废水生物脱氮除磷技术(课堂PPT)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
6
氮、磷污染的环境效应及现状
水体富营养化是继需氧型污染后我国又一 严重பைடு நூலகம்水环境污染问题,尤其是在太湖、滇 池、巢湖及众多湖泊水库等缓流水体中,由 于藻类生长旺盛,严重影响了水体功能,破 坏了水生生态系统,甚至污染和危害了饮用 水水源地。
7
氮、磷污染的环境效应及现状
1986~1990年对我国26个大中型湖泊及水 库的调查表明,这些湖泊和水库的总氮浓度 范围为0.08~3.383mg/L,其中含量最高的是 南四湖、巢湖和蘑菇湖水库。所调查湖泊和 水库的总氮平均值为2mg/L以上。总磷含量 范围为0.018~0.4mg/L,含量最高的是镜泊湖, 其次为南四湖、太湖和呼伦湖。26个湖泊和 水库的总磷几何平均值为0.165mg/L。
16
硝化作用
亚硝酸菌和硝酸菌都是化能自养菌,它们 利用CO2、CO32-和HCO3-等作为碳源,通过 NH3、NH4+或NO2的氧化获得能量。硝化反 应过程需在好氧条件下进行,以氧作为电子 受体。其反应过程可用下式表示:
亚硝化反应:
NH4+ + O2 + HCO3- NO2- + H2O +H2CO3 +
9
氮、磷污染的环境效应及现状
调查表明,我国大部分湖泊、水库已达到富 营养化或超富营养化程度。其中富营养化的 湖泊、水库有江苏太湖、安徽巢湖等9个;重 富营养化的有流花湖、墨水湖、荔湾湖、滇 池(草海)、东山湖、南湖、玄武湖和麓湖 等8个。由此可见,我国大部分湖泊、水库遭 受污染,而且近年来有不断上升的趋势。
3
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。
4
2
概述
最近几年来,由于水体富营养化问题的日 益严峻,使得国内对污水中氮磷的危害性认 识日渐深入,使废水脱氮除磷工艺的研究得 到发展。但是大部分污水脱氮除磷工艺仍然 是借鉴于国外的工艺,而这些工艺还或多或 少地存在一些问题。如何解决现有废水脱氮 除磷工艺中存在的问题,提高污水脱氮除磷 效率和运行的稳定性,是目前环境工程界亟 待解决的问题。
RCHNH2COOH + O2 NH3
RCOOH + CO2 + (13-1)
在活性污泥和生物膜系统内,氨化作用能
较完全地发生。 15
硝化作用
废水中的氨氮在硝化细菌的作用下,进一 步氧化为硝态氮。此过程包括两个基本反应 步骤:由亚硝酸菌(Nitrosomonas)参与的将 氨氮转化成亚硝酸盐(NO2-)的反应;由硝 酸菌(Nitrobacter)参与的将亚硝酸盐转化为 硝酸盐(NO3-)的反应。其中亚硝酸菌有亚 硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球 菌属等;硝酸菌有硝酸杆菌属、硝酸螺菌属 和硝酸球菌属等。
亚硝酸菌
(13-2)
17
硝化作用
硝化反应:
NO2- + NH4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
13
概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
14
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
氮、磷污染的环境效应及现状
富含磷酸盐和某些形式氮素的水在光照和 其它环境条件适宜的情况下使水体中浮游生 物如藻类等过量生长,随后藻类死亡并伴随 着异养微生物的代谢,耗尽了水体中的溶解 氧,造成了水体质量恶化和水生生态环境结 构破坏,这就是所谓的水体富营养化。
5
氮、磷污染的环境效应及现状
一般认为,当水体中含氮量超过0.2~0.3mg/L, 磷含量大于0.01~0.02mg/L,BOD5大于 10mg/L,在pH值7~9的淡水中细菌总数每毫 升超过10万个,表征藻类数量的叶绿素-α含 量大于10μg/l时,水体就发生了富营养化。
10
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
11
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
12
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
废水生物脱氮除磷技术
概述 13.3.1 氮、磷污染的环境效应及现状 13.3.2 生物脱氮的基本原理及影响因素分析 13.3.3 生物除磷的基本原理及影响因素分析 13.3.4 废水生物脱氮除磷工艺
1
概述
国外从60年代末开始研究开发废水生物脱 氮除磷工艺技术,到80年代中期开始成功地 应用于城市生活污水和部分工业废水处理工 程中,取得了相当大的成功。但由于国内对 水体富营养化的问题还没有引起必要的重视, 使得国内在污水中营养物去除方面起步较晚。
8
氮、磷污染的环境效应及现状
这些数据与OECD1982年所调查的世界71 个湖泊的几何平均值及浓度范围相比,均远 大于OECD的调查结果。上述调查的湖泊及 水库中,有68%的透明度<0.6m,76%的<1m, 其中城市湖泊的透明度一般为0.2~0.4m。湖 泊及水库中,浮游植物的含量较高,叶绿素(chlα)年均值的范围为0.7~240mg/L。
氮、磷污染的环境效应及现状
水体富营养化是继需氧型污染后我国又一 严重பைடு நூலகம்水环境污染问题,尤其是在太湖、滇 池、巢湖及众多湖泊水库等缓流水体中,由 于藻类生长旺盛,严重影响了水体功能,破 坏了水生生态系统,甚至污染和危害了饮用 水水源地。
7
氮、磷污染的环境效应及现状
1986~1990年对我国26个大中型湖泊及水 库的调查表明,这些湖泊和水库的总氮浓度 范围为0.08~3.383mg/L,其中含量最高的是 南四湖、巢湖和蘑菇湖水库。所调查湖泊和 水库的总氮平均值为2mg/L以上。总磷含量 范围为0.018~0.4mg/L,含量最高的是镜泊湖, 其次为南四湖、太湖和呼伦湖。26个湖泊和 水库的总磷几何平均值为0.165mg/L。
16
硝化作用
亚硝酸菌和硝酸菌都是化能自养菌,它们 利用CO2、CO32-和HCO3-等作为碳源,通过 NH3、NH4+或NO2的氧化获得能量。硝化反 应过程需在好氧条件下进行,以氧作为电子 受体。其反应过程可用下式表示:
亚硝化反应:
NH4+ + O2 + HCO3- NO2- + H2O +H2CO3 +
9
氮、磷污染的环境效应及现状
调查表明,我国大部分湖泊、水库已达到富 营养化或超富营养化程度。其中富营养化的 湖泊、水库有江苏太湖、安徽巢湖等9个;重 富营养化的有流花湖、墨水湖、荔湾湖、滇 池(草海)、东山湖、南湖、玄武湖和麓湖 等8个。由此可见,我国大部分湖泊、水库遭 受污染,而且近年来有不断上升的趋势。
3
氮、磷污染的环境效应及现状
我国水体富营养化问题已越来越突出,成 为近几年我国水体污染中非常严峻的问题。 “富营养化”(Eutrophication)是湖泊分类 方面的概念。湖泊学家认为天然富营养化是 水体衰老的一种表现。而过量的植物性营养 元素氮、磷进入水体则是人为加速了水体的 富营养化过程。
4
2
概述
最近几年来,由于水体富营养化问题的日 益严峻,使得国内对污水中氮磷的危害性认 识日渐深入,使废水脱氮除磷工艺的研究得 到发展。但是大部分污水脱氮除磷工艺仍然 是借鉴于国外的工艺,而这些工艺还或多或 少地存在一些问题。如何解决现有废水脱氮 除磷工艺中存在的问题,提高污水脱氮除磷 效率和运行的稳定性,是目前环境工程界亟 待解决的问题。
RCHNH2COOH + O2 NH3
RCOOH + CO2 + (13-1)
在活性污泥和生物膜系统内,氨化作用能
较完全地发生。 15
硝化作用
废水中的氨氮在硝化细菌的作用下,进一 步氧化为硝态氮。此过程包括两个基本反应 步骤:由亚硝酸菌(Nitrosomonas)参与的将 氨氮转化成亚硝酸盐(NO2-)的反应;由硝 酸菌(Nitrobacter)参与的将亚硝酸盐转化为 硝酸盐(NO3-)的反应。其中亚硝酸菌有亚 硝酸单胞菌属、亚硝酸螺杆菌属和亚硝酸球 菌属等;硝酸菌有硝酸杆菌属、硝酸螺菌属 和硝酸球菌属等。
亚硝酸菌
(13-2)
17
硝化作用
硝化反应:
NO2- + NH4+ +H2CO3 + HCO3- + O2 NO3- +
H2O + 硝酸菌
(13-3)
总反应:
NH4+ + O2 + HCO3微生物细胞
13
概述
废水生物脱氮利用自然界氮素循环的原理, 在水处理构筑物中营造出适宜于不同微生物 种群生长的环境,通过人工措施,提高生物 硝化反硝化速率,达到废水中氮素去除的目 的。废水生物脱氮一般由三种作用组成:氨 化作用、硝化作用和反硝化作用。
14
氨化作用
在未经处理的原废水中,含氮化合物主要以
有机氮如蛋白质、尿素、胺类化合物、硝基 化合物以及氨基酸等形式存在,此外还含有 部分氨态氮如NH3和NH+4-N。在细菌的作用 下,有机氮化合物分解、转化为氨态氮。以 氨基酸为例,反应式为:
氮、磷污染的环境效应及现状
富含磷酸盐和某些形式氮素的水在光照和 其它环境条件适宜的情况下使水体中浮游生 物如藻类等过量生长,随后藻类死亡并伴随 着异养微生物的代谢,耗尽了水体中的溶解 氧,造成了水体质量恶化和水生生态环境结 构破坏,这就是所谓的水体富营养化。
5
氮、磷污染的环境效应及现状
一般认为,当水体中含氮量超过0.2~0.3mg/L, 磷含量大于0.01~0.02mg/L,BOD5大于 10mg/L,在pH值7~9的淡水中细菌总数每毫 升超过10万个,表征藻类数量的叶绿素-α含 量大于10μg/l时,水体就发生了富营养化。
10
生物脱氮的基本原理及影响因素
一、生物脱氮的基本原理 二、生物脱氮的影响因素
11
生物脱氮的基本原理
概述 1、氨化作用(Nitrogen) 2、硝化作用(Nitrification) 3、反硝化作用(Denitrification) 4、生物脱氮的新发现
12
概述
废水生物脱氮技术是70年代中期美国和南 非等国的水处理专家们在对化学、催化和生 物处理方法研究的基础上,提出的一种经济 有效的处理技术。废水生物脱氮有同化脱氮 与异化脱氮。同化脱氮是指微生物的合成代 谢利用水体中的氮素合成自身物质,从而将 水体中的氮转化为细胞成分而使之从废水中 分离。通常所说的废水生物脱氮是指异化脱 氮。
废水生物脱氮除磷技术
概述 13.3.1 氮、磷污染的环境效应及现状 13.3.2 生物脱氮的基本原理及影响因素分析 13.3.3 生物除磷的基本原理及影响因素分析 13.3.4 废水生物脱氮除磷工艺
1
概述
国外从60年代末开始研究开发废水生物脱 氮除磷工艺技术,到80年代中期开始成功地 应用于城市生活污水和部分工业废水处理工 程中,取得了相当大的成功。但由于国内对 水体富营养化的问题还没有引起必要的重视, 使得国内在污水中营养物去除方面起步较晚。
8
氮、磷污染的环境效应及现状
这些数据与OECD1982年所调查的世界71 个湖泊的几何平均值及浓度范围相比,均远 大于OECD的调查结果。上述调查的湖泊及 水库中,有68%的透明度<0.6m,76%的<1m, 其中城市湖泊的透明度一般为0.2~0.4m。湖 泊及水库中,浮游植物的含量较高,叶绿素(chlα)年均值的范围为0.7~240mg/L。