静态图像人体轮廓提取方法的研究
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
静态图像人体轮廓提取方法的研究
静态图像人体轮廓提取是指从静态图像中将人体轮廓分割出来,它在计算机视觉中的人体行为识别、背景分割与替换等多个方面都有着广泛的应用。静态图像人体轮廓提取面临着巨大的挑战,包括人体姿态的多样性,衣着的各异性,光线的变化以及复杂的背景等多个方面。
近年来,随着深度学习的快速发展,图像处理领域中基于传统特征提取的方法逐渐被深度学习所取代,而卷积神经网络在图像特征提取方面体现出了很大的优势。因此,采用卷积神经网络进行人体轮廓提取具有重要意义。
本文的主要研究内容如下:1.针对传统特征提取无法精准分割人体轮廓的问题,采用一种基于深度学习的人体轮廓提取方法。该方法设计了特定的卷积神经网络结构,在模型中引入了全卷积神经网络,反卷积与网络中网络的相关技术,实现了对静态图像在像素级别的人体轮廓提取。
2.为了提高模型的性能,在本文所构建卷积神经网络的基础上提出了一种改进方法,将原始图像经过Gabor滤波器进行预处理后再传入卷积神经网络,利用Gabor特征与卷积神经网络相结合实现了更精确的人体轮廓提取。
3.分别借助VOC2012数据集和百度人体分割数据集来验证本文所提出方法的有效性。
并将改进后的模型应用于具有隐私保护功能的视频监控系统,选择CAVIAR 视频监控数据集中的视频进行测试,并对结果进行分析。实验结果表明:(1)基于卷积神经网络的人体轮廓提取方法实现了对人体轮廓的快速有效分割,体现了利用深度学习进行实验的可行性;(2)改进后的模型在VOC2012数据集上的吻合度测试结果比原始模型提高了 10.96%;(3)在百度数据集上的测试结果表明该改进方法相比于其他现有方法,在准确度和处理速度等方面都能体现出合理性和有效
性;(4)该改进方法在CAVIAR数据集上的测试结果为精准度和同步性要求较高的视频监控应用提供了理论基础和改进方向。