西电 场论与复变函数试卷2011

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1页 共 6页

西安电子科技大学

考试时间 120 分钟 试 题

1.考试形式:闭卷;

2.本试卷共 大题,满分100分。

班级 学号 姓名 任课教师

一 选择题(共30分,每小题3分)

1、求圆柱螺旋线ˆˆˆ3cos 3sin 4r ti tj tk =++r 的切向单位矢量[ A ]

A.334ˆˆˆˆsin cos 555ti tj k τ=-++

B.334ˆˆˆˆsin cos 555

ti tj k τ=-+ C.334ˆˆˆˆcos sin 555ti tj k τ=-++ D.334ˆˆˆˆcos sin 555

ti tj k τ=--+ 2、矢量场ˆˆˆ(23)(3)(2)A z y i x z j y x k =-+-+-r ,则A r 是[ ]

A.有势场

B.调和场

C.管形场

D.保守场

3、下列关于复数的描述错误的是[

C ] A.2z zz = B.1212z z z z +≤+

C.210i i <

D.1212Arg()Arg()Arg()z z z z =+

4、若复数2z i =,则z 的辐角的主值为[ B ]

A.6

π- B.6π C.56π D.56π- 5、函数()Re()f z z z =在复平面上[ D ]

A.处处可导

B.处处不可导

C.仅在0z =处解析

D.仅在0z =处可导

第2页 共 6页

6、关于初等函数,下列说法正确的是[ B ]

A.z e 的周期为2k π

B.z e 的周期为2k i π

C.Ln Ln n z n z =

D.Ln b a b a e =(a 和b 均为复数且0b ≠)

7、积分23

221

iz z i e dz z -=+⎰

Ñ的值为[ B ] A.e π B.e π C. 0 D.e π-

8、级数1(1)12n n n i n ∞=⎡⎤-+⎢⎥⎣⎦∑[ B ]

A.发散

B.绝对收敛

C.收敛但非绝对收敛

D.绝对收敛但非收敛

9、幂级数1(1)n n n i z ∞=+∑的收敛半径为[

C ]

B. C. 1 D.2

10、若函数21cos ()z f z z

-=,则z =∞是()f z 的[ B ] A.可去奇点 B.一级极点 C.二级极点 D.本性奇点

二 填空题(共30分,每小题3分)

1、已知矢性函数()A t r ,且()A t r 的二阶导数存在,求积分

()()A t A t dt ''⨯=⎰r r ________________

2、求数量场22

x y u z

+=经过点(1,1,2)M 的等值面方程________________ 3、数量场23u x yz =在点(2,1,1)M -处方向导数的最大值为________________ 4、6(1)i +=_________________

5、已知解析函数()(cos sin )x f z e y i y =+,则()f z '=_________________

6、Ln(1)=-_________________

第3页 共 6页 7、已知函数2()f z z =,求其沿着从原点至3i +直线段的积分

30()i

f z dz +=⎰

_________________ 8、已知C 为正向圆周:4z =,求积分C

z dz z ⎰Ñ_________________ 9、函数sin z 在0z =处的泰勒展开式为_________________

10、已知2()(1)

z

e f z z z =-,则Res[(),1]f z =_______0_________ 三 计算题(共40分,每小题8分)

1、求数量场223u x z xy z =-+在点(1,-1,1)M 处沿曲线23,,x t y t z t ==-=朝t

增大一方的方向导数。

2、已知矢量场232ˆˆˆ(3)()2A x y z i y xz j xyzk =++-+r ,求矢量场A r 的散度和旋

度。

3、已知函数32(,)3u x y y x y =-

(1)证明(,)u x y 是调和函数

(2)求(,)u x y 的共轭调和函数(,)v x y ,以及由它们构成的解析函数

()(,)(,)f z u x y iv x y =+

4、已知函数1()(1)(2)

f z z z =

--,将其在下列圆环域内展开成洛朗级数 (1)011z <-< (2)12z <-<+∞

5、若C 为正向圆周:2z =,求积分1

31z C z e dz z +⎰Ñ

相关文档
最新文档