第3章-概率密度函数的估计

合集下载

概率密度估计

概率密度估计

概率密度估计
1 概率密度估计
概率密度估计(Probability Density Estimation,简称PDE)也称为密度函数估计,旨在描述一个随机变量X的概率密度函数,从而
帮助准确定量分析研究变量X的特征。

通常,概率密度估计的过程可以分解为两个步骤。

第一步是从样
本中提取该变量的直方图,然后以某种函数形式拟合该直方图,得到
其对应的概率密度函数。

其中,最常用的函数形式为高斯分布(Gaussian Distribution)的普通分布、泊松分布(Poisson Distribution)、多元正态分布(Multivariate Normal Distribution)、双截止分布(Binomial Distribution)、逻辑正态
分布(Log-normal Distribution)等。

第二步就是根据拟合出概率密度函数形状,运用其特点和参数,
得到该变量的最佳估计,便于对样本进行更有效率的分析。

比如,在
高斯分布模型下,样本拟合出的方差可以帮助我们判断数据的稳定性。

概率密度估计被广泛应用于贝叶斯统计分析、学习理论、社会科
学研究等,是发现重要模式并探寻变量分布的重要工具。

总之,概率密度估计是一项核心重要的数据分析技术,其解释力、拟合能力和模型大小的理论基础为研究者们收集总结数据,比较复杂
的变量特征提供了可靠信息。

概率密度函数的估计.

概率密度函数的估计.

∵ P(Xk| μ )=N(μ ,σ2),P(u)=N(μ 0,σ02)
P ( | X i ) a
k 1
1 1 Xk exp{ 2 2
1 N Xk 2 0 2 a' exp{ [ ]} 2 k 1 0
1 N 1 2 1 N 0 a' ' exp{ [( 2 2 ) 2( 2 Xk 2 ) ]} 2 0 k 1 0
三. 参数估计的基本概念
1. 统计量:样本中包含着总体的信息,总希望通过样本 集把有关信息抽取出来。也就是说,针对不同要求构 造出样本的某种函数,该函数称为统计量。 2. 参数空间:在参数估计中,总假设总体概率密度函数 的形式已知,而未知的仅是分布中的参数,将未知参 数记为 ,于是将总体分布未知参数 的全部可容许 值组成的集合称为参数空间,记为 。 3. 点估计、估计量和估计值:点估计问题就是构造一个 统计量d x1, , xN 作为参数 θ 的估计ˆ ,在统计学中 i i 是属于类别 的几个 称 ˆ 为 θ 的估计量。若 x1 , , xN i 样本观察值,代入统计量d就得到对于第i类的ˆ 的具体 数值,该数值就称为 θ 的估计值。



Xk

T
结论:①μ 的估计即为学习样本的算术平均

②估计的协方差矩阵是矩阵 X k X k 的算术 平均(nⅹn阵列, nⅹn个值)

T
二. 贝叶斯估计
极大似然估计是把待估的参数看作固定的未知量, 而贝叶斯估计则是把待估的参数作为具有某种先验 分布的随机变量,通过对第i类学习样本Xi的观察, 通过贝叶斯准则将概率密度分布P(Xi/θ)转化为后 验概率P(θ/Xi) ,进而求使得后验概率分布最大的 参数估计,也称最大后验估计。 估计步骤:

概率论与数理统计第3章

概率论与数理统计第3章

例2 设(X,Y)的概率密度是
f
x,
y
2e(2 x
y),
0,
x 0, y 0, 其它.
(1) 求分布函数 F x, y; (2) 求概率 PY X .
解 (1) 当 x 0, y 0 时,
F
x, y
yx
f
u,v dudv
y 0
x 2e(2uv) dudv
0
2 y evdv x e2udu
存在,则称此极限为在条件 Y=y下X的条件分 布函数,记成 FX|Y(x|y)。若存在 fX|Y(x|y), 使得
x
FX |Y (x | y) - f X |Y (u | y) du,
则称 fX|Y(x|y)为在条件 Y=y 下X的条件概率密 度函数,简称条件概率密度。
定理1:设随机向量(X,Y)的联合概率密度 为 f (x, y),Y的边缘概率密度为fY (y)。若f (x, y) 在点(x, y) 处连续,
5c

24
c 24 5
例4 设 (X,Y) 的概率密度是
f
(
x,
y)
cy(2
0
x), ,
0 x 1,0 y x 其它
求 (1) c 的值; (2) 两个边缘密度 .

(2)
fX x
f x, ydy
当 x 1或 x 0时 , y ,, y
都有 f x, y 0,故 fX x 0 .
pi j ,i=1,2, … p• j
为在Y=yj 条件下, 随机变量X的条件概率分布。
对固定的 i,若P(X=xi) > 0,则称
P(Y=yj
|X=xi)=
P(

第三章 概率密度函数的估计

第三章 概率密度函数的估计

当 0 ≤ x ≤ θ 时 , p (x | θ ) = 的最大似然估计是
解: 定义似然函数 l (θ ) =
k
1
θ
, 否则为0。证明θ
max x k 。
∏ p (x
k =1
N
k
|θ )
1 dH = 0, 即 − N ⋅ = 0 H (θ ) = ln l (θ ) = − N ln θ ,令 dθ θ 方程的解 θ = ∝ ,但实际问题中,θ ≠∝ 。 1 已知有N个随机样本, 且 0 ≤ x ≤ θ 时 , p (x | θ ) =



参数估计中的基本概念 统计量 参数空间 点估计、估计量和估计值 区间估计 参数估计判断标准 无偏性 有效性 一致性

3.2最大似然估计
(1)前提假设

参数θ(待估计)是确定(非随机)而未知的量 样本集分成c类,为A1,A2,…,Ac,Aj的样本是 从概率密度为 p x | ω j 的总体中独立抽取出来的。
i =1 i =1 i =1 i =1
N
(
)
N
N

例3.2:设x服从正态分N(μ,σ2),其中参数μ、 σ2未知,求它们的最大似然估计量。
N
解: 设样本集 A = {x1 , x2 ,..., xN }, 定义似然函数 l (θ ) = ∏ p(xi | θ )
i =1 2 ⎧ ⎡ ( xi − μ ) ⎤ ⎫ ⎪ ⎪ 1 exp⎢− H (θ ) = ln l (θ ) = ∑ ln p (xi | θ ) = ∑ ln ⎨ ⎥⎬ 2 2σ ⎪ i =1 i =1 ⎣ ⎦⎪ ⎭ ⎩ 2π σ 2 N ⎧ ⎫ ( ) x − 1 1 μ 2 i = ∑ ⎨− ln 2π − ln σ − ⎬ 2 2 2σ i =1 ⎩ 2 ⎭ N N 2

概率密度函数估计

概率密度函数估计

期望风险:
R Ed

(ˆ, ) p(x, )ddx

(ˆ, ) p( | x) p(x)ddx
Ed
R(ˆ | x) p(x)dx Ed 其中,x Ed ,
条件风险: R(ˆ | x) (ˆ, ) p( | x)d
xEd

X
k


T
1 X k
代入上式得
N
1 X k 0
k 1
1
N
X k 0
k 1
所以
1( N X k N ) 0
k 1




1 N
N
Xk
k 1
这说明未知均值的最大似然估计正好是训练样本的算术
平均。
如果必要条件有多解则需从中求似然函数最大者若不满足条件则无一般性方法用其它方法求最大以均匀分布32最大似然估计maximumlikelihoodestimation正态分布下的最大似然估计示例以单变量正态分布为例样本集似然函数32最大似然估计maximumlikelihoodestimation对数似然函数最大似然估计量满足方程32最大似然估计maximumlikelihoodestimation得方程组未知估计服从正态分布所以在正态分布时待估参数为代入上式得所以这说明未知均值的最大似然估计正好是训练样本的算术平均
非参数方法 (nonparametric methods)
不假定数学模型,直接用已知类别的学习样本的先验知识直 接估计数学模型。
二.监督学习与无监督学习 监督学习:在已知类别样本指导下的学习和训练,
参数估计和非参数估计都属于监督学习。
无监督学习:不知道样本类别,只知道样本的某些 信息去估计,如:聚类分析。

概率密度函数的估计

概率密度函数的估计
概率密度函数是描述随机变量取值概率分布的函数,是概率论中的核心概念。在实际问题中,类条件概率密度常常是未知的,因此需要通过样本集进行估计。估计方法主要分为参数估计和非参数估计两种。参数估计是在概率密度函数形式已知但参数未知的情况下,通过训练数据来估计参数,常用方法ห้องสมุดไป่ตู้最大似然估计和Bayes估计。最大似然估计是通过最大化似然函数来求解参数,使得估计出的概率密度函数最符合样本数据的分布。而Bayes估计则考虑了参数的先验分布,通过贝叶斯公式求出参数的后验分布,进而得到估计量。非参数估计是在总体概率密度函数形式未知的情况下,直接利用训练数据对概率密度进行推断,主要方法有Parzen窗法和kN-近邻法。Parzen窗法是通过某种函数表示某一样本对待估计的密度函数的贡献,所有样本所作贡献的线性组合视作对某点概率密度的估计。而kN-近邻法则是把窗扩大到刚好覆盖kN个点,落在窗内的样本点的数目固定,但窗宽是变化的,从而提高了分辨率。这些方法在模式识别、机器学习等领域有广泛应用,特别是在设计贝叶斯分类器时,需要利用样本集来估计类条件概率密度,进而完成分类器的设计。

第三章 概率密度函数的参数估计

第三章 概率密度函数的参数估计

均值的后验概率
均值的后验概率仍满足正态分布,其中:
1 n n = ∑ xi n i =1
2 nσ 0 σ2 n = 2 + 2 0 2 n 2 nσ 0 + σ nσ 0 + σ
σ σ σ = nσ + σ 2
2 n 2 0 2 0 2
均值分布的变化
类条件概率密度的计算
p ( x D) = ∫ p ( x ) p ( D) d
模型在时刻t处于状态wj的概率完全由t-1时刻 的状态wi决定,而且与时刻t无关,即:
P w(t ) W
(
T
) = P ( w ( t ) w ( t 1))
P w ( t ) = ω j w ( t 1) = ωi = aij
(
)
Markov模型的初始状态概率 模型的初始状态概率
模型初始于状态wi的概率用 π i 表示。 完整的一阶Markov模型可以用参数 θ = ( π, A ) 表示,其中:
3.0 引言
贝叶斯分类器中最主要的问题是类条件概 率密度函数的估计。 问题可以表示为:已有c个类别的训练样 本集合D1,D2,…,Dc,求取每个类别的 类条件概率密度 p ( x ωi ) 。
概率密度函数的估计方法
参数估计方法:预先假设每一个类别的概 率密度函数的形式已知,而具体的参数未 知;
最大似然估计(MLE, Maximum Likelihood Estimation); 贝叶斯估计(Bayesian Estimation)。
p ( x θ ) = ∑ ai pi ( x θi ),
i =1 M
∑a
i =1
M
i
=1
最常用的是高斯混合模型(GMM,Gauss Mixture Model):

5.1 第三章 常用概率分布10.14

5.1 第三章 常用概率分布10.14

相等。
设有一个总体 ,总体平均数为 μ,方差为σ2,总 体中各变数为 x, 将 此总体称为原总体。现从这个 总体中随机抽取含量为n的样本,样本平均数记为 。 可以设想,从原总体中可抽出很多甚至无穷多个 x 含量为n的样本。由这些样本算得的平均数有大有小, 不尽相同,与原总体平均数μ相比往往表现出不同程 度的差异。这种差异是由随机抽样造成的 ,称为 抽 样误差(sampling error)。 显然,样本平均数也是一个随机变量,其概率分 布叫做样本平均数的抽样分布。由样本平均数构成的 总体称为样本平均数的抽样总体。
由(4-11) 式及正态分布的对称性可推出 下列关系式, 再借助附表1 , 便能很方便地 计算有关概率:
P(0≤u<u1)=Φ(u1)-0.5
P(u≥u1) =Φ(-u1)
P(|u|≥u1)=2Φ(-u1)
P(|u|<u1==1-2Φ(-u1)
P(u1≤u<u2)=Φ(u2)-Φ(u1)
【例4.6】 已知u~N(0,1),试求: (1) P(u<-1.64)=?
P(|u|≥1.96)=1-0.95=0.05
P(|u|≥2.58)=1-0.99=0.01
(二)一般正态分布的概率计算
正 态 分 布 密度曲线和横轴围成的一个区
域,其面积为1,这实际上表明了“随机变量x
取值在-∞与+∞之间”是一个必然事件,其概
率为1。
若随机变量 x服从正态分布N(μ,σ2),则x
即大数定理
x2 2. 若随机变量x服从平均数是 μ,方差是 σ2的分布(不是正态分布); x1, x 2 ,…, x n 是 x 由此总体得来的随机样本,则 统 计 量 x =Σx/n的概率分布,当n相当大时逼近正态分 布N(μ,σ2/n)。这就是中心极限定理。

概率密度函数的估计

概率密度函数的估计

21
3.3.1 一元正态分布例解
最大似 然估计
p( xk | 1 ,2 2 )
1 exp( ( xk 1)2 )
22
22
ln
p( xk
| 1,2 )


1 2
ln(
2
2
)

1
22
( xk
1)2
第三章 概率密度密度的估计
22
一元正态分布均值的估计
p(K )

N k 1
p( xk
| ) p() ~
N
(

N
,

2 N
)
N

N
2 0
N
2 0

2
mN

2
N
2 0

2
0

2 N

02 2
N
2 0

2
第三章 概率密度密度的估计
28
3.4 非参数估计
非参数估计:密度函数的形式未知,也不作 假设,利用训练数据直接对概率密度进行估 计。又称作模型无关方法。
最大似 然估计
N
θH (θ) |ˆML θ ln p( xk | θ) |ˆML 0 k 1

1
ln
p( xk
| 1,2 )

1
2
( xk
1)
代入前式,得
ˆ ML

1 N
N
xk
k 1
第三章 概率密度密度的估计
23
一元正态分布方差的估计
最大似 然估计

2
R R(ˆ | x)p(x)dx Ed

概率论与数理统计总结之第三章

概率论与数理统计总结之第三章

第三章 多维随机变量及其分布 二维随机变量:一般,设E 是一个随机试验,它的样本空间是S={e}.设X=X(e)和Y=Y(e)是定义在S 上的随机变量,由它们构成的一个向量(X,Y),叫做二维随机向量或二维随机变量。

设(X,Y)是二维随机变量,对于任意实数x,y,二元函数:)}(){(),(y Y x X P y x F ≤⋂≤=),(y Y x X P ≤≤=称为二维随机变量(X,Y )的分布函数,或称随机变量X 和Y 的联合分布函数分布函数F(x,y)具有以下基本性质: 1.F (x,y)是变量x 和变量y 的不减函数,即对于任意固定的y ,当);,(),(,1212y x F y x F x x ≥> 对于任意固定的x ,当),(),(,1212y x F y x F y y ≥> 2.0≤F(x,y)≤1,且对于任意固定的y ,F (-∞,y)=0, 对于任意固定的x, F (x ,-∞)=0, F (-∞,-∞)=0,F (∞,∞)=13.F(x,y )=F(x+0,y ),F(x,y+0),即F(x,y )关于x 右连续,关于y 也右连续4.对于任意,,),,(),,(21212211y y x x y x y x <<下述不等式成立 0),(),(),(),(21111222≥-+-y x F y x F y x F y x F离散型随机变量:如果二维随机变量(X,Y)全部可能取到的不相同的值是有限对或可列无限多对,则称(X,Y )是离散型随机变量称,2,1,,},{====j i p y Y x X P ij i i ……为二维离散型随机变量(X,Y )的分布律,或随机变量X 和Y 是联合分布律 表格形式表示联合分布律: Y X1x… i x… 1y11p … 1i p… ………j yj p 1… ij p… ………离散型随机变量X 和Y 的联合分布函数为∑∑≤≤=x x yy ij i i p y x F ),(,其中和式是对一切满足y y x x i i ≤≤,的i,j 来求和的连续型随机变量:对于二维随机变量(X,Y )的分布函数F (x,y),如果存在非负的函数f(x,y)使得对于任意x,y 有 ⎰⎰∞-∞-=y xdudv v u f y x F ),(),(,则称(X,Y )是连续型的二维随机变量,函数f(x,y)称为二维随机变量(X,Y )的概率密度,或称为随机变量X 和Y 的联合概率密度概率密度的性质: 1.f(x,y)≥0 2.⎰⎰∞∞-∞∞-=∞∞=1),(),(F dxdy y x f3.设G 是xOy 平面上的区域,点(X,Y )落在G 内的概率为 ⎰⎰=∈Gdxdy y x f G Y X P ),(}),{(4.若f(x,y)在点(x,y )连续,则有),(),(2y x f y x y x F =∂∂∂一般,设E 是一个随机试验,它的样本空间是S={e},设),(),(2211e X X e X X ==…),(,e X X n n =是定义在S 上的随机变量,由它们构成的一个n 维向量,,(21X X …),n X 叫做n 维随机向量或n 维随机变量对于任意n 个实数n x x x n ,,^,,21元函数},^,{),^,(111n n n x X x X P x x F ≤≤=称为n 维随机变量,,(21X X …),n X 的分布函数或随机变量n X X X ,^,,21的联合分布函数。

概率密度函数的估计

概率密度函数的估计

⒋区间估计
除点估计外,还有另一类估计,它要求用区间 (d1,d2)作为 θ 可能取值范围的一种估计。这个 区间称为置信区间,这类估计问题称为区间估 计。 要求估计总体分布的具体参数是点估计问题。 介绍两种主要的点估计方法 最大似然估计和贝叶斯估计。 它们都能得到相应的估计值,当然评价一个 估计的“好坏”,不能按一次抽样结果得到的 估计值与参数真值的偏差大小来确定,而必须 从平均的和方差的角度出发进行分析
θˆ2 = x( N )
二、贝叶斯估计和贝叶斯学习
㈠贝叶斯估计 前面从决策论的角度论述了最小风险贝 叶斯决策,实际上贝叶斯决策和贝叶斯 估计是统一的。 贝叶斯决策的论述 设状态空间 ={ω1,ω2,…ωc} 识别对象 x = [x1,x2,…,xd]T , 决策空间 A ={ α1 ,α 2 ,… ,α i }
l (θ ) = p ( X | θ ) = p( x1 , x 2 ,…,x N | θ ) 这个密度可以看成是θ 的函数,具体地说,
l (θ ) = p ( x1 , x2 , …,x N | θ ) = p ( x1 | θ ) p ( x2 | θ ) … p ( x N | θ ) 似然函数 l (θ )给出了从总体中抽出x1,
k =1
θ 例如随机变量x服从均匀分布,但参数 θ1 、 2 未知, 1
p ( x | θ ) = θ 2 − θ 1 0
θ1 < x < θ 2
其它
设从总体中独立地抽取出N个样本x1, x2,…,xN。则其似然函数为
1 p( x1 , x 2 , …, x N | θ 1 ,θ 2 ) = (θ 2 − θ 1 ) N l (θ ) = p( X | θ ) = 0

第3章概率密度函数的估计new

第3章概率密度函数的估计new
ˆ 一般来讲, 使似然函数的值最大的 是样本 ˆ x , x , , x 的函数,记为: d ( x , x , , x )
1 2 N 1 2 N
ˆ 将 d ( x1 , x2 , , xN )称为 的最大似然估计量。 最大似然估计量:令( )为样本集D的似然函数, ˆ D {x , x , , x },如果 d ( D) d ( x , x , , x )
[1 , 2 , ,S ]T
用 表示梯度算子:
(3-6)
求解似然函数最大值就需要对的每一维分别求导, ,..., (3-7) S 1 对似然函数求导并令梯度等于零: l ( ) 0 H( )为对数似然函数: H( ) ln[( )] lnp(D| ) lnp(x1 ,x2 , ,xN |1 , 2 , ,S ) (3-8)
13
第3章 概率密度函数估计
3.2 参数估计的基本概念
(3)点估计、估计量和估计值: 点估计问题是要构造一个统计量d ( x1 ,..., xN )作为参数的 ˆ 估计, 在统计学中称 为 的估计量。如果x ( i ) , , x (i )是属于
1 N
类别i的几个样本观察值,代入统计量d 就得到对于第i类 ˆ 的 的具体数值,这个数值在统计学中称为 的估计值. (4)区间估计: 除点估计外,还有另一类估计,它要求用区间(d1 , d 2 )作为
k 1
N
从: H ( ) 0
(3 -11)
的S 个方程能够获得 的最大似然估计量的必要条件。 ˆ ˆ 如果式(3 -11)的解 能够使得似然函数值最大,则 就是 的最大似然估计。
29
3.2.1 最大似然估计
需要注意的是: 1,有时式(3 -11)无唯一解。如图3.1中有5个解。虽然这 5个都是解,但有的解可能是真正的全局最大值点, 也可能是局部极值点,或者还可能是函数的拐点。 2,此外,我们必须注意检查所得到的解是否位于函数 H ( )定义域的边界上。如果所有的极值解都已经求得了 ,我们就能确定其中必有一个是全局的最大值。然后 检查确定真正的全局最优点。

《概率论与数理统计》第三章

《概率论与数理统计》第三章

§1 二维随机变量
定义:设E是一个随机试验,样本空间S={e}; 设X=X(e)和Y=Y(e)是定义
y
X e,Y e
在S上的随机变量,由它们构成的
向量(X,Y)叫做二维随机向量 或二维随机变量。
e S
x
定义:设(X,Y)是二维随机变量对于任意实数x,y,
二元函数
ቤተ መጻሕፍቲ ባይዱ
y
F(x, y) P(X x) (Y y)
1 4
1 i
,
ji
0, j i
(X,Y)的联合分布律为:
YX
1
1
1/4
23 4 1/8 1/12 1/16
2
0 1/8 1/12 1/16
3
0
0 1/12 1/16
4
0
0 0 1/16
例3:设有10件产品,其中7件正品,3件次品。现从中
任取一件产品,取后不放回,令
1 X 0
第一次取到的产品是次品 1
z f (x, y)为顶面的柱体体积。
所以 X,Y 落在面积为零的区域的概率为零。
例3:设二维随机变量(X,Y)具有概率密度:
2e(2x y) , x 0,y 0
y f (x, y) 0,
其他
1 求分布函数F(x, y);2求P{X 2,Y 3};
3求P(Y X )的概率
解: (1)当x>0,y>0时
f (x, y)xy
————————
概率微分
(4) f ( x, y)的作用 : 求二维随机变量(X,Y)取值
落在区域G内的事件的概率
P((X ,Y ) G) f ( x, y)dxdy
G
G
注:1在几何上,z f (x, y)表示空间一个曲面,

概率密度函数的估计非参数估计

概率密度函数的估计非参数估计
模式识别
第3章 概率密度函数的估计
可编辑ppt
1
总体分布的非参数估计
前面的方法
密度函数的形式已知
存在问题
密度函数的形式常常未知 一些函数形式很难拟合实际的概率密度
经典的密度函数都是单峰的,而在许多实际情况 中却是多峰的
因此用非参数估计
可编辑ppt
2
总体分布的非参数估计
非参数估计
处理问题
直接用已知类别样本去估计总体密度分布p(x|ωi)
需要计算^p(x|ωi)的每个点的值 方法
① 用样本直接去估计类概率密度p(x|ωi)以此来设 计分类器, 如窗口估计
② 用学习样本直接估计后验概率p(ωi|x)作为分类 准则来设计分类器如k近邻法.
本章只考虑第一种方法
可编辑ppt
3
总体分布的非参数估计
k
pˆ(x) N
V
所以如果样本有限,则估计值一定有方差。
可编辑ppt
11
总体分布的非参数估计
p(x)估计值的收敛性讨论
考虑无限多样本情况
构造一串包括x的区域序列R1,R2,…RN. 对R1采用1个样本进行估计, 对R2采用2个样本进行估计, ……
VN是RN的体积,KN是N个样本落入VN的样本数则
7
总体分布的非参数估计
估计概率p(x)
密度p(x)的估计:
k pˆ ( x) N
V
(V足够小)
上式就是对x点概率密度p(x)的估计值
可编辑ppt
8
真实概率是 0.7 横坐标是k/N 纵坐标是概率分布
可编辑ppt
9
总体分布的非参数估计
p(x)估计值的收敛性讨论
当V固定的时候

[数学]第3章 概率密度函数估计 - 西安电子科技大学.ppt

[数学]第3章 概率密度函数估计 - 西安电子科技大学.ppt

第3章 概率密度函数估计
则称 ˆ 是θ的无偏估计。如果式(3-1)不成立,则称 是ˆ θ 的有偏估计,且定义 的ˆ 偏差为:
B(ˆ )= θ
(3-2)
例如, 在例3.1中,
E ( s ˆ ) E ( x 1 ) E ( x 2 ) E ( x N ) s E ( v 1 ) E ( v 2 ) E ( v N )
(3-5)
第3章 概率密度函数估计
证明 由 ˆ 是θ的一个无偏估计,
0 E ˆ ( ˆ )f( x |) d x
上式两边对θ求偏导, 有
0(ˆ)f(x|)dx(ˆ)f(x|)dx (ˆ ) f(x|)d x f(x|)d x (ˆ )f(x|)• lnf(x|)d x 1
其中: s为信号; vi为噪声。 信号s的估计(量)可以取为样本 均值,
s ˆ g (x 1 ,x 2 , ,x N ) x 1 x 2 N x N x
第3章 概率密度函数估计
4. 区间估计 利用抽样分布估计参数可能位于的区间, 即要求用区 间[d1, d2]作为θ可能取值范围的一种估计。 这个区间称 为置信区间, 这类估计称为区间估计。 本章要求估计概率密度函数的某些参数, 属于点估计 问题。
第3章 概率密度函数估计
2. Cramer-Rao下界(估计的方差性质)
除了偏差以外, 一个估计的基本特性还体现在方差上。
一般地, 要得到精确的方差是比较困难的, 人们希望得到方
差可能达到的下界。 下面的定理3.1表明, 无偏估计的方差
存在一个下界, 常称为Cramer-Rao下界。
定理3.1 令x=(x1, x2, …, xN)为样本向量, p(x|θ)为x的联
第3章 概率密度函数估计 显然, Rˆ1(l) 是R(l)的无偏估计; Rˆ2 (l) 是R(l)的有偏估计, 但
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

是VN:

N
(
x)
1 VN
kN N
第三章概率密度函数的估计
60
kN-近邻法举例
非参数 估计
kN的选择:
• 渐进收敛容易保证;
• 有限样本性质、最 小平方误差与 Parzen窗几乎相同
第三章概率密度函数的估计
61
3.4 讨论
概率密度函数包含了随机变量的全部信息, 是导致估计困难的重要原因。
高维概率分布的估计无论在理论上还是实际 操作中都是一个十分困难的问题。
第三章概率密度函数的估计
5
概率密度估计的方法
类的先验概率的估计:
• 用训练数据中各类出现的频率估计 • 依靠经验
类条件概率密度估计的两种主要方法:
• 参数估计:概率密度函数的形式已知,而表征函数的参 数未知,通过训练数据来估计
➢ 最大似然估计 ➢ Bayes估计
• 非参数估计:密度函数的形式未知,也不作假设,利用 训练数据直接对概率密度进行估计
p( | K ) p(K | ) p( )
p(K | ) p( )d
4、计算贝叶斯估计
ˆBE
p( | K )d
26
一元正态分布例解
贝叶斯 估计
总体分布密度为:
p(x | ) ~ N (, 2)
均值μ未知,μ的先验分布为:
p()
~
N
(
0
,
2 0
)
样本集: K={x1, x2 ,…, xN}
i
i
,
2 i
,
di
T
采用迭代法进行参数估计
第三章概率密度函数的估计
34
3.3 非参数估计
非参数估计:密度函数的形式未知,也不作假设, 利用训练数据直接对概率密度进行估计。又称作
模型无关方法。 参数估计需要事先假定一种分布函数,利用样本数
据估计其参数。又称作基于模型的方法
两种主要非参数估计方法:
用贝叶斯估计方法求μ的估计量
第三章概率密度函数的估计
27
一元正态分布例解(II)
贝叶斯 估计
计算μ的后验分布:
p( | K) p(K | ) p()
p( K )
N
p( xk
|
) p()
~
N
(
N
,
2 N
)
k 1
N
N
2 0
N
2 0
2
mN
2
N
2 0
2
0
2 N
02 2
N
2 0
2
计算μ的贝
叶斯估计: ˆ p( | K )d N
第三章概率密度函数的估计
最大似 然估计
20
最大似然估计
求θ1, θ2
最大似 然估计
第三章概率密度函数的估计
21
3.2.2 贝叶斯估计-最大后验概率
用一组样本集K={x1, x2 ,…, xN}估计未知参数θ 未知参数θ视为随机变量,先验分布为 p(θ),而
在已知样本集K出现的条件下的后验概率为p(θ|K)
θH (θ) |ˆML θ ln p( xk | θ) |ˆML 0 k 1
1
ln
p( xk
| 1,2 )
1
2
( xk
1)
代入前式,得
ˆ ML
1 N
N
xk
k 1
第三章概率密度函数的估计
18
一元正态分布方差的估计
最大似 然估计
2
ln
p( xk
| 1,2 )
1
22
( xk 1)2 222
代入前式,得
最大后验概率估计-Maximum a posteriori (MAP)
ˆMAP argmax p( | K )
argmax p(K | ) p( )
p(K )
argmax p(K | ) p( )
第三章概率密度函数的估计
22
决策问题与估计问题
贝叶斯 估计
决策问题: 样本x 决策ai 真实状态wj 状态空间A是离散空间 先验概率P(wj)
第三章概率密度函数的估计
28
贝叶斯学习
i贝叶斯学习的本质:参数值随着样本增多趋近于真实值的 过程
3.2.3 混合高斯模型
参数 估计
Mixed gaussian distribution
密度函数具有如下形式:正态模型的线性组合
D
p(x | i )
dij
N
(ij
,
2 ij
)
j 1
需估计的参数:
R R(ˆ | x)p(x)dx Ed
贝叶斯估计:使风险最小的估计
ˆBE argmax R(ˆ | x) ˆ
第三章概率密度函数的估计
24
贝叶斯估计(II)
贝叶斯 估计
损失函数定义为误差平方: (ˆ, ) ( ˆ)2
R(ˆ | x)
(ˆ, )p( | x)d [ E( | x)]2 p( | x)d
θ
n
argmax ln
θ
k 1
p(xk
| θ)
dH ( ) 0 d
第三章概率密度函数的估计
14
最大似然估计示意图
最大似 然估计
第三章概率密度函数的估计
15
计算方法
最大似 然估计
最大似然估计量使似然函数的梯度为 0 :
N
θH (θ) |ˆML θ ln p( xk | θ) |ˆML 0 k 1
12
似然函数
最大似然估计
似然函数:
l(θ) p(K | θ) p(x1, x2,..., xN | θ)
N
p(xk | θ)
k 1
对数(loglarized)似然函数:
N
H (θ) ln p(xk | θ)
k 1
第三章概率密度函数的估计
13
最大似然估计
最大似 然估计
θˆ ML argmax l (θ)
56
有限样本的影响
非参数 估计
均方误差最小(MSE)准则
4
MSE(E( pˆ N (x) p(x))2 ) O(N d 4 )
维数灾难(Curse of Dimensionality): 当维 数较高时,样本数量 无法达到精确估计的 要求。
N 16 32 178 3162
d
N4/(d+4)
lim P( ˆ ) 0
N
第三章概率密度函数的估计
11
3.2.1 最大似然估计 (ML)
独立地按概率密度p(x|θ)抽取样本集
K={x1, x2 ,…, xN},用K估计未知参数θ
参数未知,为了描述概率密度函数p(x|ωi)与参数θ的依赖
关系,用p(x|ωi,θ)表示。
第三章概率密度函数的估计
1
0.1
2
0.1
5
0.1
10
0.1
3E+13 50
0.1
59
3.3.3 kN-近邻法
非参数 估计
均匀核函数Parzen窗估计,窗宽固定,不 同位置落在窗内的样本点的数目是变化的。
kN-近邻估计:把窗扩大到刚好覆盖kN个点。 落在窗内的样本点的数目固定,窗宽是变化
的。kN根据样本总数N选择。
概率密度估计表达式:点x处窗的“体积”
3.3.2 Parzen窗法
非参数 估计
样本集KN= {x1, x2,…, xN} 区域RN是一个d维超立方体,棱长hN,体积VN= hNd 定义窗函数:
(u)
1
uj
1, 2
j 1,2,
d
0 otherwise
超立方体内样本数: kN 某点概率密度p(x)的估计
N
i 1
(
X
X hN
模式识别
Pattern Recognition
第三章 概率密度函数的估计
第三章 概率密度函数的估计
3.1 引言 3.2 参数估计 3.3 非参数估计 3.4 讨论
3.1 引言
分类器
x1
g1
功能结构
x2
g2
.
.
.
.
.
.
xn
gc
MAX
a(x)
基于样本的Bayes分类器:通过估计类条件概 率密度函数,设计相应的判别函数
[E( | x) ˆ]2 p( | x)d
定理 3.1: 如果定义损失函数为误差平方函数,则有:
ˆBE E[ | x]
p( | x)d
第三章概率密度函数的估计
25
贝叶斯估计的步骤
贝叶斯 估计
1、确定θ的先验分布 p(θ) 2、由样本集K={x1, x2 ,…, xN}求出样本联合分
布:p(K|θ) 3、计算θ的后验分布
基于样本的直接确定判别函数方法
第三章概率密度函数的估计
3
基于样本的Bayes分类器设计
Bayes决策需要已知两种知识:
• 各类的先验概率P(ωi)
• 各类的条件概率密度函数p(x|ωi)
P(i | x)
p(x | i )P(i ) p(x | j )P(j )
j
知识的来源:对问题的一般性认识或一些训练数据
为保证估计依概率渐进收敛到真实的概率密度,即:
pˆ N (x) P p(x)
p( x)
估计收敛的充要条件:
lim
N
hN
0
lim
N
NhNd
hN
h1 d 1 N
第三章概率密度函数的估计
53
不同窗宽的估计效果
非参数 估计
相关文档
最新文档