高等数学教学教案 连续函数的运算与初等函数的连续性 闭区间上连续函数的性质

高等数学教学教案 连续函数的运算与初等函数的连续性 闭区间上连续函数的性质
高等数学教学教案 连续函数的运算与初等函数的连续性 闭区间上连续函数的性质

§1.9 连续函数的运算与初等函数的连续性§1.10 闭区间上连续函数的性质

授课次序08

三、初等函数的连续性

在基本初等函数中, 我们已经证明了三角函数及反三角函数的它们的定义域内是连续的. 我们指出, 指数函数a x (a >0, a ≠1)对于一切实数x 都有定义,且在区间(-∞, +∞)内是单调的和连续的, 它的值域为(0, +∞).

由定理4, 对数函数log a x (a >0, a ≠1)作为指数函数a x 的反函数在区间(0, +∞)内单调且连续. 幂函数y =x μ 的定义域随μ的值而异, 但无论μ为何值, 在区间(0, +∞)内幂函数总是有定义的.可以证明, 在区间(0, +∞)内幂函数是连续的. 事实上, 设x >0, 则 y =x μ=x

a a

log μ, 因此, 幂函数x μ可看作是由y =a u , u =μlog a x 复合而成的, 由此, 根据定理6, 它在

(0, +∞)内是连续的.如果对于μ取各种不同值加以分别讨论, 可以证明幂函数在它的定义域内是连续的.

结论: 基本初等函数在它们的定义域内都是连续的.

最后, 根据初等函数的定义, 由基本初等函数的连续性以及本节有关定理可得下列重要结论:一切初等函数在其定义区间内都是连续的. 所谓定义区间, 就是包含在定义域内的区间. 初等函数的连续性在求函数极限中的应用:

如果f (x )是初等函数, 且x 0是f (x )的定义区间内的点,则0

lim x x →f (x )=f (x 0).

例5. 求20

1lim x x -→.

解: 初等函数f (x )=21x -在点00=x 是有定义的, 所以 111lim 20

==-→x x .

例6. 求x x sin ln lim 2

π

→.

解: 初等函数f (x )=ln sin x 在点2 0π=x 是有定义的, 所以 02 sin ln sin ln lim 2

==→ππ

x x .

例7. 求x

x x 11lim 2

0-+→.

解: x x x 11lim 20-+→)

11()11)(11(lim 2220++++-+=→x x x x x 02011lim 20==++=→x x x . 例8. 求x x a x )1(log lim

0+→. 解: x x a x )

1(log lim

0+→x a x x 10)1(log lim +=→a

e a ln 1log ==. 例9. 求x

a x x 1

lim

0-→.

解: 令a x -1=t , 则x =log a (1+t ), x →0时t →0, 于是 x a x x 1lim 0-→=a t t a t ln )

1(log lim 0=+→.

§1.10 闭区间上连续函数的性质

如果函数f x ()在开区间(,)a b 内连续,在右端点b 左连续,在左端点a 右连续,那未函

f x ()就在闭区间[,]a b 上连续。

一、最大值与最小值定理

先介绍最大值与最小值概念:对于区间I 上有定义的函数)(x f ,如果有I x ∈0,使得对于任一I x ∈都有 ))()(()()(00x f x f x f x f ≥≤则称)(0x f 是函数)(x f 在区间I 上的最大值(最小值)。

【定理一】(最大值和最小值定理)在闭区间上连续的函数一定取得最大值和最小值。

这一定理在几何上是十分显然的。

设想有一条有弹性的弦,两个端点固定,呈水平地放置在坐标系中;若它上面的两点受到方向相反的两个力的作用,则产生形变,成为一条有高低起伏的曲线。

显然,C 点与D 点的纵坐标分别是曲线所代表的函数的最大值与最小值。 最值存在定理中的两个条件:(1)、闭区间,(2)、连续缺一不可,否则结论不成立。

根据定理一,下面的定理二,几乎是一望便知的事实。

【定理二】( 有界性定理 )在闭区间上连续的函数一定在该区间上有界。

为了介绍闭区间上连续函数十分常用零点定理,先引入一个概念:

如果x 0使

f x ()00=, 则称 x 0为函数f x ()的一个零点。

事实上,x 0也可以看成函数方程

f x ()=0 的一个根。

【定理三】( 零点定理 )设)(x f 在闭区间],[b a 上连续,

且)(a f 与)(b f 异号(即0)()(

f x ()的一个零点,

即存在点),(b a ∈ξ,使0)(=ξf

零点定理的几何意义十分显然, 它表明: 若连续曲线弧y

f x =()的两个端点位于x 轴的不同侧,则曲线弧与x 轴至少有一个交

点。

利用这一思想,可用计算机作图来观察方程是

否有实数根,有几个实根;若有实根,其实根所处的大致位置。下面我们用 matlab 来介绍几个实例。具体做法是:将函数y

f x =()与直线y =0作在同一个图上,观察它们是否相交。

【例1】判断方程 012

=-+x x 在]2,2[-是否有根?

解:利用MATLAB ,作函数的图形

从图形上可看出,函数在[-2,2]之间确有两个零点。其作图程序如下:

x=-2:0.0005:2; y=x.^2+x-1; plot(x,y,'*') hold

plot([-2,2],[0,0],'r') plot([0,0],[-2,5],'r')

【例2】判断方程 05.02=--x e

有几个实数根。 解:利用MATLAB ,作函数的图形

从图形上可看出,函数在[-1,1]之间确有两个零点。其作图程序如下:

x=-4:0.0005:4; y=exp(-x.^2)-0.5; plot(x,y,'*') hold

plot([-4,4],[0,0],'r') plot([0,0],[-0.5,0.5],'r')

【定理4】( 介值定理 ) 设函数)(x f 在闭区间],[b a 上连续,且在这区间的端点取不同的函数值

A a f =)( 及

B b f =)( ,那末,对于A 与B 之间的任意一个数

C ,在开区间),(b a 内至少有

一点ξ,使得

)()(b a C f <<=ξξ

这定理的几何意义是:

连续曲线弧)(x f y =与水平直线C y =至少相交于一点。

证明:设C x f x -=)()(?, 则?()x 在闭区间[,]a b 上连续,且

?()a A C =- 与 C B b -=)(?

异号。据零点定理,开区间(,)a b 内至少有一点ξ使得)(0)(b a <<=ξξ? 但?ξξ()

()=-f C ,因此由上式即得f C a b ()()ξξ=<<

【推论】闭区间上的连续函数必取得介于最大值 M 与最小值 m 之间的任何值。

【例4】试证明)0(03

>=++p q px x 有且只有一个实根。

证明:设q px x x f ++=3)(,它是在(,)-∞+∞上连续的初等函数。

而 +∞=++

?=+∞

→+∞

→]1[lim )(lim 3

23

x q

x p x x f x x 同理 -∞=-∞→)(lim x f x

利用函数的保号性:必存在两个充分大的正数βα,使得 0)(0)(><-βαf f 在闭区间 ],[βα- 上利用零点定理,至少存在一点),(0βα-∈x ,使得0)(0=x f 即:方程03

=++q px x 至少有一个实根。 (下面来证明,函数的零点是唯一的)

假设函数)(x f 存在两个互异的零点21,x x ,则有0)()(21==x f x f 于是有

>

函数的可导性与连续性的关系教学方案

函数的可导性与连续性的关系教案 教学目的 1.使学生理解函数连续是函数可导的必要条件,但不是充分条件. 2.使学生了解左导数和右导数的概念. 教学重点和难点 掌握函数的可导性与连续性的关系. 教学过程 一、复习提问 1.导数的定义是什么? 处连续的定义是什么? 2.函数在点x 处连续必须具备以在学生回答定义基础上,教师进一步强调函数f(x)在点x=x

∴f(x)在点x 处连续. 综合(1)(2)原命题得证. 在复习以上三个问题基础上,直接提出本节课题.先由学生回答函数的可导性与连续性的关系. 二、新课 1.如果函数f(x)在点x 0处可导,那么f(x)在点x 处连续.

处连续. ∴f(x)在点x 提问:一个函数f(x)在某一点处连续,那么f(x)在点x 处一定可导吗?为什么?若 不可导,举例说明. 处连续,那么f(x)在该点不一定可导. 如果函数f(x)在点x 例如:函数y=|x|在点x=0处连续,但在点x=0处不可导.从图2-3看出,曲线y=f(x)在点O(0,0)处没有切线. 证明:(1)∵Δy=f(0+Δx)-f(0)=|0+Δx|-|0|=|Δx|, 处是连续的. ∴函数y=|x|在点x

2.左导数与右导数的概念. (2)左、右导数存在且相等是导数存在的充要条件(利用左右极限存在且相等是极限存在的充要条件,可以加以证明,本节不证明). (3)函数在一个闭区间上可导的定义. 如果函数y=f(x)在开区间(a,b)可导,在左端点x=a处存在右导数,在右端点x =b处存在左导数,我们就说函数f(x)在闭区间[a,b]上可导. 三、小结 1.函数f(x)在x 0处有定义是f(x)在x 处连续的必要而不充分条件. 2.函数f(x)在x 0处连续是f(x)在x 处有极限的充分而不必要条件. 3.函数f(x)在x 0处连续是f(x)在x 处可导的必要而不充分的条件. 四、布置作业

函数的连续性 教案示例

函数的连续性·教案示例 目的要求 了解函数在一点处连续的定义,知道已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在定义区间内每一点都连续,会从几何直观上理解闭区间上的连续函数有最大值和最小值. 内容分析 1.在微积分中我们所研究的函数主要是连续函数,而连续概念是建立在极限概念的基础上的.本节课介绍函数f(x)在点x =x 0处连续的概念 时,除借助图形直观描述外,主要以函数值、极限值都存→f(x )lim f(x)0x x 0 在且两者相等为定义方式,这种定义与极限关系密切,所以将连续作为本章的最后部分既是承上启下的,又是顺理成章的. 2.人们对事物的认识是不断加深的,研究也是由浅入深的.对函数的定义域、值域、单调性、奇偶性、周期性等进行了研究,本课再用学过的极限概念对函数的连续性加以研究,使我们对函数的了解认识更进一步,更完善. 3.本课时的重点是函数在x =x 0处连续的定义.定义包含三层意思: (1)f(x)在点x =x 0处及其附近有定义; (2)lim f(x)(3)lim f(x)f(x )x x x x 0 00→→存在;= 可结合图形说明,只要缺其中的任意一个条件,就说f(x)在点x 0处不连续.难点是对连续的理解,由于连续较抽象,故要对照图形讲解. 4.函数在区间连续是建立在函数在一点连续的基础上的.如果函数f(x)在开区间(a ,b)内每一点都连续,就说函数f(x)在开区间(a ,b)内连 续;如果在开区间,内连续,在=处有=,在=处有=,就说在闭区间,上连续.这种环环相扣、 →→f(x)(a b)x a lim f(x)f(a)x b lim f(x)f(b)f(x)[a b]x a x b +- 层层推进的定义方式能很好地培养学生严谨的逻辑思维. 5.指出已学过的基本初等函数及由它们经过有限次四则运算所产生的函数在其定义区间里每一点都是连续的. 6.从几何直观上讲解函数的连续性和连续函数的性质. 7.从连续函数的定义可知,所谓函数y =f(x)在它的定义域内某点x 0处连续,意思是说,当自变量x 无限接近x 0时,相应的函数值f(x)也就无限地接近函数值f(x 0).也可用“增量”(改变量)来说明函数的连续性:设自变量x 的增量为Δx =x -x 0,则函数值的改变量为Δy =f(x +x 0)-f(x 0).所谓f(x)在点x 0处连续,就是指当Δx →0时,相应的增量Δy

高等数学第一章函数极限与连续教案

教学内§1.1 函数 教学目的】 理解并掌握函数的概念与性质 教学重点】 函数的概念与性质 教学难点】 函数概念的理解 教学时数】 4 学时 一、组织教学,引入新课 极限是微积分学中最基本、最重要的概念之一,极限的思想与理论,是整个高等数 学的基础,连续、微分、积分等重要概念都归结于极限 . 因此掌握极限的思想与方法是 学好高等数学的前提条件 . 本章将在初等数学的基础上,介绍极限与连续的概念 、讲授新课 (一)、实数概述 1、实数与数轴 1)实数系表 2)实数与数轴关系 x,x 0 1)绝对值的定义: x x,x 0 x,x 0 2)绝对值的几何意义 3)绝对值的性质 练习:解下列绝对值不等式:① x 5 3 ,② x 1 2 3、区间 (1)区间的定义:区间是实数集的子集 (2)区间的分类:有限区间、无限区间 ① 有限区间:长度有限的区间 设 a 与 b 均为实数,且 a b ,则 (3)实数的性质: 封闭性 有序性 稠密性 连续性

数集{ x a x b }为以 a 、 b 为端点的半开半闭区间,记作 [a ,b ) 数集{ x a x b }为以a 、 b 为端点的半开半闭区间,记作( a ,b ] 区间长度: b a ② 无限区间 数集{ xa x }记作[a , ), 数集{xa x }记作( a , ) 数集{ x x a }记作( ,a], 数集{ x x a }记作( ,a ) 实数集 R 记作( , ) 3)邻域 ① 邻域:设 a 与 均为实数,且 0 ,则开区间( a , a )为点 a 的 邻域 记作U(a, ) ,其中点 a 为邻域的中心, 为邻域的半径 ② 去心邻域:在的 邻域中去掉点 a 后,称为点 a 的去心邻域,记作 U (a, ) (二) 、函数的概念 1、函数的定义 : 设有一非空实数集 D ,如果存在一个对应法则 f ,使得对于每一个 x D ,都有一个 惟一的实数 y 与之对应,则称对应法则 f 是定义在 D 上的一个函数. 记作 y f(x), 其中 x 为自变量, y 为因变量,习惯上 y 称是的函数。 定义域: 使函数 y f ( x )有意义的自变量的全体,即自变量 x 的取值范围 D 函数值:当自变量 x 取定义域 D 内的某一定值 x 0时,按对应法则 f 所得的对应 值 y 0 称 为函数 y f(x)在 x x 0时的函数值,记作 y 0 f(x 0)。 值 域:当自变量 x 取遍 D 中的一切数时,所对应的函数值 y 构成的集合,记 数集{ x a x b }为以 a 、 b 为端点的闭区间,记作 [a ,b ] 数集{ x a x b }为以 a 、 b 为端点的开区间,记作 ( a ,b )

(整理)闭区间上连续函数的性质

§4.2 闭区间上连续函数的性质 一、 性质的证明 定理1.(有界性)若函数)(x f 在闭区间[a,b]连续,则函数)(x f 在闭区间[a,b]有界,即?M >0,∈?x [a,b],有|)(x f |≤M . 证法:由已知条件得到函数)(x f 在[a,b]的每一点的某个邻域有界.要将函数 )(x f 在每一点的邻域有界扩充到在闭区间[a,b]有界,可应用有限覆盖定理,从 而得到M >0. 证明:已知函数)(x f 在[a,b]连续,根据连续定义, ∈?a [a,b],取0ε=1,0δ?>0,∈?x (00,δδ+-a a )?[a,b],有 |)(x f )(a f -|<1.从而∈?x (00,δδ+-a a )?[a,b]有 |)(x f |≤|)(x f )(a f -|+|)(|a f <|)(|a f +1 即∈?a [a,b],函数)(x f 在开区间(00,δδ+-a a )有界。显然开区间集 { (00,δδ+-a a )|∈a [a,b] }覆盖闭区间[a,b].根据有限覆盖定理(4.1定理3),存在有限个开区间,设有n 个开区间 {(k k a k a k a a δδ+-,)|∈k a [a,b] },k=1,2,3,…,n 也覆盖闭区间[a,b] ,且 ∈?x (k k a k a k a a δδ+-,)|∈k a [a,b],有|)(x f |≤|)(|k a f +1,k=1,2,3,…,n 取M =max{|)(||,......,)(||,)(|21n a f a f a f }+1. 于是∈?x [a,b],∈?i {1,2,…,n},且∈x (i i a i a i a a δδ+-,)?[a,b], 有|)(x f |≤|)(|i a f +1≤M 定理2(最值性):若函数()f x 在闭区间[],a b 连续,则函数()f x 在区间

12-6.多元函数的连续性PPT

多元函数的连续性

二元函数的连续性 定义1()(,)D f P f x y =设二元函数的定义域为, 00000,)D ,)D P x y P x y ∈(是的聚点,且( ,如果0000,)(,) lim (,)(,)x y x y f x y f x y →=(00(,)(,)f x y P x y 则称函数在点处连续。 (,)D (,)D (,)D (,)C() f x y f x y f x y f x y D ∈如果在的每一点处都连续,则称函数在上连续,或称是上的连续函数,记作

例1讨论函数222,(,)(0,0)(,)0,(,)(0,0)x y x y f x y x y x y ?≠?=+??=? 在(0,0)处的连续性. 解2 22x y x y +x 2 1≤,00??→?→x 222 00 lim 0(0,0)x y x y f x y →→∴==+故函数在(0,0)处连续.

例2讨论函数 ?? ?? ?=+≠++=0,00,),(222222y x y x y x xy y x f 在(0,0)的连续性. 解取kx y =2222 0lim x k x kx kx y x +==→21k k +=其值随k 的不同而变化,极限不存在.故函数在(0,0)处不连续.

闭区域上连续函数的性质 (1)最大值和最小值定理 有界闭区域D上的多元连续函数一定有最大值和最小值. (2)介值定理 在有界闭区域D上的多元连续函数必取得介于最大值和最小值之间的一切值.

多元初等函数:由多元多项式及基本初等函数经过有限次的四则运算和复合步骤所构成的可用一个式子所表示的多元函数叫多元初等函数一切多元初等函数在其定义区域内是连续的. 定义区域是指包含在定义域内的区域或闭区域.

函数连续性教学设计

函数的连续性教学设计 ———凌亚丽内容分析: 函数的连续性是在学生学习了函数概念、函数极限的概念以及极限计算的基础上,对函数的性质进一步进行的讨论。高等数学研究的主要对象是初等函数,而连续性是初等函数的重要性质。因此,这一节内容是高等数学课程的基础性知识,十分重要。 学情分析: 《高等数学》是我院所有专业学生必学的一门公共基础课,也是学生学习专业知识的基础,是学生专升本必学必考的一门课程。但据多数学生反映及本人教学发现,高等数学确实是一门比较难的课程,对于我们学校的学生而言学习更为困难。之所以更难,有两个主要原因。其一,高等数学这门课程难,它是初等数学以外的一门数学,它有其固有的特点,这就是高度的抽象性、严密的逻辑性和广泛的应用性。其二,高职学生的知识基础差,学习兴趣低.教学中发现学生对这门课程表现出不知所措,无奈,无所谓的态度,这是一种令人担忧的现象,尤其是在讲函数的连续性这块,问题更是很多:无趣,无用,无耐等.教学目标: 1. 理解函数连续的概念,会利用定义判断函数在某一点的连续性; 2. 了解闭区间上连续函数的性质; 3.培养学生利用函数连续与间断的思想思考、分析、判断工程问题中变量变化规律的能力。 能力训练: 任务一会讨论函数在某一点的连续性; 任务二会用初等函数的连续性求极限。 教学重点:函数连续的概念,初等函数的连续性。 教学难点:函数连续的定义。

教学过程设计:

教学反思: 通过多用日常生活、经济问题、工程问题的例子,引起学生的学习兴趣,提高学生的学习动力,最后再用所学的数学知识解决实际问题,体现数学的实用性。

教学过程中,也采用的图象的形式,给予了学生直观的感觉,有利于学生理解概念,消化知识。 当然,还有不足,还需不断学习,不断提高自己。

高中数学教案——函数的连续性

课题:2.5函数的连续性 教学目的: 1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续. 2.要会说明函数在一点不连续的理由. 3.要了解并掌握函数在开区间或闭区间连续的定义. 4.要了解闭区间上连续函数的性质,即最大值最小值定理 教学重点:函数在一点连续必须满足三个条件. 教学难点:借助几何图象得出最大值最小值定理. 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 本节教学知识点有函数在一点连续满足的三个条件,函数在一点连续概念,函数在开区间和闭区间连续的定义,函数在闭区间上有最大、最小值的定义,

最大最小值定理 函数的连续性是建立在极限概念基础上的,又为以后微积分的学习做铺垫,它是承上启下的.函数在一点连续必须满足三个条件,这是要学生重点掌握的内容.函数在区间连续的定义也是建立在一点连续的基础上的.借助函数的几何图象得到闭区间上连续函数的一个性质,即最大值最小值定理. 函数在一点连续必须满足三个条件,缺一不可.如何得出这三个条件,可以借助函数图象,让学生观察、总结出来.同样借助几何图象得出最大值最小值定理. 在学生已掌握极限概念的基础上,并通过分析函数图象,让学生主动地总结出函数在一点连续的三个条件及概念.以及通过区间是由点组成的,进行概念的顺应,得出函数在区间上连续的概念.让学生主动地学习. 教学过程: 一、复习引入: 1.000 lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=?== 其中0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0 lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限 2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是8毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题 二、讲解新课: 1.观察图像 如果我们给出一个函数的图象,从直观上看,一个函数在一点x =x 0处连续,就是说图象在点x =x 0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x =x 0处的连续情况,以及极限情况. 分析图,第一,看函数在x 0是否连续.第二,在x 0是否有极限,若有与f (x 0)的值关系如何: 图(1),函数在x 0连续,在x 0处有极限,并且极限就等于f (x 0).

数列的极限、函数的极限与连续性教案

看比例,点击右上角的关闭按钮可返回目录。 考点42 数列的极限、函数的极限与连续性 一、选择题 1、(2011·重庆高考理科·T3)已知x 2ax 1lim 2x 13x →∞-??+= ?-? ?,则=a ( ) (A) -6 (B) 2 (C) 3 (D)6 【思路点拨】对小括号内的表达式进行通分化简利用极限的相关性质求出a 的值. 【精讲精析】选D. x x 2x 16x (ax 1)(x 1)lim lim x 13x 3x(x 1)→∞→∞??-+--??+= ???--???? 22x ax (5a)x 1a lim 2,3x 3x 3 →∞??+-+===??-??所以.6=a 2、(2011·四川高考理科·T11)已知定义在[0,+∞?)上的函数()f x 满足()f x =3(2)f x +, 当[0,2)x ∈时,()f x =22x x -+,设()f x 在[22,2)n n -上的最大值为*([0,)n a n N ∈且 {}n a 的前n 项和为S n ,则lim n n S →∞=( ). (A )3 (B )52 (C) 2 (D )32 【思路点拨】 首先需要确定数列{}n a .先由1n =求出1a ,当2n =时,由()3(2) f x f x =+可推得 1()(2)3 f x f x =-,先求出(2)f x -的最大值,在求()f x 的最大值,即求得2a , 3,4,...n =依次求 解. 【精讲精析】选D , [)[)[)22122,20,2,0,2()2(1)1n n n x f x x x x =-=∈=-+=--+时,时,, ()=(1)1f x f =最大值,1 1.a ∴= [)[)[)[)222,22,4,2,420,2n n n x x =-=∈-∈时,若,则, 2(2)22(2)f x x x -=--+-()

高数闭区间上连续函数的性质教案

第17、18课时: 【教学目的】 1、 掌握闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质; 2、 熟练掌握零点定理及其应用。 【教学重点】 1、介值性定理及其应用; 2、零点定理及其应用。 【教学难点】 介值性定理及其应用 §1. 10 闭区间上连续函数的性质 一、有界性与最大值与最小值 最大值与最小值: 对于在区间I 上有定义的函数f (x ), 如果有x 0∈I , 使得对于任一x ∈I 都有 f (x )≤f (x 0 ) (f (x )≥f (x 0 )), 则称f (x 0 )是函数f (x )在区间I 上的最大值(最小值). 例如, 函数f (x )=1+sin x 在区间[0, 2π]上有最大值2和最小值0. 又如, 函数f (x )=sgn x 在区间(-∞, +∞)内有最大值 1和最小值-1. 在开区间(0, +∞)内, sgn x 的最大值和最小值都是1. 但函数f (x )=x 在开区间(a , b )内既无最大值又无最小值. 定理1(最大值和最小值定理)在闭区间上连续的函数在该区间上一定能取得它的最大值和最小值. 定理1说明, 如果函数f (x )在闭区间[a , b ]上连续, 那么至少有一点ξ1∈[a , b ], 使f (ξ1)是f (x )在[a , b ]上的最大值, 又至少有一点ξ 2∈[a , b ], 使f (ξ 2)是f (x )在[a , b ]上的最小值. 注意: 如果函数在开区间内连续, 或函数在闭区间上有间断点, 那么函数在该区间上就不一定有最大值或最小值. 例: 在开区间(a , b ) 考察函数y =x . 又如, 如图所示的函数在闭区间[0, 2]上无最大值和最小值. ?????≤<+-=<≤+-==2 1 31 110 1)(x x x x x x f y . 定理2(有界性定理)在闭区间上连续的函数一定在该区间上有界. 二、零点定理与介值定理 零点: 如果x 0 使f (x 0 )=0, 则x 0 称为函数f (x )的零点. 定理3(零点定理)设函数f (x )在闭区间[a , b ]上连续, 且f (a )与f (b )异号, 那么在开区间(a , b )内至少有一点ξ 使f (ξ)=0. 定理4(介值定理)设函数f (x )在闭区间[a , b ]上连续, 且在这区间的端点取不同的函数值 f (a )=A 及f (b )=B ,

函数的连续性的例题与习题集

函数的连续性的例题与习题 函数连续性这个内容所涉及到的练习与考试题目,大致有3大类。第一类是计算或证明连续性;第二类是对间断点(或区间)的判断,包括间断点的类型;第三类是利用闭区间上的连续函数的几个性质(最值性质,零点存在性质),进行理论分析。 下面就这三大类问题,提供若干例题和习题。还是那句老话:看到题目不要看解答,而是先思考先试着做!这是与看文学小说的最大区别。 要提醒的是,例题里有不少是《函数连续性(一)(二)》中没有给出解答的例题,你事先独立做了吗?如果没有做,是不会做好是根本不想做,还是没有时间? 一.函数的连续 例1.1(例1.20(一),这个序号值的是《函数连续性(一)中的例题号,请对照) 设()f x 满足()()()f x y f x f y +=+,且()f x 在0x =连续。证明:()f x 在任意点x 处连续。 分析:证明题是我们很多同学的软肋,不知道从何下手。其实,如果你的基本概念比较清晰,证明题要比计算题号做,因为它有明确的方向,不像计算题,不知道正确的答案是什么 在本题里,要证的是“()f x 在任意点x 处连续”,那么我们就先固定一个点x ,用函数连续的定义来证明在x 处连续。你可能要问:函数连续的定义有好几个,用哪一个? 这要看已知条件,哪个容易用,就用那一个。在本题中,提供了条件()()()f x y f x f y +=+,也就是()()()f x y f x f y +-=,你的脑海里就要想到,如果设y x =?,那么就有 ()()()y f x x f x f x ?=+?-=?;这个时候,你应该立即“闪过”,要用题目给的第二个条件了:()f x 在0x =连续!它意味着:0 lim (0)(0)x f x f ?→+?=。 证明的思路就此产生! 证明:因为 ()()()f x y f x f y +=+,取0y =,则有 ()()(0)f x f x f =+,所以(0)0f =。 (#) 对于固定的x (任意的!),若取y x =?,有 ()()()y f x x f x f x ?=+?-=?, (+) 在(+)式两边取0x ?→的极限,那么

高等数学(上册)教案05 函数的连续性与间断点

第1章 函数、极限与连续 函数的连续性与间断点 【教学目的】: 1. 理解函数在一点连续的概念; 2. 会求简单函数的间断点; 【教学重点】: 1. 函数连续、间断的概念; 2. 函数在一点处连续的判定方法; 3. 函数间断点的分类; 【教学难点】: 1. 函数在一点处连续的判定方法; 2. 分段函数分段点处的连续性判断; 3. 函数间断点的分类。 【教学时数】:2学时 【教学过程】: 1.4.1函数的连续性的概念 1、函数的增量 2、函数的连续性 定义 1 设函数)(x f y =在点0x 及其附近有定义,且0lim 0 =?→?y x ,则称函数)(x f 在点0x 连续,0x 称为函数)(x f y =的连续点. 连续的另一等价定义是: 定义2 设函数()x f y =在点0x 及其附近有定义,如果函数()x f 当0x x →时的极限存在,且等于它在点0x 处的函数值()0x f ,即()()00 lim x f x f x x =→,那么就称函数()x f y =在点0x 连续. 注意:由定义知函数)(x f 在0x 处连续要()()00lim x f x f x x =→成立,则必须同时满足以下三个条件 (1) 函数)(x f 在0x 处有定义; (2) 极限)(lim 0 x f x x →存在; (3) 极限值等于函数值,即)()(lim 00 x f x f x x =→. 定义3 如果函数)(x f y =在0x 处及其左邻域内有定义,且)(lim 0 x f x x -→=)(0x f ,则称函数)(x f y =在0x 处左连续.如果函数)(x f y =在0x 处及其右邻域内有定义,且)()(lim 00 x f x f x x =+→,则称函数)(x f y =在0x 处右连续. )(x f y =在0x 处连续 ? )(x f y =在0x 处既左连续且右连续.

浅论闭区间上连续函数的性质.doc

浅论闭区间上连续函数的性质 中山大学数学与应用数学04级数统基地班黎俊彬 摘要:本文就闭区间上连续函数的性质进行了一定程度上的探讨,从直观感觉和理论论证两面方面论述了有界性,最值定理,介值定理和一致连续性定理,并且将之与开区间上连续函数及不连续函数作一定的对比. 关键字:闭区间连续函数实数的连续性和闭区间的紧致性 实数的连续性和闭区间的紧致性,使闭区间上的连续函数有丰富的性质,而且可由实数的各等价命题推出?本文主要从对连续函数的直观理解深入到纯分析的论证?在论证过程屮,严格地不出现微分学和积分学的内容,只是从连续函数本身的性质及实数系的性质入手. 从直观上理解,连续函数的图像是一条连续不断的曲线,这对于一?般初等函数來说都是成立的?而闭区间b"]上的连续函数/(X)的图像两端必须紧紧地连接着定义在端点处的点(67,/?)),(/>,/⑹X-8 v ./(Q),/⑹V +8)上形成一条封闭的曲线,即与直线x = a,x = b.y =0形成一个或多个封闭的区域.直观理解虽然不完全正确,但却能帮助我们了解和发现闭区间连续函数的性质,某些时候还能帮助我们找到证明.但直观的认识不一定是正确的,的确存在一些连续函数,其图像并不能作岀来?直观认识,在科学里面只是充当一个开路先锋的角色,到最后,一定要用严格的推理来证明. 先看何谓闭区间上的连续函数?连续的定义首先是点连续的定义. 称/(X)在兀=兀0连续,如果lim /(%) = /(x0), 2X() B|j/(x)4x o附近有定义W > 0,? > 0,当X G u(x°0)时有|/(x)-/(x°)| < 称/⑴在兀=兀0左连续,如果w > o,? > 0,当兀w (兀0 - 兀0 ]时有(兀)-f(兀0 )| < £? 称 f(x)在兀=%右连续,如果>0,3^ >0,当x w [x0,x0 +5)时有|/(兀)-/(%)| < 若函数该点的极限值不等于函数值,经验告诉我们函数在该点必定断开,连续的定义与我们的直观认识相符合?而若函数在[G,b]连续,是指函数在区间的每点都连续,在左端点右连续,右端点左连续.下面讨论闭区间连续函数的相关性质, 并从直观和理论上与非闭区间的情况作比较,体会闭区间的独特的性质.

函数的连续性优质课教案

函数的连续性优质课教 案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

2 课 题:2.5函数的连续性 教学目的: 1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续. 2.要会说明函数在一点不连续的理由. 3.要了解并掌握函数在开区间或闭区间连续的定义. 4.要了解闭区间上连续函数的性质,即最大值最小值定理 教学重点:函数在一点连续必须满足三个条件. 教学难点: 借助几何图象得出最大值最小值定理. 授课类型:新授课 课时安排:1课时 教学过程: 一、复习引入: 1.000 lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=?== 其中 0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限 2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是8毛钱邮票,21克~30克是1元,31克~40克是1.2元)等等.这就要求我们去研究函数的连续与不连续问题 二、讲解新课:

1.观察图像如果我们给出一个函数的图象,从直观上看,一个函数在一点x=x0处连续,就是说图象在点x=x0处是不中断的.下面我们一起来看一下几张函数图象,并观察一下,它们在x=x0处的连续情况,以及极限情况 . 分析图,第一,看函数在x0是否连续.第二,在x0是否有极限,若有与f(x0)的值关系如何: 图(1),函数在x0连续,在x0处有极限,并且极限就等于f(x0). 图(2),函数在x0不连续,在x0处有极限,但极限不等于f(x0),因为函数在x0处没有定义. 图(3),函数在x0不连续,在x0处没有极限. 图(4),函数在x0处不连续,在x0处有极限,但极限不等于f(x0)的值. 函数在点x=x0处要有定义,是根据图(2)得到的,根据图(3),函数在x=x0处要有极限,根据图(4),函数在x=x0处的极限要等于函数在x=x0处的函数值即f(x0).函数在一点连续必须满足刚才的三个条件. .函数f(x)在点x=x0处连续必须满足下面三个条件. (1)函数f(x)在点x=x0处有定义;(2)0 lim x x→f(x)存在; (3)0 lim x x→f(x)=f(x0),即函数f(x)在点x0处的极限值等于这一点的函数值. 3

高数教案_函数连续性8

课 题: 函数连续性 目的要求: 掌握函数连续的充要条件及应用 初步掌握间断点的分类及示例 掌握闭区间上连续函数的性质及应用 会利用函数连续性求极限 教学重点: 掌握函数连续的充要条件及应用 教学难点: 掌握函数连续的充要条件及应用 教学课时:2 教学方法: 讲练结合 教学内容与步骤: 函数的连续性 从图上可看出, ?(x )在x 0间断. 但 f (x )在x 0连续. ?(x )在x 0的极限不存在, 而 00lim ()().x x f x f x →= 定义1. 设f (x )在x 0的某邻域U(x 0)内有定义. 且0 0lim ()().x x f x f x →=则称f (x )在x 0连续, x 0称为f (x )的连续点. 否则称f (x )在x 0间断, x 0称为f (x )的间断点, 或称为不连续点. 因为:0 0lim cos cos x x x x →=:余弦函数在任何点x 0处连续

连续的δ-ε 语言描述:若对?ε >0, ?δ>0,使得当|x -x 0|<δ时, 对应的函数值f (x )满足| f (x ) - f (x 0) |<ε,则称f (x )在x 0处连续. 注: 与极限定义比较, 将"a "换成" f (x 0)" 证:00lim ()lim 0x x f x x ++→→==因,00lim ()lim()0x x f x x --→→=-=,00 lim ()lim ||0x x f x x →→==故 又因为f (0)=0.从而:0 lim ()(0)x f x f →= ()||0f x x x ==故在处连续 定义:设f (x )在x 0的某右邻域0()U x +(某左邻域0()U x - )内有定义, 若0 0lim ()()x x f x f x +→=,则称函数在 0x 处右连续, 若0 0lim ()()x x f x f x -→=,则称函数在 0x 处左连续. 定理1. f (x )在x 0处连续? f (x )在x 0左连续且右连续. 上例证明:00lim ()lim 0x x f x x ++→→==因=f(0),00 lim ()lim()0x x f x x --→→=-==f(0), ()||0f x x x ==故在处连续 注:判断x 0处连续的步骤:1,x 0处是否有定义,2,左右极限是否存在,3,左右极限是 否相等,4,极限值是否等于函数值. 到某一步不成立时,不执行下一步骤。 ()f x 在区间内连续: 如果()f x 在区间(,)a b 内每一点都是连续的,就称()f x 在区间(,)a b 内连续,记作 f (x )∈C (a , b ).若()f x 在(,)a b 内连续,在x a =处右连续,在x b =处左连续, 则称()f x 在[,]a b 上连续,记作 f (x )∈C [a , b ]. 连续函数的图形是一条连续不断的曲线. f (x )在x 0处连续的增量描述: 函数的增量 设函数()y f x =在点 0x 的某邻域上有定义,当自变量 x 由 0x 变到0x x +?时,函数 y 相应由0()f x 变到0()f x x +?,函数相应的增量为00()()y f x x f x ?=+?-. 其几何意义如右图所示.

闭区间上连续函数性质证明

§2 闭区间上连续函数性质的证明 教学目的:掌握闭区间上连续函数性质证明思路与方法,加深对实数完备性若干定理的理解。 重点难点:重点与难点为其证明思路与方法。 教学方法:讲练结合。 在本节中,我们利用实数完备性的基本定理,来证明闭区间上连续函数的基本性质. 有界性定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有界. 证 [证法一](应用有限覆盖定理) 由连续函数的局部有界性(定理4.2),对每一点[],,b a x ∈'都存在邻域);(x x U ''δ及正数x M ',使得[].,);(,)(b a x U x M x f x x '''∈≤δ 考虑开区间集 []{} b a x x U H x ,);(∈''='δ, 显然H 是[]b a ,的一个无限开覆盖.由有限覆盖定理,存在H 的一个有限子集 ()[]{}k i b a x x U i i i ,,2,1,,;* =∈=H δ 覆盖了[]b a ,,且存在正数k M M M ,,,21 ,使得对一切()[]b a x U x i i ,; δ∈有 ().,,2,1,k i M x f i =≤ 令 ,m a x 1i k i M M ≤≤= 则对任何[]b a x ,∈,x 必属于某()()M M x f x U i i i ≤≤?δ;.即证得f 在[]b a ,上有界. [证法二](应用致密性定理) 倘若f 在[]b a ,上无上界,则对任何正整数n ,存在[]b a x n ,∈,使得()n x f n >.依次取 ,2,1=n ,则得到数列{}[]b a x n ,?.由致密性定理,它含有收敛子列{} k n x ,记ξ=∞ →k n k x lim 。由b x a k n ≤≤及数列极限的保不等式性,[]b a ,∈ξ.利用f 在点ξ连续,推得 () ()+∞<=∞ →ξf x f k n k lim 另一方面,由n x 的选取方法又有()() +∞=?+∞→≥>∞ →k k n k k n x f k n x f lim 与(1)式矛盾.所以f 在[]b a ,有上界.类似可证f 在[]b a ,有下界,从而f 在[]b a ,上有界. 最大、最小值定理 若函数f 在闭区间[]b a ,上连续,则f 在[]b a ,上有最大值与最小值. 证 (应用确界原理) 已证f 在[]b a ,上有界,故由确界原理,f 的值域[]()b a f ,有上确界,记为M .以下我们证明:存在[]b a ,∈ξ,使()M f =ξ.倘若不然,对一切[]b a x ,∈都有()M x f <.令

高中数学“函数的连续性”教案

课 题:函数的连续性 教学目的: 1.理解掌握函数在一点连续须满足的三个条件的基础上,会判断函数在一点是否连续. 2.要会说明函数在一点不连续的理由. 3.要了解并掌握函数在开区间或闭区间连续的定义. 4.要了解闭区间上连续函数的性质,即最大值最小值定理 教学重点:函数在一点连续必须满足三个条件. 教学难点: 借助几何图象得出最大值最小值定理. 授课类型:新授课 课时安排:1课时 教 具:多媒体、实物投影仪 内容分析: 点连续概念,函数在开区间和闭区间连续的定义,函数在闭区间上有最大、最小值的定义,最大最小值定理 函数的连续性是建立在极限概念基础上的,又为以后微积分的学习做铺垫,它是承上启下的.函数在一点连续必须满足三个条件,这是要学生重点掌握的内容.函数在区间连续的定义也是建立在一点连续的基础上的.借助函数的几何图象得到闭区间上连续函数的一个性质,即最大值最小值定理. 函数在一点连续必须满足三个条件,缺一不可.如何得出这三个条件,可以借助函数图象,让学生观察、总结出来.同样借助几何图象得出最大值最小值定理. 在学生已掌握极限概念的基础上,并通过分析函数图象,让学生主动地总结出函数在一点连续的三个条件及概念.以及通过区间是由点组成的,进行概念的顺应,得出函数在区间上连续的概念.让学生主动地学习. 教学过程: 一、复习引入: 1.000 lim ()lim ()lim ()x x x x x x f x a f x f x a -+→→→=?== 其中0lim ()x x f x a -→=表示当x 从左侧趋近于0x 时的左极限,0 lim ()x x f x a +→=表示当x 从右侧趋近于0x 时的右极限 2. 我们前面学习了数列极限和函数极限、数列可以看成是一种特殊的函数,不同的是函数的定义域往往是连续的.而数列的定义域是自然数集,是一个一个离散的点.而在我们日常生活中,也会碰到这种情况.比如温度计的水银柱高度会随着温度的改变而连续地上升或下降,这是一种连续变化的情况;再比如邮寄信件的邮费,随邮件质量的增加而作阶梯式的增加(打个比方:20克以内是

闭区间上连续函数的有界性定理证明的新方法_1

闭区间上连续函数的有界性定理证明的新方法连续函数是数学分析中非常重要的一类函数,下面是小编搜集整理的一篇探究闭区间上连续函数的有界性定理证明的论文范文,欢迎阅读参考。 一、引言 函数是描述客观世界变化规律的重要数学模型,连续函数又是数学分析中非常重要的一类函数。在数学中,连续是函数的一种属性。而在直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。函数极限的存在性、可微性,以及中值定理、积分等问题,都是与函数的连续性有着一定联系的,而闭区间上连续函数的性质也显得非常重要。在闭区间上连续函数的性质中,有界性定理又是最值定理和介值定理等的基础。 在极限绪论中,我们知道闭区间上连续函数具有5个性质,即:有界性定理、最大值最小值定理、介值定理、零点定理和一致连续定理,零点定理是介值定理的一个重要推论。而闭区间上连续函数的有界性定理的证明,在很多数学教材中,所采用的方法大致相同,一般都是用致密性定理和有限覆盖定理来加以证明的。并且在文献中作者也分别利用闭区间套定理、确界定理、单调有界定理和柯西收敛准则证明了此定理。但是我们知道,分析数学上所列举的实数完备性的7个基本定理是相互等价的,因而从原则上讲,任何一个都可以证明该定理,只不过是有繁简之分,笔者考虑如何能用最简单的方法将闭区间上连续函数的有界性定理证明出来,上述文献中已经用其他6个基

本定理证明了闭区间连续函数的有界性定理,下面本文用实数完备性定理中的聚点原则和构造数列的办法给出了该定理的新证明方法。 二、一种新的证明方法 (一)预备知识 (二)有界性定理的新证法下面将给出实数完备性定理中的聚点原则对闭区间连续函数的有界性定理的证明。 三、有界性定理在数学建模中的应用 本文以一道数学建模的问题为例,介绍闭区间上连续函数的有界性定理如何应用于实际问题。 在2013年“深圳杯”数学建模夏令营D题中,根据题意所述:农业灾害保险是政府为保障国家农业生产的发展,基于商业保险的原理并给予政策扶持的一类保险产品。农业灾害保险也是针对自然灾害,保障农业生产的重要措施之一,是现代农业金融服务的重要组成部分。农业灾害保险险种是一种准公共产品,基于投保人、保险公司和政府三方面的利益,按照公平合理的定价原则设计,由保险公司经营的保险产品,三方各承担不同的责任、义务和风险。根据题目中附件所给的P省的具体情况,可以将有界性定理灵活的用在自然灾害保险的风险评估和费率拟定上。假设时间是一个连续状态,则以时间t为自变量,根据题中所给数据,以日最高最低气温为例,很明显它与时间t是呈周期性变化的,以一年为一个周期,故只考虑在某一年内的变化规律,即. 将日最高最低气温拟合成一个关于时间的函数f(t),则由于自变量

高三数学教案:第四节函数的连续性及极限的

第四节 函数的连续性及极限的应用 1.函数在一点连续的定义: 如果函数f (x )在点x =x 0处有定义, lim x x →f (x )存在,且 lim x x →f (x )=f (x 0),那么函数f (x )在点x =x 0处连续. 2..函数f (x )在点x =x 0处连续必须满足下面三个条件. (1)函数f (x )在点x =x 0处有定义; (2)0 lim x x →f (x )存在; (3)0 lim x x →f (x )=f (x 0),即函数f (x )在点x 0处的极限值等于这一点的函数值. 如果上述三个条件中有一个条件不满足,就说函数f (x )在点x 0处不连续.那根据这三个条件,我们就可以给出函数在一点连续的定义. 3.函数连续性的运算: ①若f(x),g(x)都在点x 0处连续,则f(x)±g(x),f(x)?g(x),)()(x g x f (g(x)≠0)也在 点x 0处连续。 ②若u(x)都在点x 0处连续,且f(u)在u 0=u(x 0)处连续,则复合函数f[u(x)]在点x 0处连续。 4.函数f (x )在(a ,b )内连续的定义: 如果函数f (x )在某一开区间(a ,b )内每一点处连续,就说函数f (x )在开区间(a ,b )内连续,或f (x )是开区间(a ,b )内的连续函数. f (x )在开区间(a ,b )内的每一点以及在a 、b 两点都连续,现在函数f (x )的定义域是[a ,b ],若在a 点连续,则f (x )在a 点的极限存在并且等于f (a ),即在a 点的左、右极限都存在,且都等于f (a ), f (x )在(a ,b )内的每一点处连续,在a 点处右极限存在等于f (a ),在b 点处左极限存在等于f (b ). 5.函数f (x )在[a ,b ]上连续的定义: 如果f (x )在开区间(a ,b )内连续,在左端点x =a 处有 + →a x lim f (x )=f (a ),在右端点x =b 处有 - →b x lim f (x )=f (b ),就说函数f (x )在闭区间[a ,b ]上连续,或f (x )是闭区间[a ,b ]上 的连续函数. 6. 最大值最小值定理 如果f (x )是闭区间[a ,b ]上的连续函数,那么f (x )在闭区间[a ,b ]上有最大值和最小值 7.特别注意:函数f(x)在x=x 0处连续与函数f(x)在x=x 0处有极限的联系与区别。“连续必有极限,有极限未必连续。” 二、问题讨论 ●点击双基 1.f (x )在x =x 0处连续是f (x )在x =x 0处有定义的_________条件. A.充分不必要 B.必要不充分

相关文档
最新文档