《发电厂电气部分》课程设计_模板

合集下载

发电厂电气部分-课程设计doc资料

发电厂电气部分-课程设计doc资料

发电厂电气部分-课程设计郑州航空工业管理学院发电厂电气部分课程设计09级电气工程及其自动化专业 0906071班级题目:凝汽式火电厂一次部分课程设计姓名:学号:指导老师:二零一二年十二月九日1.原始资料1.1 发电厂建设规模1.1.1 类型:凝汽式火电厂1.1.2 最终容量、机组的型式和参数:2×300MW、年利用小时数:6000h/a 1.2 电力系统与本厂的连接情况1.2.1 电厂在电力系统中的作用与地位:地区电厂1.2.2 发电厂联入系统的电压等级:220KV1.2.3 电力系统总装机容量:16000MW,短路容量:10000MVA1.2.4 发电厂在系统中所处的位置、供电示意图1.3 电力负荷水平:1.3.1 220KV电压等级:架空线10回,备用2回,I级负荷,最大输送200MW,T max=4000h/a1.3.2110KV电压等级:架空线8回,I级负荷,最大输送180MW,T max=4000h/a1.3.3 穿越本厂功率为50MVA。

1.3.4 厂用电率:6%1.4 环境条件1.4.1 当地年最高温40℃,最低温-6℃,最热月平均最高温度28℃,最热月平均最低温度24℃1.4.2 当地海拔高度为50m1.4.3 气象条件无其它特殊要求。

2.设计任务2.1 发电厂电气主接线设计2.2 厂用电设计2.3 短路电流的计算2.4 主要电气设备的选择2.5 配电装置3.设计成果3.1 设计说明书、计算书一份3.2 图纸一张摘要 (3)引言 (3)1.电气主接线设计 (3)1.1 系统与负荷资料分析 (3)1.2 执行可行的接线方案 (4)1.3 厂用电接线方案的选择 (7)2. 短路电流计算 (9)2.1 短路电流的计算及原则 (9)2.2 短路电流计算条件 (9)2.3 短路电流计算规则 (9)2.4 短路计算 (9)2.5 短路电流计算表 (9)3. 电气设备的选择 (11)3.1 电气设备的选择规则 (11)3.2 电气设备的选择条件 (12)3.3电气设备选择 (12)3.4电气设备的选择结果表 (14)3.5主接线中设备配置的一般原则 (16)4. 配电装置 (16)4.1 配电装置选择的一般原则 (17)4.2 配电装置的选型和依据 (17)5安全保护装置 (17)5.1避雷器的选择 (17)5.2继电保护的配置 (18)6参考文献 (19)附录Ⅰ短路电流计算 (19)附录Ⅱ:电气设备的校验 (22)附录Ⅲ:设计总图 (24)引言在高速发展的现代社会中,电力工业在国民经济中有着重要作用,它不仅全面地影响国民经济其他部门的发展,同时也极大的影响人民的物质与文化生活水平的提高。

发电厂电气课程设计

发电厂电气课程设计

发电厂电气 课程设计一、课程目标知识目标:1. 学生能够理解发电厂电气系统的基础知识,掌握发电机、变压器、配电装置等主要设备的结构和工作原理。

2. 学生能够掌握发电厂电气设备的运行维护原则,了解电力系统的高压电气设备安全操作规程。

3. 学生能够解释发电厂电气系统的基本电路原理,并运用相关知识分析简单电路。

技能目标:1. 学生能够运用所学知识,进行发电厂电气设备的常规检查和简单故障排除。

2. 学生通过实验和实践操作,掌握发电厂电气设备的基本操作技能,能够安全地完成模拟操作任务。

3. 学生能够运用电气绘图软件,绘制基本的电气原理图和安装图。

情感态度价值观目标:1. 培养学生对电力工程领域的兴趣,激发他们探索电力科学奥秘的热情。

2. 增强学生的安全意识,培养他们在操作电气设备时的责任感,形成良好的职业操守。

3. 通过团队合作完成任务,培养学生的协作精神和集体荣誉感,提高他们解决问题的能力。

课程性质:本课程属于专业技术课程,以理论教学和实践操作相结合的方式进行。

学生特点:学生应为具备一定物理基础知识和电工基础的年级学生,具有一定的逻辑思维能力和动手能力。

教学要求:课程应结合实际案例,以实物和模型展示电气设备结构,注重培养学生的实际操作技能和问题解决能力。

同时,注重理论与实践相结合,确保学生能够达到课程目标所设定的具体学习成果。

二、教学内容1. 发电厂电气系统概述:包括发电厂电气系统的组成、发展历程以及在我国的应用现状。

教材章节:第一章 发电厂电气系统概述2. 发电机与变压器:讲解发电机的结构、工作原理及类型;变压器的工作原理、分类和主要参数。

教材章节:第二章 发电机与变压器3. 配电装置与保护:介绍配电装置的组成、类型及功能;电力系统保护的基础知识。

教材章节:第三章 配电装置与保护4. 高压电气设备:阐述高压断路器、隔离开关、负荷开关等设备的工作原理、结构及应用。

教材章节:第四章 高压电气设备5. 发电厂电气设备运行维护:讲解发电厂电气设备的运行维护原则、方法以及故障处理。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计一、设计概述本课程设计旨在让学生了解发电厂的电气部分的基本原理和运行机制,为学生提供实践操作的机会,培养学生在电气工程领域的技能和能力。

通过本课程设计,学生将深入学习发电厂电气系统的设计、运行和故障排除。

二、设计目标1.理解发电厂的电气系统的组成和工作原理。

2.学习发电厂电气设备的选型、安装和调试。

3.掌握发电厂电气设备的运行维护和故障排除技巧。

4.能够进行发电厂电气系统的设计和改进。

三、设计内容本课程设计主要包括以下几个方面的内容:1. 发电厂电气系统的组成和工作原理•学习发电厂电气系统的组成和各部分设备的功能。

•了解发电厂电气系统的工作原理和工作过程。

•分析发电厂电气系统的运行特点和需求。

2. 发电厂电气设备的选型、安装和调试•学习发电厂电气设备的选型原则和方法。

•掌握发电厂电气设备的安装和调试技术。

•学习电气设备的运行参数调整和优化方法。

3. 发电厂电气设备的运行维护和故障排除•掌握发电厂电气设备的日常运行维护方法。

•学习电气设备的故障检修和故障排除技巧。

•了解电气设备的故障分析和预防措施。

4. 发电厂电气系统的设计和改进•学习发电厂电气系统的设计方法和原则。

•掌握电气系统的改进和升级技术。

•进行实际发电厂电气系统的设计和改进。

四、设计步骤1.学习发电厂电气系统的基本知识和原理。

2.进行发电厂电气设备的选型和配套计算。

3.编制电气系统的设计方案和施工图纸。

4.安装和调试电气设备。

5.进行电气系统的运行和维护。

6.掌握电气设备故障排除和分析方法。

7.对电气系统进行改进和优化。

五、设计要求1.设计文档需要使用Markdown文本格式进行编写。

2.文档字数不少于1200字。

3.图表和表格需要清晰明确,便于理解和演示。

4.设计步骤需要详细说明和解释,确保学生能够按照步骤进行实际操作。

六、评估方式根据学生对课程设计的实际操作和设计文档的质量,教师可以采用以下方式进行评估:1.实际操作评估:根据学生的实际操作表现和操作结果进行评估。

发电厂电气部分课程设计

发电厂电气部分课程设计

第一章概述 ___________________________________________________________11.1课程设计目的 ____________________________________________________________ 11.2设计原始资料 ____________________________________________________________ 11.3设计原则________________________________________________________________ 1 第二章方案设计________________________________________________________32.1原始资料分析 ____________________________________________________________ 32.2发电厂接线方案比较_______________________________________________________ 32.2.1 主接线方案拟定 ______________________________________________________ 32.2.2各方案比较___________________________________________________________ 62.3主变的选择______________________________________________________________ 82.3.1相数的选择___________________________________________________________ 82.3.2 绕组数量的选择 ______________________________________________________ 82.3.3连接方式的选择_______________________________________________________ 82.3.4普通型和自耦型选择___________________________________________________ 82.3.5调压方式的选择_______________________________________________________ 82.4各级电压中性点运行方式选择 _______________________________________________ 9 第三章短路电流的计算__________________________________________________ 103.1短路形成的原因 _________________________________________________________ 103.2短路的危害 _____________________________________________________________ 103.3短路的类型______________________________________________________________ 103.4短路电流计算的目的______________________________________________________ 103.5短路电流的计算方法以及短路点的选取 ______________________________________ 11 第四章厂用电设计 _____________________________________________________ 234.1厂用电负荷 _____________________________________________________________ 234.2厂用电电压等级________________________________________________________ 234.3厂用变压器的选择_______________________________________________________ 234.3.1相数的选择__________________________________________________________ 234.3.2绕组数量的选择______________________________________________________ 234.3.3联结组别的选择______________________________________________________ 234.3.4厂用变容量的计算____________________________________________________ 244.4厂用电源及接线方式______________________________________________________ 244.4.1 工作电源___________________________________________________________ 244.4.2 备用电源和启动电源__________________________________________________ 244.4.3 事故保安电源 _______________________________________________________ 244.5厂用电接线方式_________________________________________________________ 244.6厂用电短路计算_________________________________________________________ 254.7厂用电动机的自启动校验__________________________________________________ 304.7.1电动机的自启动的概念和必要性_________________________________________ 304.7.2电动机自启动时母线电压的校验_________________________________________ 31 第五章导体、电气设备选择及校验 _________________________________________ 325.1选择电气一次设备遵循的条件 ______________________________________________ 325.2导线的选择及校验________________________________________________________ 325.2.1发电机侧导体选择____________________________________________________ 325.2.2主变到系统导体选择__________________________________________________ 345.3断路器的选择与校验______________________________________________________ 365.3.1主变到系统侧断路器选择 ______________________________________________ 365.3.2发电机到母线汇流点的断路器选择_______________________________________ 375.3.3厂用变高压侧到母线汇流点的断路器的选择_______________________________ 385.3.4 厂用变压器低压侧到厂用母线的断路器选择_______________________________ 395.3.5厂用负荷到厂用母线断路器的选择_______________________________________ 405.4隔离开关的选择与校验____________________________________________________ 415.4.1主变到系统侧隔离开关选择 ____________________________________________ 425.4.2发电机到母线汇流点的隔离开关选择_____________________________________ 425.4.3厂用变高压侧到母线汇流点的隔离开关选择_______________________________ 435.4.4 厂用变压器低压侧到厂用母线隔离开关选择_______________________________ 445.4.5厂用负荷到厂用母线的隔离开关选择_____________________________________ 455.5互感器的选择与校验______________________________________________________ 465.5.1 电压互感器的选择 ___________________________________________________ 465.5.2电流互感器的选择与校验 ______________________________________________ 465.6绝缘子串和套管的选择____________________________________________________ 485.6.1 穿墙套管的选择 _____________________________________________________ 485.6.2 支柱绝缘子的选择 ___________________________________________________ 485.6.3 悬式绝缘子的选择 ___________________________________________________ 485.7熔断器的选择 ___________________________________________________________ 49 第六章发电厂配电装置设计 ______________________________________________ 496.1布置原则 _______________________________________________________________ 496.2布置型式 _______________________________________________________________ 506.3配电装置的选择和校验____________________________________________________ 51 第七章过压保护和接地__________________________________________________ 527.1电气设备绝缘配合原则____________________________________________________ 527.2过电压保护方式__________________________________________________________ 537.2.1过电压 _____________________________________________________________ 537.2.2 避雷针、避雷线、避雷针的选择________________________________________ 537.3接地系统 _______________________________________________________________ 54 第八章继保配置规划 ___________________________________________________ 558.1继电保护配置 ___________________________________________________________ 558.2电站综合自动化 _________________________________________________________ 558.3测量系统_______________________________________________________________ 578.4同期装置_______________________________________________________________ 578.5信号系统设置 ___________________________________________________________ 578.6直流系统设置 ___________________________________________________________ 58 第九章课程设计总结与心得体会 ___________________________________________ 59附录 _______________________________________________________________ 60 参考文献____________________________________________________________ 61摘要:电力系统是由发电、变电、输电、配电和用电等环节组成的电能生产与消费系统。

发电厂电气部分第五版课程设计

发电厂电气部分第五版课程设计

发电厂电气部分第五版课程设计一、前言本文档是针对发电厂电气部分第五版的课程设计所编写的。

本课程设计主要涵盖了电气装置原理、电力系统分析、保护与控制等重要内容,旨在培养学生掌握电力系统方面的基本理论和技能,具备初步的工程应用能力。

二、课程设计概述2.1 设计目标本次课程设计旨在让学生在理论知识和实践技能两方面得到全面发展,培养其动手操作、分析和解决问题的能力。

具体目标如下:•掌握电气装置原理及其基本结构;•能够分析和解决电力系统的故障问题;•熟悉保护与控制的基本原理和实现方法;•具备一定的电力系统调试和运行能力;•了解电能质量控制的相关知识和技术。

2.2 设计内容本次课程设计主要包含以下内容:•电气装置原理及其基本结构;•电力系统分析;•保护与控制;•电力系统调试和运行;•电能质量控制。

2.3 设计要求•学生需在课程设计中充分发挥主观能动性,独立思考和解决问题;•设计结果须能实现相应的电力系统控制方案;•设计报告应准确、清晰、简明,格式规范。

三、具体设计方案3.1 设备与实验本次课程设计主要需要使用以下设备:•电能质量分析仪;•电力系统保护与控制设备;•发电机组;•变压器;•电缆线路;•电容器、电抗器等电气元件。

3.2 设计步骤3.2.1 基本设备检查和调试在正式进行课程设计前,需对设备进行检查和调试。

具体步骤包括:•确认所需设备是否齐全并处于正常工作状态;•调试发电机组、变压器等检测设备是否正常;•对电气元件进行通电测试,测试其电气参数是否正常。

3.2.2 电力系统分析根据所设计的电力系统参数,进行系统仿真和分析。

具体步骤为:•确认电力系统的拓扑结构和参数;•进行电力系统故障分析,包括短路故障、接地故障等;•对电力系统进行负荷仿真,分析电气设备的运行状态以及对电网的影响。

3.2.3 保护与控制针对电力系统的保护和控制进行设计,并实现相应的保护和控制方案。

具体步骤为:•设计电力系统的保护方案,包括过流保护、过电压保护等;•设计电力系统的控制方案,包括电容器无功补偿、电抗器无功补偿等;•确认相应的保护和控制策略。

发电厂电气部分课程设计 (3)

发电厂电气部分课程设计 (3)

发电厂电气部分课程设计1.本文档旨在设计一门关于发电厂电气部分的课程,为电气工程学生提供必要的理论和实践知识,以便他们能够理解和应用于实际发电厂的电气设备和系统。

2. 课程目标•了解发电厂的基本原理和电气系统的组成•掌握电气设备的选择、安装和运行原理•掌握发电厂电气系统的故障诊断和维护技术•能够设计和优化发电厂的电气布置和传输系统3. 课程大纲3.1 发电厂基本原理和电气系统的组成•发电厂的分类和工作原理•发电机的结构和原理•变压器和开关设备的作用•电气系统的组成和互连3.2 电气设备的选择、安装和运行原理•发电机的选择和参数要求•变压器的选择和安装要求•开关设备的选择和运行原理•发电厂电气设备的布置和连接3.3 发电厂电气系统的故障诊断和维护技术•电气设备的故障类型和原因•故障诊断的方法和步骤•发电厂电气系统的维修和保养技术•安全措施和应急预案3.4 发电厂电气布置和传输系统的设计和优化•电气系统的布置和传输线路设计•电气系统的优化和改进方法•新型电气设备和技术的应用•发电厂电气系统的可靠性分析和优化4. 课程教学方法•理论讲授:通过教师的讲解,给学生提供课程所需的理论知识。

•实验实践:通过实验室实践,让学生亲自操作和实验,加深对电气设备和系统原理的理解。

•个人和小组项目:学生将进行个人或小组项目,例如发电厂布置和传输系统设计,以提高他们的实际应用能力。

5. 评估和考核•课堂测验:课堂小测验将用于检查学生对课程内容的理解和掌握情况。

•个人和小组项目:学生将提交个人和小组项目的报告和演示,以证明他们对课程所学知识的应用能力。

•期末考试:综合考核学生对整个课程的理解和掌握情况。

6. 参考资料•电气工程基础教材•发电厂电气设备和系统设计手册•电气设备运行和维护手册7.本课程设计致力于培养学生对发电厂电气部分的理解和应用能力。

通过理论教学、实验实践和项目设计,学生将获得充分的知识和技能,以应对发电厂电气系统设计、维护和优化的挑战。

发电厂电气部分课程设计标准(包含模版)

发电厂电气部分课程设计标准(包含模版)

课程设计说明书学院:机电工程学院专业:电气工程及其自动化课程名称:发电厂电气部分设计题目:中型火力发电厂电气部分设计姓名:学号:指导教师:成绩:发电厂电气部分课程设计评分表目录一设计任务书 (3)1.1设计的原始资料 (3)1.2设计的任务与要求 (3)二电气主接线 (4)2.1电气主接线依据 (4)2.2主接线方案的设计 (5)2.2.1对原始资料的分析 (5)2.2.2主接线方案的拟定 (7)2.3 主变压器的选择与计算 (7)2.3.1变压器容量、台数和型式的确定原则 (7)2.3.2变压器的选择与计算 (8)三短路计算 (9)3.1短路计算的一般规则 (9)3.2短路电流的计算 (9)3.2.1各元件电抗的计算 (9)3.2.2 等值网络的化简 (10)四电气设备的选择 (14)4.1电气设备选择的一般原则 (14)4.2电气设备的选择条件 (14)4.2.1按正常工作条件选择电气设备 (14)4.2.2按短路情况校验 (15)4.2.3 断路器和隔离开关的选择 (17)4.2.4 电流互感器的选择 (18)五结束语 (19)六参考文献 (20)一火力发电厂电气部分设计任务书1.1设计的原始资料凝汽式发电厂:(1)凝汽式发电组3台:3×100MW,出口电压:10.5KV,发电厂次暂态电抗:0.12;额定功率因数:0.8(2)机组年利用小时:=5700小时;厂用电率:8%。

发电机主保护动作时间0.1秒,环境温度36度,年平均气温为22度。

电力负荷:送入220KV系统容量200MW,剩余容量送入110KV系统。

发电厂出线:220KV出线3回; 110KV出线4回(10KM),无近区负荷。

电力系统情况:220KV系统的容量为无穷大,选基准容量100MVA归算到发电厂220KV母线短路容量为3400MVA,110KV系统容量为500MVA。

1.2设计的任务与要求(1)发电机和变压器的选择表1-1 汽轮发电机的规格参数型号额定电压额定容量功率因数接线方式次暂态电抗QFS-100-2 10.5KV 100MW 0.8 YY 0.12注:发电及参数如上表,要求选择发电厂的主变,联络110KV和220KV的联络变压器的型号。

发电厂电气部分第三版课程设计

发电厂电气部分第三版课程设计

发电厂电气部分第三版课程设计1. 前言本文档是发电厂电气部分第三版课程设计的具体实施计划。

这个课程的目的是为学生提供关于发电厂电气部分的基础知识,包括电力系统和电机控制等方面。

同时,本课程设计旨在培养学生解决实际问题的能力,提高其电气工程技能。

2. 课程设计背景为了更好地教学和培养电气工程技术人才,发电厂电气部分改进了课程教学计划,将第一版教学计划进行了修改和完善,形成了第三版发电厂电气部分课程设计。

本课程设计要求学生在理论学习的同时,积极参与实践,通过实际的项目设计,锻炼解决问题的能力,提高电气工程技能。

3. 课程设计目标•提高学生的电气工程知识水平,掌握电力系统和电机控制方面的基础理论和技能;•能够完成电气工程的实际设计和实施,培养工程实践能力;•提高学生解决实际问题的能力,提升创新意识。

4. 课程设计内容4.1 理论学习本课程设计的第一部分是理论学习,主要包括电力系统和电机控制两个方面。

其中,电力系统学习内容包括电力系统的构成、运行原理以及电力系统的维护和保护。

电机控制的学习内容包括电机的原理、特性和控制方法等。

4.2 课程实践本课程设计的第二部分是课程实践。

在实践的部分,学生需要掌握实际工程设计的方法和过程,具体包括以下内容:•了解某一发电厂的电力系统构成及电机控制方法;•实地调查该发电厂电力系统,制定相应的设计方案;•根据实际需求,设计发电厂电气系统的控制系统和保护系统;•通过实际操作,对发电厂电力系统进行优化和维护。

在课程实践中,学生需要完成如下任务:•制定整个电气系统设计方案,包括电力系统和电机控制方案;•组织小型发电机组的装配和调试;•通过实际操作,对发电机组进行优化和维护;•进行电气系统运行状态监测和分析,确保设备的正常运行。

5. 课程设计成果展示本课程设计的最终成果是学生通过实践设计出的电气系统设计方案和实际操作结果。

学生通过实践,切实提高了电气工程技能,培养了解决实际问题的能力。

发电厂电气部分课程设计样本

发电厂电气部分课程设计样本

发电厂电气某些课程设计学院:信息技术学院专业班级:电气工程081学号姓名:指引教师:时间:.5-.6110kv变电站一次接线设计摘要本文一方面依照任务书上所给系统与线路及所有负荷参数,分析负荷发展趋势。

从负荷增长方面阐明了建站必要性,然后通过对拟建变电站概括以及出线方向来考虑,并通过对负荷资料分析,安全,经济及可靠性方面考虑,拟定了110kV,35kV,10kV以及站用电主接线,然后又通过负荷计算及供电范畴拟定了主变压器台数,容量及型号,同步也拟定了站用变压器容量及型号,最后,依照最大持续工作电流及短路计算计算成果,对高压熔断器,隔离开关,母线,绝缘子和穿墙套管,电压互感器,电流互感器进行了选型,从而完毕了110kV电气一次某些设计。

核心词:变电站变压器接线目录概述 (4)第一章变压器选取 (6)1.1 主变台数、容量和型式拟定 (7)1.2 站用变台数、容量和型式拟定 (9)第二章电气主接线 (10)2.1110kv电气主接线 (11)2.235kv电气主接线 (12)2.310kv电气主接线 (14)2.4站用变接线 (16)第三章最大持续工作电流及短路电流计算 (17)3.1 各回路最大持续工作电流 (17)3.2 短路电流计算点拟定和短路电流计算成果 (18)第四章重要电气设备选取 (19)4.1 高压断路器选取 (21)4.2 隔离开关选取 (22)4.3 母线选取 (23)4.4 绝缘子和穿墙套管选取 (24)4.5 电流互感器选取 (24)4.6电压互感器选取 (26)4.7各重要电气设备选取成果一览表 (29)附录I设计计算书 (30)附录II电气主接线图 (37)10kv配电装置配电图 (39)道谢 (40)参照文献 (41)概述1、待设计变电所地位及作用路1为30KM,线路2为20KM,线路3为25KM。

该地区自然条件:年最高气温 40摄氏度,年最底气温- 5摄氏度,年平均气温 18摄氏度。

发电厂电气部分课设-课程设计(精编文档).doc

发电厂电气部分课设-课程设计(精编文档).doc

【最新整理,下载后即可编辑】《发电厂电气部分》课程设计目录第1章概述 5 1.1 设计的依据. 5 1.2 电力系统概述 5 1.3 110kV变电所各级电压负荷情况分析. 61.4 110kV变电所的自然条件 6第2章电气主接线7 2.1 电气主接线设计的基本要求7 2.2 主变压器台数、容量、型式的选择72.3 电气主接线设计方案的技术经济比较与确定92.4 110kV变电所主接线图15第3章所用电接线设计163.1 所用电设计的要求及原则.163.2 所用变的确定及所用变接线的选择16第4章短路电流计算194.1 短路电流计算的条件194.2 短路电流计算方法和步骤194.3 三相短路电流计算20第5章电气设备选择255.1 电气设备选择的一般条件255.2 10kV配电装置电气设备选择25.5.3 110kV配电装置电气设备的选型33参考文献41第1章概述1.1设计的依据1.1.1依据根据设计任务书下达的任务和原始数据设计。

1.1.2设计内容为了满足该县负荷发展及电网电力交换的需要,优化该县的电网结构,拟在县城后山设计建设一座110/10的降压变电所,简称110kV 变电所。

1.2电力系统概述1.2.1本变电所与电力系统联系12连。

由于原始数据未提供电力系统XX、S及110kV变电所接线路长度j取为100MVA;按供电半径不大于5kM要L。

这里将XX取为0.0451, Sj求,110kV线路长度定为4.8kM。

1.2.2 110kV变电所在电力系统中的地位和作用1、根据110kV变电所与系统联系的情况,该变电站属于终端变电所。

2、110kV变电所主要供电给本地区用户,用电负荷属于Ⅱ类负荷。

1.3 110kV变电所各级电压负荷情况分析1.3.1供电方式110kV侧:共有两回进线,由系统连接双回线路对110kV变电所供电。

10kV侧:本期出线6回,由110kV变电所降压后供电。

1.3.2负荷数据1、全区用电负荷本期为27MW,共6回出线,每回按4.5MW计;远期50MW,14回路,每回按3.572MW设计;最小负荷按70%计算,供电距离不大于5kM。

发电厂电气部分课程设计 (2)

发电厂电气部分课程设计 (2)

发电厂电气部分课程设计一、引言本文档旨在设计一套发电厂电气部分课程,以帮助学生深入了解发电厂的电气设备及工作原理。

课程设计将分为以下几个部分:发电原理和发电机、输电与配电系统、电气控制与保护系统以及电气设备的维修与检修。

二、发电原理和发电机1.发电原理概述:讲解发电的基本原理和能量转换过程。

2.动力发电机:介绍各种动力源的应用、工作原理和特点。

3.发电机的组成和工作原理:详细讲解发电机的结构组成和工作原理。

4.发电机的参数和性能:阐述发电机的各种参数和性能指标,如额定功率、功率因数、效率等。

5.发电机调压与调速系统:讲解发电机的调压和调速机构、系统和方法。

三、输电与配电系统1.输电系统:介绍高压输电系统的概念、工作原理和设备,包括变压器、高压开关设备等。

2.配电系统:介绍低压配电系统的概念、工作原理和设备,包括低压开关设备、配电变压器等。

3.电力变压器:详细介绍电力变压器的结构、原理和分类。

4.配电设备的选择与布置:讲解配电设备的选择原则和布置方法。

四、电气控制与保护系统1.电气控制系统:介绍电气控制系统的组成、工作原理和常用控制方法。

2.电气保护系统:详细讲解电气保护系统的作用、分类和工作原理。

3.发电机保护:讲解发电机的各项保护功能和保护措施。

4.输电与配电系统的保护:介绍输电与配电系统常见的保护装置和保护控制策略。

五、电气设备的维修与检修1.电气设备的运行维护:介绍电气设备的运行维护方法和周期、注意事项等。

2.电气设备的故障诊断与检修:详细讲解电气设备故障的诊断方法和常见故障的检修步骤。

3.电气设备的安全操作:强调电气设备的安全操作规程和注意事项。

六、课程评估1.课程作业:设计一份与课程内容相关的实操作业,用于学生对所学知识的巩固。

2.课程考试:设计一套包含选择题、判断题和解答题的考试题目,用于综合评估学生对课程内容的掌握程度。

七、总结通过本课程设计,学生将全面了解发电厂的电气设备及其工作原理,掌握电气控制和保护系统的设计和运行,以及电气设备的维修与检修技术。

发电厂电气部分课程设计 (5)

发电厂电气部分课程设计 (5)

发电厂电气部分课程设计概述本文档旨在为发电厂电气部分课程设计提供一个综合性的指导。

课程设计的目标是帮助学生理解发电厂的电气系统,以及如何设计和优化这些系统的运行。

本文档将介绍课程设计的背景、目标、内容和评估标准。

背景发电厂是能源产业的重要组成部分,负责生产电力以满足人们的需求。

电气部分是发电厂中至关重要的一部分,包括发电机、变压器、开关设备、配电系统等。

学生通过参与电气部分课程设计,可以深入了解发电厂的电气系统的工作原理和运行要求。

目标本课程设计的目标如下:1.理解发电厂电气系统的基本原理和组成要素。

2.掌握发电机、变压器、开关设备和配电系统的设计和优化方法。

3.学会使用相关软件工具模拟和分析电气系统的效果。

4.培养学生团队合作和创新思维能力。

内容本课程设计的内容涵盖了以下几个方面:1. 发电机设计•发电机的工作原理和分类;•发电机的主要参数和特性;•发电机的计算和建模方法;•常见问题及解决方案。

2. 变压器设计•变压器的工作原理和分类;•变压器的主要参数和特性;•变压器的计算和建模方法;•变压器保护和维护。

3. 开关设备设计•不同类型的开关设备及其功能;•开关设备的选择和布置;•开关设备的保护和维护。

4. 配电系统设计•配电系统的基本结构和原理;•配电系统的设计和布置;•配电系统的保护和运行优化。

教学方法本课程设计采用以下教学方法:1.理论讲授:通过教师的讲授,介绍电气系统的基本原理和设计方法。

2.实践操作:学生将学到的理论知识应用到实际问题中,进行电气系统的设计和模拟。

3.团队合作:学生以小组为单位,共同完成课程设计任务,培养团队合作和协作能力。

评估标准本课程设计的评估标准如下:1.设计报告:学生需提交完整的课程设计报告,包括理论分析、设计结果和模拟数据等。

2.实践操作:学生需完成一定数量的实际操作,如使用软件工具进行电气系统模拟和优化。

3.学生评估:学生需参与对其他小组课程设计报告的评估,给予评价和反馈。

发电厂电气课程设计

发电厂电气课程设计

发电厂电气课程设计一、教学目标本课程的教学目标是使学生掌握发电厂电气的基本原理、设备及其运行维护方法。

通过本课程的学习,学生应能理解电气设备在发电厂中的作用,掌握各类电气设备的工作原理和特性,了解发电厂电气系统的运行规律和维护方法。

1.了解发电厂电气设备的基本原理和结构。

2.掌握发电厂电气设备的工作特性及运行维护方法。

3.理解发电厂电气系统的基本组成和运行规律。

4.能够分析发电厂电气设备的工作过程和运行状态。

5.具备发电厂电气设备故障诊断和处理能力。

6.熟练使用相关仪器仪表进行电气参数测量和分析。

情感态度价值观目标:1.培养学生对发电厂电气行业的兴趣,提高其专业认同感。

2.培养学生严谨的科学态度和团队合作精神。

3.使学生认识到电气安全的重要性,树立安全第一的意识。

二、教学内容本课程的教学内容主要包括发电厂电气设备的基本原理、结构、运行维护方法以及电气系统的组成和运行规律。

具体包括以下几个方面:1.发电厂电气设备:发电机、变压器、开关设备、电缆、母线等。

2.发电厂电气设备的运行维护:设备启动、停机、运行参数监测、故障处理等。

3.发电厂电气系统:电气主接线、保护、自动化装置、电力系统稳定性等。

三、教学方法为了提高教学效果,本课程将采用多种教学方法相结合的方式进行教学。

包括:1.讲授法:通过教师的讲解,使学生掌握电气设备的基本原理和运行维护方法。

2.案例分析法:分析实际案例,使学生更好地理解电气设备的运行特性和故障处理方法。

3.实验法:通过实验操作,使学生掌握电气设备的使用方法和运行规律。

四、教学资源为了支持本课程的教学,我们将准备以下教学资源:1.教材:《发电厂电气》,为学生提供系统性的理论知识。

2.参考书:《发电厂电气设备运行与维护》,为学生提供实践操作指导。

3.多媒体资料:制作课件、视频等,丰富教学手段,提高学生学习兴趣。

4.实验设备:发电机、变压器、开关设备等,为学生提供实践操作机会。

五、教学评估本课程的教学评估将采用多元化的评估方式,以全面、客观、公正地评价学生的学习成果。

发电厂电气部分课设-课程设计

发电厂电气部分课设-课程设计
2、110kV电压母线接线方式
1)单母线接线
2)单母分段接线
3)桥式接线(因线路故障和操作的机会比变压器多,选用可靠性较好的内桥接线。)
3、主变台数
为了保证供电可靠性,装设两台主变压器。
2.3.2110kV变电所可能采用的电气主接线方式如下:
方案






110kV
单母线接线
单母分段接线
单母分段接线
故所选变压器容量满足要求。
3、主变型式选择
按任务书要求并查110kV变电站设计指导手册附录2-3。近期主变压器型式选择SFZ7—31500/110±8×1.25%;列表如下:
型号
额定容量(kVA)
额定电压(kV)
空载
阻抗电压(%)
连接组别
高压
低压
SFZ7-31500/110
3、主变压器的型式
1)相数;
2)绕组数与结构;
3)绕组接线方式;
4)主变调压方式;
5)冷却方式;
2.2.2 计算、选择、校验
1、总负荷计算
根据负荷数据,近期6回出线,每回按4.5MW计,近期总负荷∑PM=6×4.5=27MW。
2、主变压器台数、容量选择计算
1)计算主变容量∑SM
∑SM=∑PM/cosφ=27/0.8=33.75MVA
10kV侧:本期出线6回,由110kV变电所降压后供电。
1.3.2负荷数据
1、全区用电负荷本期为27MW,共6回出线,每回按4.5MW计;
远期50MW,14回路,每回按3.572MW设计;
最小负荷按70%计算,供电距离不大于5kM。
2、负荷同时率取0.85,cosφ=0.8,年最大利用小时数Tmax=4250小时/年。

发电厂电气部分课程设计

发电厂电气部分课程设计

发电厂电气部分课程设计1. 引言本文档是针对发电厂电气部分的课程设计,旨在帮助学生深入理解发电厂的电气系统运行原理和设计方法。

本设计主要包括发电厂电气系统的结构和原理、主要设备的选型和布置、电气系统的保护与控制等内容。

2. 发电厂电气系统结构与原理2.1 发电厂电气系统结构发电厂的电气系统由发电机、变压器、开关设备、电力电子设备和配电系统等组成。

本节将详细介绍电气系统中各个部分的结构和功能。

2.2 发电机结构与原理发电机是发电厂的核心设备,负责将机械能转化为电能。

本节将详细介绍发电机的结构、工作原理以及选取与设计。

2.3 变压器结构与原理变压器是发电厂电气系统中的重要设备,负责将发电机产生的电能进行变压、升压或降压。

本节将对变压器的结构和原理进行详细讲解。

2.4 开关设备与电力电子设备开关设备和电力电子设备在发电厂的电气系统中起着重要的作用,负责控制电能的传输和分配。

本节将介绍开关设备和电力电子设备的作用和应用。

3.1 发电机选型与布置发电机的选型与布置是发电厂电气系统设计中的重要环节。

本节将介绍如何选择适当的发电机类型和参数,并进行合理布置。

3.2 变压器选型与布置变压器的选型与布置是发电厂电气系统设计中的关键步骤。

本节将详细介绍变压器的选型原则和布置方法。

3.3 开关设备与电力电子设备的选择选择合适的开关设备和电力电子设备对于发电厂电气系统的正常运行至关重要。

本节将介绍如何选择适用的开关设备和电力电子设备。

4.1 电气系统保护电气系统的保护是保证发电厂电气设备安全运行的重要环节。

本节将介绍常见的电气系统保护设备和保护原理。

4.2 电气系统控制电气系统的控制是发电厂电气设备运行的核心环节。

本节将介绍电气系统的控制原理和常用控制策略。

5. 总结通过本课程设计,学生将能够深入了解发电厂电气系统的结构与原理,掌握发电机、变压器、开关设备和电力电子设备的选型与布置方法,以及电气系统的保护与控制技术。

这将为学生今后在发电厂电气工程领域的实际工作提供有力支持。

发电厂电气部分课程设计任务书

发电厂电气部分课程设计任务书

发电厂电气部分课程设计任务书课程设计任务书课程名称:发电厂电气部分设计课程代码:XXXXXXXXX学年/学期:XXXXXX成绩比例:理论考核(50%)、实践考核(50%)授课教师:XXXXXXXX一、课程设计目的:通过发电厂电气部分设计的任务,让学生对发电厂电气设备的设计、安装和维护有全面的了解,并培养学生的实践操作能力和问题解决能力。

二、课程设计要求:1. 确定电气设备的设计参数和规格,包括发电机、变压器、电线电缆、开关设备等。

2. 进行电气系统的布线设计和功率/load流量计算。

3. 设计电气设备的保护措施和系统接地。

4. 进行电气设备的安装设计和就地控制设计。

5. 进行电气设备的调试和运行测试。

6. 编写相关的设计报告和实验报告,包括设计依据、设计计算、安装过程、调试结果等内容。

三、课程设计内容:1. 学生根据教师指导,选择一座常见的发电厂作为设计对象。

2. 学生需要对所选择的发电厂的相关设备进行调研,了解其电气设备的类型、参数及工作原理。

3. 学生需要根据所选发电厂的实际情况,进行电气设备的设计和布线。

4. 学生需要进行电气设备的安装和就地控制设计。

5. 学生需要进行电气设备的调试和运行测试,并记录测试结果。

6. 学生需要编写相关的设计报告和实验报告。

四、课程设计要求:1. 学生需要严格按照任务书的内容和要求完成课程设计,独立完成设计过程和实验操作。

2. 学生需要遵守相关的安全操作规范,在操作过程中保证自身的安全。

3. 学生需要按照指定的时间节点完成各个阶段的任务,包括设计报告的提交、实验报告的撰写等。

4. 学生需要积极主动地与教师进行交流和讨论,解决在设计过程中遇到的问题。

五、课程设计评分标准:1. 设计报告的完整性和合理性(30%)2. 实验操作的独立性和准确性(30%)3. 实验结果的准确性和可靠性(20%)4. 报告撰写的规范性和科学性(20%)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《发电厂电气部分》课程设计学生姓名:学号:专业班级:指导教师:二○○年月日设计(论文)任务(包括原始数据、技术要求、工作要求)课程设计的主要内容目录第1章概述 51.1 设计的依据. 51.2 电力系统概述 51.3 110kV变电所各级电压负荷情况分析. 61.4 110kV变电所的自然条件 6第2章电气主接线72.1 电气主接线设计的基本要求72.2 主变压器台数、容量、型式的选择72.3 电气主接线设计方案的技术经济比较与确定9 2.4 110kV变电所主接线图15第3章所用电接线设计163.1 所用电设计的要求及原则.163.2 所用变的确定及所用变接线的选择16 第4章短路电流计算194.1 短路电流计算的条件194.2 短路电流计算方法和步骤194.3 三相短路电流计算20第5章电气设备选择 255.1 电气设备选择的一般条件255.2 10kV配电装置电气设备选择25.5.3 110kV配电装置电气设备的选型33参考文献41第1章概述1.1设计的依据1.1.1依据根据设计任务书下达的任务和原始数据设计。

1.1.2设计内容为了满足该县负荷发展及电网电力交换的需要,优化该县的电网结构,拟在县城后山设计建设一座2×50MVA 110/10的降压变电所,简称110kV 变电所。

1.2电力系统概述1.2.1本变电所与电力系统联系12、说明110kV变电所通过两回110kV线路接至该变电所,再与电力系统相连。

由于原始数据未提供电力系统X X、S j及110kV变电所接线路长度L。

这里将X X取为0.0451, S j取为100MVA;按供电半径不大于5kM要求,110kV线路长度定为4.8kM。

1.2.2 110kV变电所在电力系统中的地位和作用1、根据110kV变电所与系统联系的情况来看,属于终端变电所。

2、110kV变电所主要供电给本地区用户,用电负荷属于Ⅱ类负荷。

1.3 110kV变电所各级电压负荷情况分析1.3.1供电方式110kV侧:共有两回进线,由系统连接双回线路对110kV变电所供电。

10kV侧:本期出线6回,由110kV变电所降压后供电。

1.3.2负荷数据1、全区用电负荷本期为27MW,共6回出线,每回按4.5MW计;远期50MW,14回路,每回按3.572MW设计;最小负荷按70%计算,供电距离不大于5kM。

2、负荷同时率取0.85,cosφ=0.8,年最大利用小时数T max=4250小时/年。

3、所用电率取1%。

1.4 110kV变电所的自然条件1.4.1 水文条件1、海拔80M2、常年最高温度40.3℃3、常年最低温度1.7℃4、雷暴日数——62日/年5、污秽等级为3级1.4.2 所址地理位置与交通运输情况地理位置不限制,交通便利。

第2章电气主接线2.1 电气主接线设计的基本要求对电气主接线有以下几方面的基本要求:1、根据系统和用户的要求,保证必要的供电可靠性和电能质量。

2、具有运行、维护的灵活性和方便性。

3、具有经济性:在满足技术要求的前提下,力求经济合理。

4、具有将来发展和扩建的可能性。

2.2 主变压器台数、容量、型式的选择2.2.1 主变压器的选择原则1、主变压器台数1)为了保证供电可靠性,变电所一般装设两台主变压器。

2)当只有一个电源或变电所可由低压侧电网取得备用电源给重要负荷供电时,可装设一台。

3)对于大型枢纽变电所,根据工程具体情况,可安装2至4台变压器。

2、主变压器的容量1)主变压器的容量应根据5至10年的发展规划进行选择,并考虑变压器正常运行和事故时的过负荷能力。

2)对装有一台变压器的变电所,变压器的额定容量应满足用电负荷的需要,按下式选择:S n≥K∑S M或S n≥K∑P M/cosφ。

式中,S n—变压器额定容量(kvA),S M, P M——变电所最大负荷的视在功率和有功功率(kvA,KW),cosφ——负荷功率因子,K——负荷同时率,可取0.85。

3)对装有两台变压器的变电所中,当一台断开时,另一台变压器的容量一般保证70%全部负荷的供电,但应保证用户的一级负荷和大部分二级负荷。

每台变压器容量一般按下式选择:S n≥0.6S M或S n≥0.6P M/ cosφ。

4)主变压器容量选择还应考虑周围环境温度的影响。

S n≥0.6S M/Kθ式中,Kθ——周围环境修正系数。

3、主变压器的型式1)一般情况下采用三相式变压器。

2)具有三种电压等级的变电所,如通过主变压器各侧绕组的功率均达到15%S n以上时,可采用绕组变压器。

3)主变调压方式:4)冷却方式:2.2.2 计算、选择、校验1、总负荷计算根据负荷数据,近期6回出线,每回按4.5MW计,近期总负荷∑P M=6×4.5=27MW。

2、主变压器台数、容量选择计算1)计算主变容量∑S M∑S M=∑P M/cosφ= 50/0.8=62.5MVA选择主变容量、台数a、S n≥K∑S M=0.85×62.5=53.125MVAb、选两台主变压器,则每台主变容量S n≥K∑S M/2=26.5625MVA。

查产品目录,选每台主变容量S n=31.5MVA>26.5625MVA。

c、校验:按主变压器容量选择原则第3点,要求任一台主变S n>0.7 K∑S M S∑=0.7×53.125=37.1875MVA,大于所选的主变容量31.5MVA。

结合系统对本变电所的技术要求,最终选择110kV变电所主变容量S n=50MVA。

考虑周围环境影响:θρ=(θmax+θmin)/2=21℃Kθ=(20-θρ)/100+1=0.990.7×S∑=0.7×53.125=37.5631MVAKθ0.99∵S n=50MVA>37.5631MVA故所选变压器容量满足要求。

3、主变型式选择按任务书要求并查110kV变电站设计指导手册附录2-3。

近期主变压器型式选择SFZ7—31500/110±8×1.25%;列表如下:2.3 电气主接线设计方案的技术、经济比较与确定2.3.1 各级电压配电装置接线方式的拟定根据电气主接线设计的基本要求及设计基本原则来拟定各级电压配电装置接线方式。

1、10kV电压母线接线方式1)单母线接线2)单母分段接线2、110kV电压母线接线方式1)单母线接线2)单母分段接线3)桥式接线(因线路故障和操作的机会比变压器多,选用可靠性较好的内桥接线。

)3、主变台数为了保证供电可靠性,装设两台主变压器。

2.3.2 110kV变电所可能采用的电气主接线方式如下:110kV变电所主接线方案简图如下:方案Ⅰ:方案Ⅱ:2.3.3方案的技术比较1、六种方案的技术比较方案Ⅰ:110kV电压母线采用单母线接线,这种接线方式简单、设备少、操作方便,但由于110kV变电所为终端变,一旦母线或母线侧隔离开关故障或检修,将造成全站停电。

顺昌变电所地处海沧外商投资区,全所停电将在经济上及政治上造成较大影响,故不宜采用此接线。

10kV电压母线采用单母线接线,跟上述一样,在母线或母线侧隔离开关故障或检修时将中断对用户的全部供电。

且这种接线方式不利于向重要用户双电源供电,故不宜采用此接线。

方案Ⅱ:110kV电压母线采用单母线分段接线,当一段母线发生故障时,分段断路器能自动把故障切除,保证正常段母线不间断供电和不至于造成用户停电。

缺点是当一段母线或母线侧隔离开关故障或检修时,接在该母线上的回路都要在检修期间停电。

可以考虑采用此接线方式。

10kV电压母线采用单母线分段接线,对重要用户可以从不同段母线引出两回路,有两个电源供电,增加了供电的可靠性。

缺点是当一段母线或母线侧隔离开关故障或检修时,接在该母线上的回路都要在检修期间停电。

可以考虑采用此接线方式。

方案Ⅲ:110kV电压母线采用单母线分段接线,根据上述分析,可考虑采用。

10kV电压母线采用单母接线,根据上述分析,不宜采用此接线。

方案Ⅳ:110kV电压母线采用单母接线,根据上述分析,不宜采用此接线。

10kV电压母线采用单母线分段接线,根据上述分析,可考虑采用。

方案Ⅴ:110kV电压母线采用内桥接线,这种接线高压断路器数量少,造价低,容易发展为单母分段接线。

缺点是变压器的切除和投入教复杂,需要操作两台断路器并影响一回线路暂时停运。

顺昌变电所首期负荷较少,引出线数目不多,考虑到变压器的故障及操作比线路少,可以考虑采用此接线。

10kV电压母线采用单母接线,根据上述分析,不宜采用此接线。

方案Ⅵ:110kV电压母线采用内桥接线,根据上述分析,可考虑采用。

10kV电压母线采用单母线分段接线,根据上述分析,可考虑采用。

2、选用两台主变的优缺点优点:可以满足全部用电负荷的需要,供电可靠性高。

缺点:投资大,占地面积大。

3、从上述分析比较确定两个较好方案:方案Ⅱ:110kV电压母线采用单母线分段接线;10kV电压母线采用单母线分段接线。

方案Ⅵ:110kV电压母线采用内桥接线;10kV电压母线采用单母线分段接线。

2.3.4方案的经济比较1、从电气设备数目及配电装置比较2、计算综合投资Z=Z0(1+a/100)Z0——主体设备投资,包括主变、高压断路器、高压隔离开关及配电装置综合投资等。

a——附加投资,110kV电压等级取90%。

主体设备参考价格如下:主变压器每台投资125万元SF6断路器每台投资65万元GW4-110隔离开关每台投资2.5万元110kV单母分段投资559.73万元内桥投资303万元方案Ⅱ:主体设备投资Z0=2×125+5×65+8×2.5+559.73=1154.73万元综合投资Z= Z0(1+a/100)=1154.73(1+90/100)=2193.987万元方案Ⅵ:主体设备投资Z0=2×125+3×65+8×2.5+303=768万元综合投资Z= Z0(1+a/100)=768(1+90/100)=1459.2万元3、年运行费用U年运行费用U=aΔA+ U1 + U2a——电能电价∆A——变压器电能损失U1——检修维护费,一般取(0.022——0.042)Z,Z为综合投资额。

U2——折旧费,一般取(0.05——0.058)Z。

取U1=0.042Z,U2=0.058Z,则年运行费U= aΔA+0.1U先计算电能损耗∆A:∆A=∑[n(∆P0+K∆Q0)+1/n(∆P+K∆Q)×(S/S N)2]t∆Q0=I0%×(S N/100)∆Q=U d%×(S N/100)查产品目录,型号为SFZ7-31500/110±8×1.25%,各参数如下:空载电流I0%=1.1空载损耗∆P0=42.2KW负载损耗∆P=148KW阻抗电压百分数U d%=10.5∆Q0= I0%×(S e/100)=1.1×(31500/100)=346.5kvR∆Q= U d%×(S e/100)=10.5×(31500/100)=3307.5kvAR无功经济当量K取0.1∆A=[2(42.2+0.1×346.5)+1/2(148+3307.5)×(6×4500×0.85/0.8)2]×4250=674.78万KW.H取a=0.4元/KW.H方案Ⅱ:U=a∆A+0.1Z=0.1×674.78+0.1×2197.987=286.88万元方案Ⅵ: U=a∆A+0.1Z=0.1×674.78+0.1×1459.2=213.4万元2.3.5 最佳方案的确定从技术上讲,110kV电压母线主接线采用桥式接线,有一台变压器故障会影响到线路停电,但变压器故障的几率较小,从经济上分析采用桥式接线比采用单母分段接线减少了部分组件,减少了综合投资额。

相关文档
最新文档