光波场的复振幅描述共24页

合集下载

光波场的复振幅描述

光波场的复振幅描述

z
0 x k: 传播矢量
球面波的等位相面: kr=c. 为球面
§1-1光波场的复振幅描述
会聚球面波
会聚球面波 U(P) a0 ejkr r
(P(x,y,z)) y (rkLeabharlann 会聚点S z 0 x.
§1-1光波场的复振幅描述
球面波 : 空间分布
P点处的复振幅:U(P) a0 ejkr 取决于k与r是平行
在与原点相距为 z 的平面上考察平面波的复振幅:
.
§1-1光波场的复振幅描述
光振动的复振幅表示: 说明
U(P) = a(P) e jj(P)
• U(P)是空间点的复函数, 描写光场的空间分布, 与时间无关;
• U(P)同时表征了空间各点的振幅 |U(P)| = |a(P)|
和相对位相 arg(U)= j(P)
• 方便运算, 满足叠加原理
• 实际物理量是实量. 要恢复为真实光振动:
光场随时间的变化关系: 由频率n表征. 可见光: n ~1014Hz
光场变化的时间周期为1/ n. 严格单色光: n为常数
光场随空间的变化关系体现在: (1) 空间各点的振幅可能不同
光场变化的空间周期为l.
(2) 空间各点的初位相可能不同, 由传播引起.
由于u(P,t) 必须满足波动方程,
可以导出a(P)、n、 .j(P)必须满足的关系
u(P,t)= e{U(P)exp(-j2pnt)} 即可
• 光强分布: I = UU*
光强是波印廷矢量的时间平. 均值, 正比于电场振幅的平方
§1-1光波场的复振幅描述
2、球面波的复振幅表示
球面波: 等相面为球面, 且所有等相面有共同中心的波
点光源或会聚中心

《信息光学》单色光波场的一般数学描述

《信息光学》单色光波场的一般数学描述

与前面讲过的FT和IFT相联系,则更易理解,物理意
义更清楚:
F ( u , v ) f ( x , y ) e x p [ j 2 ( u x v y ) ]d x d y
f ( x , y ) F ( u , v ) e x p [ j 2 ( u x v y ) ]d u d v
r 2
k
1 球面波复振幅:
发散球面波: U°
(
v r
)
a 0
exp
j(kr
0)
r
会聚球面波:U°
(
v r
)
a0
exp
j(kr
0)
r
球面光波在整个 空间中,沿任何 方向上的空间频 率均为:1/; 沿任 何方向上的空间 周期均为: 。
在 z=z0 面上的复振幅分布为:
U° ( x , y , z ) 0
a
exp[ jk
x
2
x0
y
2
y0
z2 0
x
2
x 0
y
2
y 0
z2 0
]
如果在 z=z0 平面上,观察考察的区域较小,且z0较大时,
则在z=z0平面上的波前函数可表示为:
U° ( x , y , z ) 0
a
exp(
jkz ) exp 0
jk
x
2
x0
y
2
y0
z 0
2z 0
上述近似称为 傍轴近似;
F (u , v ) 称为空间频谱,
cos cos
F(
,
)
称为角谱。
第2章 光波衍射的线性系统分析(标量衍射角谱理论) ——标量波衍射理论

光学课件:2a波动、复振幅的基本概念

光学课件:2a波动、复振幅的基本概念
在考察单色简谐波的波函数时,各场点复函数中 的时间相因子 exp(it) 都是相同的,故可以将它分离 出来。 故复波函数 U (P, t) A(P) ei(P) eit
复振幅 U (P) A(P) ei(P)
引入复振幅的意义:
考虑单色波迭加时,exp(it) 相同,故可以提出来;
复波函数满足与波函数相同的波动方程,复、实描述是等价的; 复振幅运算简单; 由复振幅容易得到实波函数。
U *(P) A(P)e-i(P)
作业:
P147~148:第1、2、3、4、5题
平面波的复振幅
振幅 A(P) A(常数)
判断依据: 1、振幅为常数; 2、具有线性位相因子
位相 (P) k r 0 kx x ky y kz z 0 复振幅 U (P) Aexp[i(k r 0 )]
沿z轴正向传播的平面波的复振幅
U (P) Aexp[i(kz 0 )]
沿z轴负向传播的平面波的复振幅
1.2 定态光波的概念
定态波:光源持续且稳定地发光,波场中各点都以同一 频率作稳定的振荡。
定态波场的性质: 1)空间各点的扰动是同频率的简谐振动。 2)波场中各点扰动的振幅不随时间变化,
在空间形成一个稳定的振幅分布。 频率单一,振幅稳定。
满足上述要求的光波是无限长的单色波列。 当波列的持续时间比其扰动周期 长得多时,即可将其当作无限长波列处理。
(1 ,2 ,3 )
平面波矢的数学表述
波矢 k k(cosi cos j cos k ) 0 方向余弦 k k(sin1i sin2 j sin3k ) 0 余角表示
位相 (x, y, z) k(x sin1 y sin2 z sin3) 0
定态球面波
A(P) a r

光学信息第二章1-2

光学信息第二章1-2
r
a0 k U( x, y ) exp( jkz1 )exp{ j [( x x0 )2 ( y y0 )2 ]} z1 2z1
( x x0 )2 ( y y0 )2 r z1 2z1
• 说明:分母中 r 直接用z1替代,而指数项中 r 由 于波长λ极小,k 2 很大,上式中第二项不能 省略
coscos平面波的空间频率是信息光学中常用的基本物理量深入理解这个概念的物理含义是很重要的首先研究波矢量位于xz平面内的简单情况考虑cosexpcos复振幅在xy平面上周期分布的空间周期可以用相位差的两相邻等相位线的间距x表示则有x方向的空间频率用表示单位因此y方向的空间频率cos传播方向余弦为cos0的单色平面波在xy平面上的复振幅分布可用xy方向的空间频率来表示


空间频率的概念同样可以描述其它物 理量如光强度的空间周期分布,但它们有 不同的物理含义。 对于非相干照明的平面上的光强分布, 也可以通过傅里叶分析利用空间频率来描 ( f x 不再和单色平面波 , fy) 述。但空间频率 exp j2 ( f x x 也就不再对应沿某一 f y y) 有关, 方向传播的平面波。
U ( x, y ) A exp j 2 ( f x x f y y )
• 代表了一个传播方向余弦为 (cos , cos ) 的单色平面波。 • 我们观察的不是某一个平面上而是整个空间光场分 cos 布,可以类似地定义沿z方向的空间频率 f z 有 U ( x, y, z ) a exp j 2 ( f x x f y y f z z ) • 由 cos2 cos2 cos2 1 有 f 2 f 2 f 2 1 x y z 2
2.2

PPT定态光波及其复振幅描述

PPT定态光波及其复振幅描述
k ( x cos y cos z cos ) 0
i[ ( P )]
k x x k y y k z z 0
特点:振幅是常数,相位因子是坐标的线性函数
2) 球面波的复振幅表达式
a i[ ( P )] U ( P) e r
( P) k r 0 kr 0
y
S E H E
O
z
H
x
S
•对光波的描述:
波线
波面 (等相面) 球面波 --同心光束 点光源 平面波 --平行光
现代光学的思想就是要在复杂的波场中分 离出简单的成分—球面波和平面波。
3、定态光波
1)定态光波定义: 空间各点扰动均为同频率的简谐振动, (频率与振源相同) 空间各点振动的振幅不随时间变化。 在空间形成一个稳定的振幅分布。
--定态光波的复振幅
2)引入定态光波复振幅的意义: 为了运算的方便 3)注意: (1)两种关系式只是对应关系, 不是相等关系 (2)复振幅只用于运算 (3)对应成相应的简谐式后, 再讨论其物理意义
10、平面波和球面波的复振幅表达式
1)平面波的复振幅表达式
U ( P) Ae ( P) k r 0
2 2 2
r ( x x0 ) ( y y 0 ) ( z z 0 )
振在波源上,形式会简单些。
3)复振幅与波形具有 一一对应的关系
已知波形可以写出其 复振幅表达式, 给出复振幅表达式能够 画出具体波形
11、光强度的复振幅表示式
A( P) cos[t (kr 0 )] A( P) cos[t ( P)]
5、平面波的具体表达式
1)选坐标原点为计算起点 X

信息光学基础2-1光波的数学描述 -2015 [兼容模式]

信息光学基础2-1光波的数学描述 -2015 [兼容模式]

2015/11/18§2‐1 二维光场分析1. 光振动的复振幅表示单色光场中某点在某一时刻的光振动可表示成:()()(),cos 2πνφu P t A P t P =-⎡⎤⎣⎦(){}[2πνφ()],Re ()j t P u P t A P e--=用复指数函数表示上式:{}φ()2πνRe ()j P j tA P ee-=2015/11/18令-—复振幅()()()exp φU P A P j P =⎡⎤⎣⎦复振幅包含了点P处光振动的振幅和初相位,——是位置坐标的复值函数,与时间无关——定态光场(){}φ()2πν,=Re ()j P j tu P t A P ee-00注:平方根二项式展开1 112b b +=+-2015/11/18)]cos cos (exp[),(βαy x jk A y x U +=线性位相因子和球面波表达式类似,平面波复振幅可分成与坐标有关和与坐标无关的两部分。

Cy x =+βαcos cos 等相位线方程为可见,等位相线是一些平行直线。

2015/11/18π2yx-虚线表示相位值相差的一组波面与平面的交线,——等相位线.2015/11/18如何理解空间频率、空间周期?2015/11/18若假设波矢k位于平面0x z exp[cos ]A jkx α=)]cos cos (exp[),(βαy x jk A y x U +=——一列沿波矢k方向传播的平面波2015/11/18空间频率与平面波的传播方向有关,——波矢量与轴的夹角越大,则λ在轴上的投影就越大,即在某方向上的空间频率就越小,——空间频率的最大值是波长的倒数。

2015/11/18尽管各方向的空间频率不同——沿波的传播方向波场的空间周期恒为。

空间频率恒为λλ/1=f。

ch2-2单色波及其描述

ch2-2单色波及其描述

§2—2 单色光波及其描述一,什么是单色光波波动的特征 波,振动的传播.振动在空间的传播形成物理量在空 间的分布,形成波场. 波动的最基本特征是具有周期性光波场具有时间和空间两重周期性 波场中任一点:具有振动 的周期性,即时间周期 性,用振动的周期T描述. 任一时刻:波场具有空间 分布的周期性,即物理量 在空间作周期分布,用波 长λ描述.单色光波可用下列波函数表示 v v E = E0 ( p ) cos[ωt ( p )] v v H = H 0 ( p ) cos[ωt ( p )] 具有下述性质的波场为定态波场: (1)空间各点的振动是同频率的简谐振动; (2)波场中各点扰动的振幅不随时间变化,在空间形成一个稳 定的振幅分布; (3)初始相位的空间分布与时间无关; (4)光波的波列在空间上无线延伸,光源发光时间无限长; 满足上述要求的光波应当充满全空间,是无限长的单色波列. 但当波列的持续时间比其扰动周期长得多时,可将其当作无限 长波列处理. 任何复杂的非单色波都可以分解为一系列单色波的叠加.光波是电磁波(矢量波),电场分量,磁场分 量,波的传播方向即波矢等物理量,都是矢量.v v E ( p , t ) = E 0 ( p ) cos [ω t ( p ) ]电场分量的 振幅,磁场分 量的振幅,波 长,频率,速 度等物理量是 标量.二,有关光波的几个概念一列沿z轴正向传播的平面简谐电磁波可表示为v v z E = E 0 ( p ) cos ω (t ) + E v v v H = H ( p ) cos ω (t z ) + 0 M v E,H,V三者相互垂直,构 成右手系.光波是横波, 有两个偏振态. 电场和磁场的振幅都是常 数,并且相互成比例. E与B同相位.平面单色光波示意图2π时间内的频率,圆频 率(角频率) 2π 长 度 内 的 频 率 , 角波数,波矢 波的相位,与时间和空 间相关ω = 2πν = 2πc λk = 2π / λxr r1r K ( P , t ) = ω t kx + 0振动取决于相位,所以振动 的传播就是相位的传播. yr r2 z波矢的方向角表示 在数学中常用方向余弦表示矢量的方向,即用矢量与坐标轴间 的夹角表示 在光学中习惯上采用波矢与平面间的夹角表示矢量的方向Xv k0 θ2βYθ3 αθ1γZr r r r k = k (cos αex + cos βe y + cos γez ) r r r r k = k (sin θ1ex + sin θ 2 e y + sin θ 3ez )波面:波场空间中相位相同的曲面构成光波的等相位 面,也称波阵面. 波前:光波场中的任一曲面,如物平面,像平面,透镜 平面,以及波场中任意被考察的平面. 等幅面:振幅相等的空间点构成的曲面. 波线:能量传播的路径. 在各向同性介质中,波线与波面垂直,与波矢的方向相 同;几何光学中,波矢就是光线. 共轭波:复振幅互为共轭的波. 互为共轭的波,其传播方向应该是相关联的.一般来 说,共轭波是原波的逆行波,但是若考虑某一平面的复 振幅分布,则产生其共轭复振幅的共轭波有两个.三,平面单色波和球面单色波的物理描述可根据波面的形状将光波分类:平面波,球面波,柱面波等. 位相相同的空间点应满足下述方程(相同时刻): ( p ) = Const .波场空间中任意一点P的位置矢量场点:r r r P ( x , y , z ) = xe x + ye y + z e z波线波面平面波柱面波球面波1. 平面波:波面是平面 振幅为常数 空间相位为直角坐标的线性函数r r ( p) = k r + 0 = k x x + k y y + k z z + 0波面r r k r = Const.满足上式的点构成与波矢垂直的一系列平面波场中一点(x,y,z)处的相位为 ( x, y, z ) = k ( x sin θ 1 + y sin θ 2 + z sin θ 2 ) + 0通常取一平面在z=0处,则该平面上的相位分布为 ( x, y,0) = k ( x sin θ 1 + y sin θ 2 ) + 0XOY平面OZ如果平面波沿z向传播,则其波面垂直于z轴.轴上某 一点z处的波面在t时刻的位相为 ( z , t ) = kz ωt + 0在下一时刻,t ′ = t + dtz ′ = z + dz设该波面的位置为kz ωt + 0 = k ( z + dz ) ω (t + dt ) + 0kdz = ωdt相速度 (沿+z向传播)dz ω 2πν = = = νλ v= dt k 2π λ如果波面的表达式为 (t , z ) = kz ωt + 0其相速度为dz ω v= = = νλ dt k向-z方向传播2. 球面波:波面是球面波面为球面,从点源发出或向点源汇聚; 振幅沿传播方向正比于1/r. x K P(x,y,z)Eo (r ) = A0 / rO∑0z ∑如果波源为O(0,0,0),波面为 ( p ) = kr ωt + 0 kr ωt + 0 = k (r + dr ) ω (t + dr ) + 0dr ω v= = dt k从原点发出的发散球面波如果波面为 ( p) = kr ωt + 0向原点汇聚的球面波ω dr = v= dt k(0,0,z0)发出的球面波在(x,y,0)平面的振动为E+ ( x, y,0) =A0 x + y + z02 2 2cos[k x 2 + y 2 + z0 ωt + 0 ]2(0,0,-z0)出发出的球面波在(x,y,0)平面上的振动亦为 A0 2 2 2 E ( x , y ,0 ) = cos[k x + y + z0 ωt + 0 ] 2 2 2 x + y + z0向(0,0,z0)点汇聚的球面波为E *+ ( x, y,0) = A0 x + y + z02 2 2cos[ k x + y + z0 ωt + 0 ]2 2 2向(0,0,-z0)点汇聚的球面波为E * ( x, y,0) = A0 x + y + z02 2 2cos[k x 2 + y 2 + z0 ωt + 0 ]2四.光波的复振幅描述可以用复指数的实部或虚部表示余弦或正弦函数,所 以可以用复数来描述光波的振动r r i [ ω t ( p )] E ( p , t ) = E 0 ( p )e上式中的实部是正态光场的波函数,复数波函数也可 以等价地来描述单色光波.同样单色光波的标量波函 数也可写成复数形式~ i[ωt ( p )] i ( p ) i ωt E ( p , t ) = E0 ( p ) e = E0 ( p ) e e定态光波的频率都是相等的,可以不写在表达式中. 定态部分,即与时间无关部分为,定义为复振幅~ i ( p ) E ( p ) = E0 ( p ) e复振幅包含了振幅和位相,直接表示了定态光波在空间P点 的振动,或者说复振幅表示了波在空间的分布情况. 单色平面光波的复振幅rr ~ E ( p) = E0 ( p )e i ( k r 0 ) = E0 ei [k ( x cosα + y cos β + z cos γ ) 0 ]单色球面光波的复振幅A0 i ( krrr 0 ) ~ E ( p) = e r光强的复振幅表示能流密度(即坡印廷矢量)的瞬时值如光波做简谐振动,E0为简谐振动的振幅,则有r r r r 2 n r2 S = S = E × H = ε r ε 0 μ r μ0 | E | = E cμ0r2 1 2 E = E0 2即r I= S =I = E02n 2 2 E0 ∝ nE0 2cμ 0在均匀介质中,通常取 光波场在P点的强度~ ~* I ( P) = E ( p) = E ( p) E ( p)2 0五,波的位相与光程 平面波,在一维情况下,位相为 ( p ) = kx + 0kx = 2πk =2πλ0nx =2πλ=2π nλ0λ0nsns为介质中波的光程位相由光程决定 即同一时刻,空间中光程相同的点,其位相也相同, 振动也相同. 波在不同媒质中,光程改变,产生折射,方向和波面 都会发生改变.棱镜,透镜的原理都可以从光程的变 化进行解释.反射和折射时波面的变化n1n2光波经过棱镜和透镜时波面的变化。

平面波和球面波的复振幅球面波的复振幅平面波的复振幅

平面波和球面波的复振幅球面波的复振幅平面波的复振幅
(P) k • 0 kx x ky y kz z 0
k kx xˆ ky yˆ kz zˆ 是波矢。k 2 /
r xxˆ yyˆ yzˆ 场点P的位置矢量。
0 为振源的初相位(下同)。 19
20
定态球面波波函数的特点: (1)振幅反比于场点到振源的距离。
13
三、傍轴条件和远场条件(轴外物点) 物点O的坐标为(x, y,0), 场点P的坐标为(x', y', z)
r (x x')2 ( y y')2 z2
r0 x'2 y'2 z2
r0 ' x2 y2 z2
14
U~(x', y') a exp[ikr] r
a
exp[ik (x x')2 ( y y')2 z2 ]
(x x')2 (y y')2 z2
r0
z
x'2 y'2 2z
r0 '
z
x2 y2 2z
r z x'2 y'2 x2 y2 xx' yy'
2z
2z
z
r0
x2 y2 2z
xx' yy' z
x'2 y'2 xx' yy' r0 ' 2z z
15
1、 物点和场点同时满足傍轴条件: x2 , y2 z2
16
2、场点满足傍轴条件、物点同时满足傍轴条 件和远场条件,
U~(x',
y')
a z
exp[ ikr0 ]exp[
ik z
(xx' yy')]

单色光波场的一般数学描述

单色光波场的一般数学描述

在 z=z0 平面上的复振幅分布为:
exp( j2
cos
z0 )exp
j2 (ux vy)
可见,单色平面波从 z=0 平面传播到 z=z0 平面上,其在xy平面上的相位分布不变,只是整体发生一个相移:
exp( j2
cos
z0 )

exp
j2
(ux
vy)
exp
j2
cos
x cos
exp jk x cos y cos
等相位线方程 x cos y cos C
等相位线是一族等间距的平行直线。
1.7.2 平面波的空间频率
U
x,
y, z
a
exp
j2
cos
x cos
y cos
z
a exp j2 fx x fy y fz z
x方向:空间频率
x x0 2 y y0 2 c 等相位线是z=z0平面上, 以(x0,y0)
c是任意常数 为圆心的同心圆环族。(内疏外密)
2 单色平面波 在整个空间中:
U x, y, z a exp j kx cos ky cos kz cos
U x, y, z a exp jkz 1 cos2 cos2
fx
kx
2
cos

空间周期 dx
1 fx
cos
y方向:空间频率 f y
ky
2
cos

空间周期
dy
1 fy
cos
z方向:空间频率
fz
kz
2
cos

空间周期
dz
1 fz
cos
2

复振幅的几何意义-概念解析以及定义

复振幅的几何意义-概念解析以及定义

复振幅的几何意义-概述说明以及解释1.引言1.1 概述概述部分的内容可以按照以下方式编写:概述:复振幅作为一个重要的概念,在物理学、工程学以及其他领域有着广泛的应用。

它对我们理解振动现象以及解释和预测自然现象和工程问题起到了重要作用。

复振幅的数学表示和几何意义是理解复振幅的关键。

本文主要目的是介绍复振幅的几何意义,包括对其定义的概述和具体的数学表示。

我们将探讨复振幅的几何解释,以及它在现实世界中的应用领域和未来研究方向。

文章结构:本文将按照以下结构进行论述:首先,我们将在引言部分提供对复振幅的概述和目的,以帮助读者理解复振幅的重要性和本文的内容。

然后,在正文部分,我们将详细介绍复振幅的定义和数学表示,以帮助读者建立起对这一概念的初步了解。

接着,我们将探讨复振幅的几何意义,描述它在几何空间中的具体表达和解释。

最后,在结论部分,我们将总结复振幅的几何意义,并探讨它在不同领域的应用及未来研究方向。

通过本文的阅读,读者将能够充分理解复振幅的几何意义,并对其在各个领域的应用和未来研究方向有一个清晰的认识。

文章结构部分的内容如下:1.2 文章结构本文分为引言、正文和结论三个部分。

在引言部分中,我们将对复振幅的概述进行简要介绍,包括定义和重要性。

接着,我们将说明本文的结构和目标。

正文部分将从三个方面展开对复振幅的几何意义进行探讨。

首先,我们将给出复振幅的定义,并从数学角度对其进行表示。

其次,我们将重点讨论复振幅的几何意义,探究它在空间中的表现形式和几何特征。

这将涉及到复振幅与相位的关系、振动方向和振幅大小的描绘等内容。

最后,我们将总结复振幅的几何意义,讨论它在不同领域中的应用,并对未来研究方向进行展望。

结论部分将对全文进行总结,并强调复振幅的几何意义在实际应用中的重要性。

我们还将讨论当前已知的应用领域,并展望未来研究的发展方向。

通过以上的分章节结构,本文将全面而系统地介绍复振幅的几何意义,并为读者提供一个清晰的框架,以便更好地理解和应用复振幅的概念和数学表示。

光波场的复振幅描述 PPT课件

光波场的复振幅描述 PPT课件
并求出Tx、 Ty、T 和fx 、fy和 f。
(2)画出y = y1平面上间隔为2p的等相线族,
并求出Tx、 Tz 和fx 、fz.
光波场的复振幅描述
平面波的空间频率-信息光学中最基本的概念
如果平面波传播方向在xz平面(或yz平面),
与z轴夹角为q, 则此平面波复振幅沿x方向
(或y方向)的空间频率为:
复振幅分布: U (x, y) Aexp( jkxcosa)
等位相面是平行于y 轴的一系列平面, 间隔为l
等位相面与x-z平面相交 等位相面与x-y平面相交
形成平行直线
形成平行于y轴的直线
沿x方向的等相线 间距:
z
X 2p l
k cosa cosa
光波场的复振幅描述
四、平面波的空间频率
复振幅分布: U (x, y) Aexp( jkxcosa)
§1-1光波场的复振幅描述
光振动的复振幅表示
为了导出a(P)、n、 j(P)必须满足的关系,将光场用复数表
示,以利于简化运算
u(P,t) = a(P)cos[2pnt - j(P)]}
= e{a(P)e-j[2pnt -j(P)] } 复数表示有利于
= e{a(P) e . jj(P) e -j2pnt } 将时空变量分开
j2p
(
fxx
f y y)]dfxdf y
光波场的复振幅描述
平面波的空间频率-信息光学中最基本的概念
三个空间频率不能相互独立:l2 f x 2 l2 f y 2 l2 f z 2 1
因此 f z ( 1 l2 f x 2 l2 f y 2 ) l
这样平面波的复振幅即平面波方程可以写为 :

(x x0 )2 ( y z2

2.1定态光波与复振幅描述(修改版)资料

2.1定态光波与复振幅描述(修改版)资料
说明:理想的定态波场为无源场,在时间上无始无终; 实际波源发出的波场并不是严格意义上的定态波场,当 波源发出的波列的持续时间远大于波的振动周期时,才 可以将其近似看作定态波场。
(2) 波函数 波函数: 表征波场的物理(振动)状态,是空间和时间的周 期性函数。
① 任意定态标量波的波函数 振源处:

场点处:
1.3 波动的描述
波面:波场中振动相位相同的点的轨迹 波线:表示波动能量传播的几何径迹 (1) 波面与波线 特征:一般波面表现为空间三维曲面族 各向同性介质中,波线与波面处处正交; 各向异性介质中,一般不与波面正交。 (2) 平面波、球面波与柱面波
y, z k
k, r
S
P rk
x S'
平面波的波面
发散球面波的波面
发散柱面波的波面
特征: 平面波对应于无限远处理想点源发出的波; 球面波对应于有限远处理想点源发出的波; 柱面波对应无限长线波源发出的波; 平面波是波面曲率半径趋于无限大时的球面波或柱面波。
说明: 讨论球面波和平面波问题具有普遍意义; 任何一个波源,都可以看成是由若干点波源组成的集合; 构成任何复杂波面的基元是球面波或平面波。
作业:3、4、5
种横波,具有偏振性质; ④ 用电磁场理论对光的各种偏振现象所作的理论解释均与
实验观察结果相符合。
8 光波的描述
(1) 光波场的描述 对眼睛及其他光探测器有视觉反应的,主要是光波的电场
强度矢量,故光波场的振动状态一般可由其电矢量表示,简称 为光波电矢量或光矢量。
在标量场近似下,光波场的波函数就是光矢量的复振幅, 单色光波即简谐波。
振动方向与传播方向正交,振动状 态相对于传播方向不具有轴对称性。
(3) 偏振 自由空间的电磁波为横波,有两

光波场的描述

光波场的描述

A:波源强度即单位距离处的振幅。 A/r:距球心r处P点的振幅。 -kr:距球心r处P点的位相,P点的 位相比球心O处落后kr 。
2)会聚的球面波
a ( r , t ) e xp[ i ( kr o )]e xp( it ) r
k r:距球心r 处P点的位相,P点的位相比球
常省略表示实部的符号Re
( z,t ) = A exp[- i (ω t - k z+φ0 )]
上式是沿z轴的正方向传播的波动
(z,t) = Acos(ω t-kz+φ0) (z,t) = Aexp[- i(ωt-kz+φ0)] (z,t) = Aexp[i (kz-φ0)]exp[-iωt]
E ( p, t ) A( p) cos[t ( p)]
O
O
设:振动沿Z方向传播,速度 v,
从 O → z 点, 需时间 t = z / v,
z 点的位相和O点在 t-t 时刻相同, 为
z E ( p, t ) A( p) cos[ (t ) o ] v
O
z (t t ) o (t ) o v
设函数 g(X) 的周期为2π,则傅氏级数为
ao g( X ) (am cos mX bm sinmX ) 2 m 1 ao , am , bm g( X )的 傅 立 叶 系 数
其中变量X无量纲,物理上周期现象的变数和 周期都有量纲,应加以变换
① 时域 变数 X→ t 时间, 电流 i(t),电压 u(t) 时间周期 T a. 若将t / T视为变数 →无量纲 b. 使 t =T时, 周期函数的变数 X=2π 即 X= 2π t / T= ω0t 上式建立了 t ~X变量间的关系。

现代光学(刘继芳)(第二版)1-3章 (1)

现代光学(刘继芳)(第二版)1-3章 (1)
14
第1章 现代光学的数学物理基础 1. 平面波 平面波的特点是: 在各向同性介质中,光波场相位间
隔为2π的等相面是垂直于传播方向的一组等间距平面,场 中各点的振幅为一常量。
如图1.1-1所示,设平面光波沿z轴方向传播,观察点P 的矢径为r,坐标为(x,y,z),光波在坐标原点的初相为jO,则 P点的初相为
3
第1章 现代光学的数学物理基础
式中: L为拉格朗日函数,它是广义坐标和广义速度的函数,
而积分是在时间上进行的。与之相比,费马原理是在空间变
量上进行积分的。注意到无限小弧长ds可写为
(1.13)
式中: “·”表示对z的微商。将s换成z,式(1.1-1)可改写

(1.1-
4)
4
第1章 现代光学的数学物理基础 由式(1.1-4)与式(1.1-2),可以给出相应的光学拉格朗
11
第1章 现代光学的数学物理基础 1.1.2 光波场的复振幅描述
为了数学运算方便,通常把光波场用复指数函数表示为
(1.1-15) 为简单起见,通常又把取其实部的符号Re{}略去,简写为
(1.1-16) 12
第1章 现代光学的数学物理基础
对于单色光波,式(1.1-16)中的时间因子
不随
空间位置变化,在研究光振动的空间分布时,可将其略去。
此外,在量子力学中,能量相当于算符
而在波动光学中,它对应为
应用光学哈密顿
量,可以写出相应的薛定谔方程:
即 (1.1-12)
9
第1章 现代光学的数学物理基础 应用式(1.1-11), 式(1.1-12)变为
(1.1-13)
式中: Ψ为波函数。式(1.1-13)
比较,能够看出

光波场的复振幅描述 (1)

光波场的复振幅描述 (1)

§1-1光波场的复振幅描述
光振动的复振幅表示: 说明
U(P) = a(P) e jj(P)
• U(P)是空间点的复函数, 描写光场的空间分布, 与时间无关;
• U(P)同时表征了空间各点的振幅 |U(P)| = |a(P)|
和相对位相 arg(U)= j(P)
• 方便运算, 满足叠加原理
• 实际物理量是实量. 要恢复为真实光振动:
为常量
等相平面的法线方向k (kcosa, kcosb, kcosg)
光波场的复振幅描述
3、 平面波的复振幅表示
等相面为平面,且这些平面垂直于光波传播矢量 k.
等相平面的法线方向 k (kcosa, kcosb, kcosg)
k 的方向余弦, 均为常量
以 k 表示的等相平面方程为 k .r = const. 故平面波复振幅表达式为:
第1章 现代光学的数学物理基础
Scalar Angle-Spectrum Theory of Diffraction
§1-1 光波场的复振幅描述 1、光振动的复振幅和亥姆霍兹方程
单色光场中某点 P(x,y,z)在时刻 t 的光振动可表为:
u(P,t) = a(P)cos[2pnt - j(P)]
振幅 频率 初位相
x-y 平面上等位相线方程为 : x x y y C
球面波中心 在原点:
U (x, y)
a0 exp( z
jk z)
exp

j
k 2z
(x2

y2
)
光波场的复振幅描述
3、 平面波的复振幅表示
等相面为平面,且 这些平面垂直于 光波传播矢量 k.
k 的方向余弦 均

光波场的数学描述

光波场的数学描述

U ( x, y) A exp( jkx cosa )
等位相面与x-y平面相交 形成平行于y轴的直线
等位相面是平行于y 轴的一系列平面, 间隔为l
等位相面与x-z平面相交 形成平行直线
沿x方向的等相线 间距:
z
2p l X k cos a cos a
复振幅分布:
U ( x, y) A exp( jkx cosa )
U ( x, y,) exp( j
p
l
l
z l fx l f y )



在任一距离z的平面上的复振幅分布,由在 z =0平面上的复 振幅和与传播距离及方向有关的一个复指数函数的乘积给出。 这说明了传播过程对复振幅分布的影响,已经在实质上解决 了最基础的平面波衍射问题
1 cos a fx X l
Y = ∞, fy=0 复振幅分布可改写为:
定义 复振幅分布在x方向的空间频率:
对于在x-z平面内传播的平面波, 在y方向上有:
U ( x, y) A exp(j 2pf x x)
平面波的空间频率: 一般情形
U ( x, y) A exp[jk ( x cosa y cos b )]
P点处的复振幅:U ( P )
a0 jkr e r
取决于k与r是平行 还是反平行
距离 r 的表达
若球面波中心在原点:
r x y z
2 2
2
若球面波中心在 S (x0,Fra biblioteky0, z0):
r ( x x0 ) 2 ( y y0 ) 2 ( z z0 ) 2
光波的数学描述
将U(P)exp(-j2pn t)代入波动方程

球面波实用学习

球面波实用学习

n2
n1 cosi
p
2 arctan
n1
n2 cosi
利用s分量和p分量的相位突变的差异性,可以利用线偏 振光来产生圆偏振光或者椭圆偏振光。
第38页/共44页
1.7.2 隐失波
全反射时,反射率为100%,透射光强为0,第二种媒质中似 乎不应该有光场。
t)
1 r
A1
cos[k (r
t)
0
]
简谐球面波的复指数描述:
E(r, t)
1 r
A1
exp[i(kr
t
0 )]
简谐球面波的复振幅:
E(r,
t)
1 r
A1
exp[i(kr
0
)]
第3页/共44页
E(r,t)
1 r
A1
cos[k (r
t)
0 ]
1.3.3简谐球面波参量的特点
(1)振幅
振幅不是一个常量,它随r 增加而减小;但在r相 同的球面上,振幅是均匀的。A1是一个常量,代表 r=1处的振幅,表征振动源的强弱,称为源强度。
n2 cost n2 cost
sin(i t ) tani tant
sin(i t )
tani tant
ts
Ats Ais
2n1 cosi n1 cosi n2 cost
2 cosi sint sin(i t )
第22页/共44页
同理可得p
rp
Arp Aip
n2 cosi n1 cost n1 cosi n2 cost
其通解:
E(r,
t)
1 r
B1(r
t)
1 r
B2
(r
t)

大学光学L定态光波及其复振幅描述PPT教案学习

大学光学L定态光波及其复振幅描述PPT教案学习

(kr vv
(k r
0 )] 0 )]
第5页/共24页
6、球面波的波函数的具体表达式
1)发散球面波
0
Q
rv v

P
k
E(P, t )
A(P) cos[t
v (k
rv
0 )]
A(P)
cos[t
(P)]
其中:
rvˆ kvˆ
第6页/共24页
2) 会聚球面波:
E(P,
t)
A(P) cos[(t
已知波形可以写出其 复振幅表达式,
给出复振幅表达式能够 画出具体波形
第18页/共24页
12、光强度的复振幅表示式
由:
I E02 A2 (P)
且:
E(P) A(P)ei(P) A(P) exp(i(P)) I E(P) E *(P)
第19页/共24页
§2 波 前
2.1 波前的含义
泛指波场中任一曲面, 更多地指一个平面
(L) nkvˆ0 rv
第12页/共24页
2)球面波的光程表达式:
(L)
nkvˆ0
v r
nr
3)平面波的光程表达式:
X
l
P0
P
k
r
O Z
(L)
nkvˆ0
v r
nr
cos
nl
n(x cos
y
cos
z
cos
)
第13页/共24页
10、定态光波的复振幅描述
1)定态光波的复振幅 将简谐式对应成复指数形式
第16页/共24页
3)平面波的复振幅表达式
E(P) Aei(P) Aexp(i(P))
(
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档