浅谈数形结合在解题中的应用
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈数形结合在解题中的应用
数形结合思想是一种重要的数学思想,它可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握數学问题的本质,因此在高中数学教学中应有效渗透数形结合思想,提高学生的思维能力和数学素养。
数与形是数学中两个最古老、最基本的元素,是数学大厦深处的两块基石,所有的数学问题都是围绕数和形的提炼、演变、发展而展开的:每一个几何图形中都蕴藏着一定的数量关系,而数量关系又常常可以通过图形的直观性作出形象的描述。因此,在解决数学问题时,常常根据数学问题的条件和结论之间的内在联系,将数的问题利用形来观察,提示其几何意义;而形的问题也常借助数去思考,分析其代数含义,如此将数量关系和空间形式巧妙地结合起来,并充分利用这种“结合”,寻找解题思路,使问题得到解决的方法,简言之,就是把数学问题中的数量关系和空间形式相结合起来加以考察的处理数学问题的方法,称之为数形结合的思想方法。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
数形结合解决集合问题:常常借助于数轴、Venn图来解决集合的运算,使问题得以简化,运算快捷明了。
例:设命题甲:0 A.充分不必要条件 B.必要不充分条件 C.充要条件 D.不充分也不必要条件 将两个命题用数轴表示,如图: 从上图可以看出,命题甲是命题乙的充分不必要条件.所以选A. 利用数形结合解决立体几何问题:用向量的方法将几何中的点、线、面的性质及其相互关系进行研究,建立恰当的坐标系,便于计算,位置关系明确,以计算代替分析,起到简化的作用,就是将抽象的几何问题转化纯粹的代数运算。 数形结合思想在高中数学的思想方法中占有非常重要的地位,从上面所举的例子中,可以看出:数形结合思想的“数”与“形”结合,相互渗透,把代数式的精确刻画与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合;应用数形结合思想,就是要充分考查数学问题的条件 和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决。 在数形转化结合的过程中,必须遵循下述原则:转化等价原则;数形互补原则;求解简单原则。当然在教学渗透数形结合的思想时,应指导学生掌握以下几点: 1.善于观察图形,以揭示图形中蕴含的数量关系。 2.正确绘制图形,以反映图形中相应的数量关系。 3.切实把握“数”与“形”的对应关系,以图识性,以性识图。 总之,在教学中要注重数形结合思想方法的培养,在培养学生数形结合思想的过程中,要充分挖掘教材内容,将数形结合思想渗透于具体的问题中,在解决问题中让学生正确理解“数”与“形” 的相对性,使之有机地结合起来。当然,要掌握好数形结合的思想方法并能灵活运用,就要熟悉某些问题的图形背景,熟悉有关数学式中各参数的几何意义,建立结合图形思考问题的习惯,在学习中不断摸索,积累经验,加深和加强对数形结合思想方法的理解和运用。用数学思想指导知识,方法的灵活运用,培养思维的深刻性、抽象性;通过组织引导对解法的简洁性的反思评估、不断优化思维品质、培养思维的严谨性、批判性。丰富的合理的联想,是对知识的深刻理解及类比、转化、数形结合、函数与方程等数学思想运用的必然。数学方法、数学思想的自学运用往往使我们运算简捷、推理机敏,是提高数学能力的必由之路。“授之以鱼,不如授之以渔” ,方法的掌握、思想的形成,才能最终使学生受益终生。