC内部电路组成负反馈、移相,使放大器工作在线性区;
2、限流防止谐振器被过驱;
3、并联降低谐振阻抗,使谐振器易启动;
4、电阻取值影响波形的脉宽。

石英晶体振荡器是高精度和高稳定度的振荡器,被广泛应用于彩电、计算机、遥控器、手机等各类振荡电路中,以及通信系统中用于频率发生器、为数据处理设备产生时钟信号和为特定系统提供基准信号。

可以说只要需要稳定时钟的地方,就必需要有晶体振荡器。

一:认识晶体、晶振常见晶体振荡器有两类,一类是无源晶体,也叫无源晶振,另一类是有源晶振,也叫钟振。

无源晶体外形如下图:
(HC-49S 插脚)
HC HC--49S/SMD 49S/SMD 贴片贴片贴片))无源晶体以以上两种封装的晶体最为常用无源晶体以以上两种封装的晶体最为常用,,广泛
广泛应用于普通设备上,尤其是嵌入式设备,若对体积大小有要求,可以选择更小的贴片封装,如下图:
(XG5032 贴片) (XS3225 贴片 1,3脚有效,2,4脚为空脚)当前消费类电子如手机,MP4,笔记本等,XS3225封装最为常用。

无源晶体说穿了就是封装了一下晶体,在晶体两面镀上电极引出两根线即可,那么有源晶振就是在无源晶体的基础上加了一个晶体振荡电路,,比如采用一个74HC04或者54HC04之类的非门与晶体勾通三点式电容振荡电路,所以它具有 电源,地,时钟输出三个脚,有些还会增加一个脚,就是晶振工作控制脚,当不需要工作的时候,可以关掉晶振降低功耗。

如下图:
(OS3225 与XS3225外形一样,只是脚位定义不同1:EN 控制脚,2:GND 地,3:OUT 信号输出,4:VCC 电源,一般为3.3V 或者5V)。

晶振内部振荡电路等效图如下:
非门5404的输出脚2就是信号输出脚。

二:晶体振荡电路原理分析,我们以最常见得MCU振荡电路为例,参考电路如下:
很多人做MCU51单片机得时候,不明白晶体两边为什么要加两个电容,大小一般在15pF~33pF 之间,有些特殊的,还需要在晶体上并联一个大电阻,一般老师的解释是提高晶体振荡电路的稳定性,有助于起振,而对于其根本原理没有解释。

其实这个电路就是典型的电容三点式振荡电路,Y1是晶体,相当于三点式里面的电感,C1和C2就是电容,5404(类似74HC04)和R1实现一个NPN的三极管,大家可以对照高频书里的三点式电容振荡电路。

接下来分析一下这个电路。

5404必需要一个电阻,不然它处于饱和截止区,而不是放大区,R1相当于三极管的偏置作用,让5404处于放大区域,那么5404就是一个反相器,这个就实现了NPN三极管的作用,NPN三极管在共发射极接法时也是一个反相器。

接下来用通俗的方法讲解一下这个三点式振荡电路的工作原理,大家也可以直接看书。

大家知道一个正弦振荡电路要振荡的条件是,系统放大倍数大于1,这个容易实现,相位满足360°,接下来主要讲解这个相位问题:
5404因为是反相器,也就是说实现了180°移相,那么就需要C1,C2和Y1实现180°移相就可以,恰好,当C1,C2,Y1形成谐振时,能够实现180移相,这个大家可以解方程等,把Y1当作一个电感来做。

也可以用电容电感的特性,比如电容电压落后电流90°,电感电压超前电流90°来分析,都是可以的。

当C1增大时,C2端的振幅增强,当C2降低时,振幅也增强。

有些时候C1,C2不焊也能起振,这个不是说没有C1,C2,而是因为芯片引脚的分布电容引起的,因为本来这个C1,C2就不需要很大,所以这一点很重要。

接下来分析这两个电容对振荡稳定性的影响。

因为7404的电压反馈是靠C2的,假设C2过大,反馈电压过低,这个也是不稳定,假设C2
过小,反馈电压过高,储存能量过少,容易受外界干扰,也会辐射影响外界。

C1的作用对C2恰好相反。

因为我们布板的时候,假设双面板,比较厚的,那么分布电容的影响不是很大,假设在高密度多层板时,就需要考虑分布电容,尤其是VCO之类的振荡电路,更应该考虑分布电容。

有些用于工控的项目,建议不要用晶体的方法振荡,而是直接接一个有源的晶振很多时候大家会用到32.768K的时钟晶体来做时钟,而不是用单片机的晶体分频后来做时钟,这个原因很多人想不明白,其实这个跟晶体的稳定度有关,频率越高的晶体,Q值一般难以做高,频率稳定度不高,32.768K的晶体稳定度等各方面都不错,形成了一个工业标准,比较容易做高。

一般晶体在基频下最高频率只能做到30MHz附近,最高的也只有40MHz,更高的一般采用晶体的3次倍频,这个时候晶体的接法比较特殊,需要采用一定的选频网络,如下图,这个选频网络需要工作在3次倍频上,这样才能保证稳定工作。

但一般还是建议采用基频晶体,所以客户在采购高频晶体时,需要问清楚厂家是基频还是倍频,超过40MHz的大部分都是倍频了。

三:晶体晶振原理特性及工艺1、石英晶体与频率控制组件石英是由硅原子和氧原子组合而成的二氧化硅(Silicon Dioxide, SiO2), 以32点群的六方晶系形成的单结晶结构﹝图一﹞.单结晶的石英晶体结构具有压电效应特性, 当施加压力在晶体某些方向时, 垂直施力的方向
就会产生电气电位. 相对的当以一个电场施加在石英晶体某些轴向时, 在另一些方向就会产
生变形或振动现象. 掌握单结晶石英材料的这种压电效应, 利用其发生共振频率的特性, 发
挥其精确程度作为各类型频率信号的参考基准, 就是水晶震荡器的设计与应用. 因为石英晶
体具有很高的材料Q值,所以绝大部份的频率控制组件,如共振子及振荡器,都以石英材料为基础. 以石英为基础的频率控制组件可以依其压电振动的属性, 可以分为体波(bulk wave)振动组件及表面声波(surface acoustic wave)振动组件. 体波振动组件如石英晶体共振子, 石英晶体滤波器及石英晶体振荡器, 表面波振动组件如表面波滤波器及表面波共振子. 当石英晶
体以特定的切割方式, 以机械加工方式予以表面研磨, 完成特定的外型尺寸就是通称的石英
芯片(quartz wafer 或 quartz blank ). 将这个石英芯片放置在真空还境中, 于表面镀上电极后,再以导电材料固定在金属或是陶瓷基座上, 并加以封装, 就成为一般所谓的石英晶体共振子( quartz crystal resonator ). 利用石英共振子在共振时的低阻抗特性及波的重迭特性, 用邻近的双电极, 可以做出石英晶体滤波器. 将石英振荡子加上不同的电子振荡线路, 可以
做成不同特性的石英振荡器. 例如: 石英频率振荡器(CXO), 电压控制石英晶体振荡器(Voltage Controlled Crystal Oscillator, VCXO), 温度补偿石英晶体振荡器(Temperature Compensated Crystal Oscillator, TCXO), 恒温槽控制石英晶体振荡器(Oven Controlled Crystal Oscillator, OCXO)…等. 相对于体波谐振的是表面声波的谐振. 将石英晶体表面镀以叉状电极(inter-digital-transducer, IDT)方式所产生的表面振荡波, 可以制造出短波长(高频率)谐振的表面声波共振子(SAW Resonator)或表面声波滤波器(SAW Filter).
2、石英晶体的压电特性
石英材料中的二氧化硅分子(SiO2) 在正常状态下, 其电偶极是互相平衡的电中性. 在(图二左)的二氧化硅是以二维空间的简化图形. 当我们在硅原子上方及氧原子下方分别给予正电场及负电场时, 空间系统为了维持电位平衡, 两个氧原子会相互排斥, 在氧原子下方形成一
个感应正电场区域, 同时在硅原子上方产生感应负电场区域. 相反的情况, 当我们在硅原子
上方及氧原子下方分别给予负电场及正电场时, 两个氧原子会相互靠近, 氧原子下方产生感
应负电场,硅原子上方产生感应正电场. (图二). 然而, 氧原子的水平位置变化时, 邻近的另一个氧原子会相对的产生排斥或吸引的力量, 迫使氧原子回到原来的空间位置. 因此, 电场
的力量与原子之间的力量会相互牵动, 电场的改变与水平方向的形变是形成交互作用状态. 这个交互作用会形成一个在石英材料耗能最小的振动状态, 祇要由电场持续给与能量, 石英材料就会与电场之间维持一个共振的频率. 这个压电效应下氧原子的振幅与电场强度及电场对二氧化硅的向量角度有相对应的关系.在实际的应用上, 电场是由镀在石英芯片上的金属电极产生, 电场与二氧化硅的向量角度则是由石英晶棒的切割角度来决定.
(Fig. 2) Simplified one dimensional piezoelectricity of SiO2
3、石英的切割角度
依据不同的应用领域及工作温度需求, 因应了许多不同的石英切割角度种类. 例如AT-, BT-, CT-, DT-, NT, GT…..等不同的切割板片. 不同的切割方向的板片具有不同的弹性常数张量(elastic constant tensor), 不同的压电常数张量(piezoelectric constant tensor)及不同的介电常数张量(dielectric constant tensor). 这些张量在石英组件的设计及应用上展现了不同的振荡及温度特性. (图三)表现了在Z-plat石英结构上,几种不同方向的石英板片切割方式.
﹝Fig. 3﹞Orientation angle of a Z-plate quartz crystal.
4、石英晶体的振动模态
经由不同的石英切割角度及不同电极型状的电场效应, 石英芯片展现了各种不同的振动模态. 以经常产生的振动模态可以概分为扰曲模态(flexture mode), 伸缩模态(extension mode), 面剪切模态(face shear mode) 和 厚度剪切模态(thickness shear mode). 这几种振动模态以简单的方法在表一中可以看到. 在实际状况中, 石英芯片并不是一定祇有单一种振动模态, 而可能有多种模态同时存在在一个石英芯片的振荡中, 经由适当的设计, 可以压制其它不希望产生的振动模态(unwanted mode), 来达到主要振动模态的最佳化.
﹝Table 1﹞Vibration Mode and Cut Angle.
5、石英晶体的频率与温度特性
大部份的石英晶体产品是用于电子线路上的参考频率基准或频率控制组件, 所以, 频率与工作环境温度的特性是一个很重要的参数. 事实上, 良好的频率与温度(frequeny versus temperature)特性也是选用石英做为频率组件的主要因素之一. 经由适当的定义及设计, 石英晶体组件可以很容易的就满足到以百万分之一 (parts per million, ppm) 单位等级的频率误差范围. 若以离散电路方式将LCR零件组成高频振荡线路, 虽然也可以在小量生产规模达到所需要的参考频率信号误差在ppm或sub-ppm等级要求, 可是这种方式无法满足产业要达到的量产规模. 石英组件的频率对温度特性更是离散振荡线路无法简易达成的. 在(图四) 中提
供了数种不同的石英晶体切割角度的频率对温度特性曲线.
﹝Fig.4﹞Frequency-temperature characteristics of various quartz cuts.
在各种不同种类的切割角度方式中, AT角度切割的石英芯片适用在数MHz到数佰MHz的频率范围,是石英芯片应用范围最广范及使用数量最多的一种切割应用方式. 在(图五)中, 从石英晶棒X-轴向的上视图, 可以看到对Z-轴向旋转约35度的AT 方向. 这在大量生产的技术上也是很好达成的一种作业方式.
( Fig.5 ) Orientation of AT plat
(图六)是以AT切割角度变动在厚度振动模态的频率对温度特性的展开图. 图中以常用的室温
摄式25度作为相对零点, AT切割的最大优点是频率对温度变化为一元三次方曲线. 这个特性, 从(图六)中可以看到, 在相当宽广的温度范围下, AT切割的温度曲线的第一阶及第二阶常数为零, 第三阶的常数便决定了频率对温度的变化值.
(Fig. 6) AT - cut frequency-temperature characteristics.
6、石英晶体共振子的等效线路及参数
(图七)(a)及(b)分别是DIP型式及SMD型式的石英振荡子的基本结构图. (图七)(c)是电子电
路上所使用代表石英振荡子的电子符号. 当石英晶体共振子处在远离振荡频率区域时, 石英
晶体共振子仅是一个电容性的组件, 当频率接近石英晶体的振荡频率时, 就接近是一个电感
性的等效LCR振荡线路.
(Fig. 7) (a) l can type resonator
(b) Ceramic SMD type resonator
(c) Symbol of crystal usnit
(图八) 就是将石英晶体共振子转换成振荡频率附近的Butterworth-Van Dyke (BVD)等效电路. 在这个图中,主要有四个主要参数 : 静态电容-Co, 动态电容-C1, 动态电感-L1及动态电阻-R1.
﹝Fig.8﹞Effective Circuit of Crystal
七.共振频率( Resonance Frequency )
在技术文献及产品应用上, 石英晶体共振子的共振有三组不同定义及特性的共振频率.
(1) 串联谐振频率及并联谐振频率 ( fs , fp )
(series resonance frequency and parallel resonance frequency)
(2) 谐振频率及反谐振频率 ( fr , fa )
(resonance frequency and anti-resonance frequency)
(3) 最大电导频率及最小电导频率 ( fm , fn )
(maximum admittance frequency minimum admittance frequency).
这三组频率的导纳(admittance)图, 可以从(图九)复数坐标清楚的看到
﹝Fig.9﹞ Complex Admittance of Resonators
串联偕振频率及并联偕振频率, fs and fp ,是分别由电导(real part of the admittance)最大和阻抗(real part of the electric input impedance)最大时的频率.
谐振频率及反谐振频率, fr and fa , 分别是当电导等于零(纯电阻特性)的二个频率. 在这个时候, fr 的阻抗为 1 / Rr 而fa 的阻抗为 1/ Ra.
在评估共振时的等效线路时, 串联谐振频率及并联谐振频率, fs and fp , 是最重要的二个频率参数. 对于串联谐振频率及并联谐振频率( fs and fp )二者的关系, 我们可以用下列公式来表达:
公式中的C1及 L1 分别是(图七)中的动态电容(motional capacitance)及动态电感(motional conductance); Co 是静态电容(shunt capacitance).
8、专有名辞
(1) (1) 公称频率及容许误差公称频率及容许误差公称频率及容许误差( Nominal Frequency and Tolerance )( Nominal Frequency and Tolerance )
( Nominal Frequency and Tolerance ) 在正确的振荡线路匹配下, 从振荡线路输出的频率, 称之为“公称频率( nominal
frequency )”. 频率单位一般是以兆赫( megahertz, MHz) 或 仟赫(Kilohertz, KHz)表示. 实际的批量生产及振荡线路应用上, 产品在室温环境(25o C)中都会有一些相对于中心频率的频率散布误差. 这类型的频率容许误差的最大散布值,一般是以ppm ( parts per million )或% ( percent ) 来表示.。

相关文档
最新文档