配电网电容电流计算

合集下载

35kV系统中性点接地电阻及接地变压器设计选型

35kV系统中性点接地电阻及接地变压器设计选型

中性点接地电阻及接地变压器选型方案深圳市华力特电气股份有限公司一、系统设计现状及电容电流计算变电站总共上3台的主变压器,联接组别Y/Δ,额定电压110kV/35kV。

35kV配电系统全部采用电缆线路,根据变电站35kV电缆线路型号及长度计算系统电容电流如下:据乔工介绍:I、II、III段母线对应的电容电流各为Ic=50A,35kV侧共有三段母线,三段母线都采用中性点经电阻接地方式,因此三段母线应考虑并列运行情况则系统总的对地电容电流为IcI+IcII+IcIII =50A+50A+50A=150A考虑以后用电负荷增加和远期发展及变电站其他设备的对地电容电流。

系统总的电容电流取150A*1.2=180A。

二、中性点经电阻接地方式优点变电站35KV系统采用中性点经电阻接地方式的主要目的是限制系统过电压水平和单相接地故障情况下实现快速准确选线。

中性点经电阻接地方式的两个最主要优点即是:(1)有效限制系统各种过电压,特别是对间歇性弧光接地过电压水平的限制;(2)利用大的接地故障电流,解决选线难,达到准确快速选线切除故障线路的目的。

中性点经电阻接地方式特别适用于电缆线路为主的配电网,大型工矿企业、机场、港口、地铁、钢铁等重要电力用户,以及发电厂发电机和厂用电系统。

其主要优点体现在:1)降低工频过电压,非故障相电压升高小于√3倍;2)有效限制间歇性弧光接地过电压;3)消除谐振过电压;降低各种操作过电压;4)可准确判断并及时切除故障线路;5)系统承受过电压水平低,时间短;可适当降低设备的绝缘水平,提高系统设备的使用寿命,具有很好的经济效益。

6)有利于具有优良伏秒特性的氧化锌避雷器MOA的应用,降低雷电过电压水平;适用于系统以后扩容及对地电容电流大范围变化情况,电阻不需要调节;设备简单、可靠,投资少、寿命长。

三、中性点接地电阻选型中性点接地电阻的选型主要依据系统总的电容电流选取。

采用中性点经电阻接地时,电阻值的选取必须根据电网的具体情况,应综合考虑限制过电压倍数,继电保护的灵敏度,对通信的影响,人身安全等因素。

Vienna整流器直流母线电容电流的计算

Vienna整流器直流母线电容电流的计算

Vienna整流器直流母线电容电流的计算
王乾;张军明
【期刊名称】《电力电子技术》
【年(卷),期】2017(051)009
【摘要】Vienna整流器输出电容纹波电流决定输出电容的选型和温升,通常采用估算或仿真的方法进行计算,存在误差大或复杂、不直观等缺点.通过对三相四线制Vienna整流器工作原理的分析,推导出了直流母线电容电流有效值的计算公式,与仿真及实验结果的验算进行比较,误差在5%以内,具有简单、精确等优点,可直接用于直流母线电容的设计.
【总页数】3页(P122-124)
【作者】王乾;张军明
【作者单位】浙江大学,浙江杭州310027;浙江大学,浙江杭州310027
【正文语种】中文
【中图分类】TM461
【相关文献】
1.配电网并联补偿电容器对Vienna整流器稳定性的影响 [J], 徐瑶;同向前;党超亮
2.变频器中直流母线电容的纹波电流计算 [J], 常东来
3.《航空高压直流供电系统中三相Vienna 整流器的控制策略研究》之一——基于新型开关表的Vienna 整流器直接电流控制策略 [J], 李颖晖1; 吴辰1,2; 李勐3; 刘聪4; 韩建定1; 雷晓犇1; 朱喜华5
4.单相无电解电容VIENNA整流器研究 [J], 李治;程红;赵志浩;申伟良;王聪
5.三相PWM整流器的进线电感和直流母线电容识别 [J], 张绍军
因版权原因,仅展示原文概要,查看原文内容请购买。

单相接地电容电流

单相接地电容电流

自动化论坛:单相接地电容电流的计算方法单相接地电容电流的计算4.1 空载电缆电容电流的计算方法有以下两种:(1)根据单相对地电容,计算电容电流(见参考文献2)。

Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般电缆单位电容为200-400 pF/m左右(可查电缆厂家样本)。

(2)根据经验公式,计算电容电流Ic=0.1×UP ×L式中: UP━电网线电压(kV)L ━电缆长度(km)4.2 架空线电容电流的计算有以下两种:(1)根据单相对地电容,计算电容电流Ic=√3×UP×ω×C×103式中: UP━电网线电压(kV)C ━单相对地电容(F)一般架空线单位电容为5-6 pF/m。

(2)根据经验公式,计算电容电流Ic= (2.7~3.3)×UP×L×10-3式中: UP━电网线电压(kV)L ━架空线长度(km)2.7━系数,适用于无架空地线的线路3.3━系数,适用于有架空地线的线路关于单相接地电容电流计算单相接地电容电流我所知道估算公式:对架空线:Ic=UL / 350对电缆:Ic=UL / 10我想请问的是L是指的架空线长度还是架空线距离?比如是三相的L是不是为距离X 3 另请问有没有更详细的计算方法?工业与民用配电设计手册上对L的定义是线路的长度,单位km,这里的长度与楼主说的距离是同一个概念,也就是说L是指架空线或电缆的距离,三相不需要再用距离乘以3更详细的单相接地电容电流计算公式见附件,摘自工业与民用配电设计手册152页描述:没有文件说明附件:( 189 K)单相接地电容电流计算.pdf下载次数(27)首先应该明确为什么要算这个电容电流,一般计算单相接地电容电流首先要了解,中性点接地系统的分类,什么样的系统才要计算单相接地电容电流,相关国家规定是怎样规定的,算出这个电流怎样进行相关的补偿,选用什么装置进行补偿,补偿的分类是欠补偿,还是过补偿,还是完全补偿,为什么要选用过补偿,单单理解怎样计算是没有任何用处的,中性点接地系统是个综合问题,考虑的要全面。

配电网单相接地故障的区间定位和测距

配电网单相接地故障的区间定位和测距

配电网单相接地故障的区间定位和测距摘要:我们主要是对配电网单相接地故障的区间定位方式进行研究。

根据理论分析,了解到了短路故障线路区段前后端零序电压和灵虚电路相位之间的差,可以精准的对出现短路的线路区间进行定位。

此种方式也能够应用到金属性接地短路故障和非金属接地短路故障。

而通过仿真实验能够了解到这种方式具有很高的理论价值。

关键词:零序电压;零序电流;相位我国所采用的配电线路,主要是运用小电流接地系统来运行。

运用这种中性点不接地的形式,好处在于如果出现单向接地故障的话,故障电流值就不会太大,同时线电压不会出现变动,能够暂时进行运行,这样的话就不会对用户的供电造成影响。

要是长时间运行,那么就会出现中性点电位偏移的情况,这样就很容易导致绝缘的不完善部分被打穿,从而形成相间短路,让故障严重程度变大,从而对供电造成不好的影响。

因为小电流接地系统单向接地故障电流不大,在检查故障的时候具有一定的难度,采用传统的定位方式,精准度不会太高。

所以怎样快速、精准的发现故障区域,然后将其进行隔离就成为了一项非常重要的工作。

那么下面我们就来具体的讨论一下相关的话题。

一故障定位方法有关小电流系统单向接地故障定位的方式具有非常多的种类,而且每种都具有优点和缺点。

其中主要的包括:制定出了基于信息和模拟推理进行结合的故障定位方法;“S注入法”故障定位原理;采用离散小波变换、行波测距原理在故障段中实现了故障准确定位;基于区段零序能量的定位方式;监测馈线上个开关当中的零序电压以及零序电流,并对区段的各端电传送进此区段的零序电流的和进行运算,这样就能够对故障进行准确的定位。

由于供配自动化技术的提高,现在很多的供配电馈线中都对能够进行测量、通信的FTU采取了安设工作,这样就能够准确的对故障进行定位。

我们应该与FTU进行结合,然后分析配电网中的零序电压、零序电流之间的相位关系,从而精准的对故障进行定位。

二、配电网单相接地故障原理分析如果某线路出现了金属性接地故障,那么这个时候配电线路网络电容电流分布情况,可以用以下的公式来进行运算:Ios=1/3(Ibs+Ics)=-jwCosUA=jwCosUdoIoii=1/3(IBI+Ic1)=-jwCoiiUA=UA=jwUdo在这组式子当中,Udo代表的是故障点的零序电压。

配电网对地电容电流超标治理方案探讨

配电网对地电容电流超标治理方案探讨

配电网对地电容电流超标治理方案探讨发表时间:2017-01-21T14:24:46.550Z 来源:《电力设备》2016年第22期作者:严倚天赵志刚严浩军[导读] 随着配电网因电缆出线增加致使其电容电流不断增大的情况,分析了现行电容电流超标治理存在的主要问题。

(1.沈阳工程学院研究生学院辽宁沈阳 110000;2.国网宁波供电公司浙江宁波 315000)摘要:随着配电网因电缆出线增加致使其电容电流不断增大的情况,分析了现行电容电流超标治理存在的主要问题,并针对这些问题提出了切合实际的整治方案:新规划区域或全电缆出线变电站可采用中性点低电阻接地;消弧线圈增容可因地制宜选择就地更换、变电站固定补偿与可调补偿相结合或分布式补偿的方案。

关键词:配电网;电容电流;中性点;消弧线圈;低电阻;超标治理Discussion on over standard treatment scheme of distribution network to ground capacitance currentYanYitian1 ZhaoZhigang1 YanHaojun2(1.Shenyang Institute of Engineering,2.State Grid Ningbo power supply company)Abstract:With the increase of power distribution network,the capacitance current increases with the increase of the cable outlet.The passage analyze he main problems of the current excess capacity control of capacitor current and puts forward a practical solution to these problems:The new planning area or the whole cable outlet substation can adopt the neutral point low resistance grounding,arc-extinguish coilcapacity can be replaced by local conditions,Scheme of combined or distributed compensation for fixed compensation and adjustable compensation in Substation.Key words:Distribution network Capacitive current Neutral point Arc-extinguish coil Low-resistance Excessive treatment0 引言我国35kV和10kV配电网基本采用中性点不接地或经消弧线圈接地的系统,亦即小电流接地系统。

单相接地电容电流的计算.

单相接地电容电流的计算.

1 前言前言前言前言众所周知10kV中性点不接地系统(小电流接地系统具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。

2 单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器变压器变压器变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3 单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。

谐振接地系统基本原理介绍

谐振接地系统基本原理介绍

谐振接地系统基本原理介绍随着电力系统市场化的加深和信息技术的更新,对应的电力系统与市场、用户的交互在不断增强,电能质量的要求标准随着发展陆续提高,与此相关的电网保护装置、测量装置、补偿装置等都需要升级以适应电网的发展。

在电力系统的发展过程中,中性点接地方式始终是一项关乎系统供电可靠性、电力设备安全、线路绝缘水平、继电保护、人身安全及通信干扰等问题的重要技术应用。

文章主要介绍了谐振接地系统的基本特点,论述了消弧线圈工作的基本原理及电容电流的计算方式。

标签:中性点接地;消弧线圈;消弧线圈工作原理;电容电流计算4 电容电流计算方法计算电容电流的目的是调节消弧线圈进行合理补偿,以减小接地故障后的对地残余电流,使接地电弧能够可靠熄灭,重合闸能够成功,保证供电可靠性。

在实际运行中,系统的故障电流一般不等于电容电流,因为单相接地故障一般是经过渡电阻发生的。

但研究表明这并不影响以电容电流为依据来调节消弧线圈补偿的合理性。

原因在于,失谐度与阻尼率不变的前提下,由上节分析可知,残流值与中性点位移电压成正比。

因此我们假设系统发生金属性单相接地故障,此时过渡电阻为零,中性点位移电压达到最大值,而对应的残余电流也最大,我们只要确定消弧线圈补偿能够满足当前故障情况下的补偿要求,无论过渡电阻多大,补偿后的残余电流都在限定值以下,而此时的补偿可以根据电容电流和残流限定值来确定。

以下是几种电容电流计算方法的简单介绍:4.1 中性点位移电压法由上节对中性点电压U0的分析可知,当Xc、d一定时,通过改变消弧线圈L,能够得到U0与失谐度v的关系图,如图4所示。

如图4所示,在失谐度v=0时,U0达到最大值,此时系统容抗值等于消弧线圈投入的感抗值,由此可得系统容抗值,进一步可计算出系统的接地电容电流。

这种测量方法要求消弧线圈必须串联或并联阻尼电阻限压,否则谐振时中性点电压会远超出规定的电压最大允许值。

同时,如果采用不能连续调节的消弧线圈,如多级有载细调或者调容式消弧线圈,会由于级差的存在,无法正好找到谐振点,因而造成一定的测量误差。

基于单相接地故障的配电网馈电线路电容电流测算方法

基于单相接地故障的配电网馈电线路电容电流测算方法

基于单相接地故障的配电网馈电线路电容电流测算方法周永其;陈挥瀚;常勇;王莹;杨洪灿;孙建华【摘要】介绍随着城市配电网的规模不断扩大,电缆线路大面积的应用,配电网线路的电容电流日益增大,电容电流的大小决定消弧线圈调控,对电网的规划设计和运行安全有重要影响.本文研究了配电网发生单相接地故障时线路零序电流和电容电流之间的关系,基于单相接地故障时馈电分支线路的零序电流测量值,提出一种线路电容电流的测算方法.【期刊名称】《云南电力技术》【年(卷),期】2018(046)003【总页数】2页(P73-74)【关键词】配电网;单相接地故障;零序电流;电容电流【作者】周永其;陈挥瀚;常勇;王莹;杨洪灿;孙建华【作者单位】云南电网有限责任公司曲靖供电局,云南曲靖 655000;昆明同弘瑞能电力科技有限公司,昆明 650000;昆明理工大学,昆明 650500;昆明理工大学,昆明650500;云南电网有限责任公司曲靖供电局,云南曲靖 655000;云南电网有限责任公司曲靖供电局,云南曲靖 655000【正文语种】中文【中图分类】TM740 前言低压配电网一般采用小电流接地系统运行方式[1],配电网系统发生单相接地故障时故障电流与配电线路电容电流大小相关。

配电网对地电容电流决定了是否装设消弧线圈以及消弧线圈的补偿容量[2],同时对分析铁磁谐振过电压也有重要意义[3]。

传统的电容电流测量方法分为直接法和间接法[4]。

直接法操作繁杂,危险性高,容易引起事故,基本不再采用。

间接法虽然比直接法简单,但是其测量时涉及一次侧,人员与设备安全无保障、操作繁琐、准备工作耗时长、测量工作效率低,同时存在误操作危险。

信号注入法是目前常采用的方法,主要采用三频法、双频法和扫频法等方式[5]。

信号注入法存在受互感器漏阻抗影响较大、频率选取困难等问题。

本文根据配电网发生单相接地故障时电容电流与零序电流的关系,测量得到发生单相接地故障时配电馈线路上的零序电流,得出各个线路运行时的线路电容电流。

中压系统中性点接地方式选用技术导则

中压系统中性点接地方式选用技术导则
c)接地变压器通过断路器接至母线,可以兼做所用变压器。
d)
线路和母线发生接地故障时,主变压器回路的CT无零序电流流过,只有接地变压器、小电阻和线路CT(线路故障时)有零序电流流过,接地变压器零序保护可以作线路故障后备保护。开关、母线等裸露的带电部分应采用热塑材料加以封闭以尽量减少这部分设备的故障可能性。
故障点金属性接地
系统中某一相直接与地连接。此时对于中性点非有效接地系统,中性点对地电压有效值达到系统相电压;中性点有效接地系统中,中性点对地电压有效值接近系统相电压。
故障点
系统中某一相经过一定的阻抗与地连接。此时系统中性点对地电压受接地点阻抗影响,通常小于系统相电压。故障点阻抗值越高,中性点对地电压越小。
表1不同电压等级接地变零序阻抗数值
10kV
V
35kV
零序阻抗(Ω)
5
10
30
消弧线圈系统用接地变压器
消弧线圈用接地变压器一般通过断路器接入母线,应采用三相同时分合的开关设备,不应采用隔离开关-单相熔丝组合作为接地变压器投切和保护设备。
消弧线圈用的接地变压器,不兼做所用变压器时,其容量按消弧线圈的容量选取;兼做所用变压器时,接地变压器容量按照以下公式计算:
采用消弧线圈接地和电阻接地方式时,系统设备的绝缘水平宜按照中性点不接地系统的绝缘水平选择。
中性点接地装置选择和应用原则
26
消弧线圈装置的选择和应用
户外安装的消弧线圈装置,应选用油浸式铜绕组,户外预装式或组合式消弧线圈装置,可选用油浸式铜绕组或干式铜绕组;户内安装的消弧线圈装置,选用干式铜绕组。
消弧线圈装置应能自动跟踪系统电容电流并进行调节。自动跟踪的消弧线圈宜并联中电阻(小电阻)和相应的故障选线装置,以提高故障选线的正确性,及时隔离故障线路。

中压系统中性点接地方式选用技术导则

中压系统中性点接地方式选用技术导则
1注:当单根电缆电容电流较大时,小电阻接地系统也可以采用加装适当补偿的方法提高继电保护灵敏度。
2注:
b)当变电站单相接地故障电流中的谐波分量超过4%,且每段母线单相接地故障电容电流大于75A时宜采用小电阻接地方式。
c)变电站每段母线单相接地故障电容电流小于100A(35kV系统为50A)时,宜采用消弧线圈接地系统,运行中应投入保护装置中的重合闸功能。
b)
c)电阻器材料的温度系数应不超过 /℃,接地故障发生时电阻器的阻值升高应保证重合闸时,继电保护仍有足够的灵敏度。10秒温升试验中,达到温升限值时电阻器电流衰减值不应超过初始电流的20%。
d)
e)接地电阻装置绝缘水平应按照相应电压等级的要求选择。
f)
g)接地电阻回路中宜增加中性点电流监测或接地电阻温升检测装置。
电阻接地系统接地变压器容量的选取
小电阻接地系统用接地变压器不兼作所用变压器时,容量按接地故障时流过接地变压器电流对应容量的1/10选取;接地变压器兼作所用变压器时,其容量还应加上所用负荷容量。
电流互感器的选用
消弧线圈接地系统的电流互感器一般应接在消弧线圈和地之间;小电阻接地系统的电流互感器,可以根据需要,接在电阻器和地之间或者接在中性点和电阻器之间。
l)
m)消弧线圈装置应采用带录波系统和通用网络接口,以便于故障分析和远方调用消弧线圈装置的动作信息。
n)
中性点电阻装置的选择和应用
接地电阻装置电阻值的选择应综合考虑继电保护技术要求、故障电流对电气设备和通信的影响,以及对系统供电可靠性、人身安全的影响等。电阻值的选择应限制金属性单相接地短路电流为300-600A。
c)接地变压器通过断路器接至母线,可以兼做所用变压器。
d)
线路和母线发生接地故障时,主变压器回路的CT无零序电流流过,只有接地变压器、小电阻和线路CT(线路故障时)有零序电流流过,接地变压器零序保护可以作线路故障后备保护。开关、母线等裸露的带电部分应采用热塑材料加以封闭以尽量减少这部分设备的故障可能性。

配电网继电保护整定计算原则

配电网继电保护整定计算原则

配电网继电保护整定计算原则1.规范性引用文件1)GB/T14285-2006继电保护和安全自动装置技术规程2)DL/T584-20173kV~110kV电网继电保护装置运行整定规程3)Q/GDW766-201210kV~110(66)kV线路保护及辅助装置标准化设计规范4)Q/GDW767-201210kV~110(66)kV元件保护及辅助装置标准化5)Q/GDW442-2010国家电网继电保护整定计算技术规范235〜220kV变电站10kV出线开关整定原则2.1电流速断保护1)按躲过本线路末端最大三相短路电流整定,计算公式如下:I DZ1-K K Xl Dmax⑶式中:K K—可靠系数,取K K>1.3;取可靠系数大于1.3是在考虑各种误差的基础上进行的,一般可根据线路长度、装置误差等因素酌情考虑;I Dmax(3)—系统大方式下,本线路末端三相短路时流过保护的最大短路电流。

2)宜与上一级变压器低压侧限时速断保护配合,可靠系数不小于1.1。

3)对于保护范围伸入下级线路或设备的情况,为避免停电范围扩大,可增加短延时。

4)时间取0〜0.15s。

2.2限时速断电流保护1)按保线路末端故障有灵敏度整定,灵敏系数满足2.4要求。

2)按与下一级线路电流速断保护相配合,时间级差宜取0.3〜0.5s。

计算公式如下:I DZ2>K K XK fmax XI DZ1'式中:K K—可靠系数,取K K>I.I;K fmax—最大分支系数,其分支系数应考虑在下一级线路末端短路时,流过本线路保护的电流为最大的运行方式。

【DZ1'—下一级线电流速断保护电流定值。

3)灵敏度不满足要求时,按与下一级线路限时速断电流保护配合。

4)应与上一级变压器10kV侧限时速断电流保护配合,可靠系数不小于1.1。

若时间无法与上一级变压器10kV侧限时速断电流保护配合,可退出本段保护,只考虑投入电流速断保护。

10kV配电网单相故障电流计算及跨步电压的分析

10kV配电网单相故障电流计算及跨步电压的分析

摘要10kV配电网主要有中性点不接地、中性点经消弧线圈接地、中性点经小电阻接地等运行方式。

不同的配电网中性点接地方式各有其特点和优势。

本文详细分析计算了三种主要接地方式下配电网在发生单相短路故障时的零序电压、短路电流和暂态特性;并利用有限元分析软件,详细分析了小电阻接地运行方式下,单相短路故障时的大地电场分布,计算了短路点附近的跨步电压。

为配电网接地方式的合理选择及继电保护提供了理论依据。

本文研究内容主要包括以下几个方面:介绍了10kV配电网的不同接地方式发展概况,详细分析了配电网中接地变压器的结构与工作原理,总结并对比了不同接地方式的优缺点。

针对三种主要接地方式的配电网络,首先分析出了其发生单相短路故障时的稳态等效电路,在此基础上推导出其短路接地电流计算公式,并给出了其电容电流分布图。

其次详细推导出其暂态等效电路,同样详细计算了其暂态短路接地电流。

最后建立了配电网发生单相接地短路的MATLAB仿真模型,得出了与理论分析结果相符的仿真波形与数据。

阐述了接地电阻、跨步电压和接触电压的概念,详细推导了它们的理论计算公式。

开创性地运用有限元分析软件ANSYS来定量仿真发生单相对地短路后的跨步电压,仿真结果与理论计算结果基本吻合。

设计了10kV配电网小电阻接地运行方式下发生单相对地和单相对电线横担的两种常见短路的实验方案,给出了详细实验操作步骤及需要注意的事项,通过实验验证了论文中有关短路时接地电流及跨步电压的计算分析结果。

关键词:10kV配电网;中性点接地方式;短路接地电流;跨步电压;有限元分析AbstractNeutral grounding without impedance,neutral grounding through suppression coil and neutral grounding through low resistor are the most common neutral grounding in the l0kV distribution network. There are different characteristics and application advantages with different neutral grounding. When the single phase short-circuit fault occur in the l0kV distribution network, zero sequence voltage, short-circuit current are calculated in detail and transient characteristics are analyzed for the three main neutral grounding in this paper. Then, Electric field distribution and step voltage are also calculated with Finite element analysis software for grounding through low resistor. The study of this paper is helpful to the choice of neutral grounding and power system relay protection for the l0kV distribution network.The study of this paper focuses on the following aspects:The development and application trends of neutral grounding in l0kV distribute network are introduced in this thesis, then the structure and work principle of grounding transformer is analyzed in detail. The advantages and disadvantages of three main neutral grounding are summarized and compared with each other.For the three main neutral grounding distribute network, Firstly, the steady-state equivalent circuit is proposed through careful analysis when the single phase short-circuit fault occur and the short circuit current formula is derived in detail on the basis of the steady-state equivalent circuit. The distribution figure of capacitive current is given. Secondly, the transient-state equivalent circuit is presented through careful analysis and the transient short-circuit current is solved based on the transient-state equivalent circuit. Finally, a single phase short-circuit fault model is established in the MATLAB software, the simulation results and data are consistent with the theoretical analysis results.The concept of grounding resistance, step voltage and touch voltage are expounded,and the theoretical formula is also deduced. The step voltage when the single phase short-circuit fault occur is calculated quantitatively with the finiteelement analysis software ANSYS. The simulation results are consistent with the theoretical calculation results.Two common short-circuit experimental program are designed and the experimental procedures and some notes are given in detail. It is demonstrated that the theoretical analysis about the short-circuit current and the step voltage in the paper is correct.Key Words: l0kV distribution network; neutral grounding; short-circuit ground current; step voltage; finite element analysis第1章绪论1.1课题研究背景及意义电力是人类文明生活的原动力,是最重要的二次能源和工商业界主要的动力及照明来源,其需求与经济发展之间有着密不可分的关系。

接地电容电流计算

接地电容电流计算

1前言众所周知10kV中性点不接地系统(小电流接地系统)具有如下特点:当一相发生金属性接地故障时,接地相对地电位为零,其它两相对地电位比接地前升高√3倍,一般情况下,当发生单相金属性接地故障时,流过故障点的短路电流仅为全部线路接地电容电流之和其值并不大,发出接地信号,值班人员可在2小时内选择和排除接地故障,保证连续不间断供电。

2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3 单相接地电容电流的补偿原则我国的相关电力设计技术规程中规定,3~10kV的电力网单相接地故障电流大于30A时应装设消弧线圈。

消弧线圈的作用是当电网发生单相接地故障后,提供一电感电流,补偿接地电容电流,使接地电流减小,也使得故障相接地电弧两端的恢复电压速度降低,达到熄灭电弧的目的。

电容器在配电网中的应用

电容器在配电网中的应用

电容器在配电网中的应用无功补偿,在电力供电系统中起提高电网的功率因数的作用,无功补偿可以降低供电变压器及输送线路的损耗,提高供电效率,改善供电环境。

所以无功功率补偿装置在电力供电系统中处在一个不可缺少的非常重要的位置。

合理地选择补偿装置,可以做到最大限度地减少网络的损耗,使电网质量提高。

反之,如选择或使用不当,可能造成供电系统,电压波动,谐波增大等诸多因素。

一、无功功率的形成交流电在通过纯电阻的时候,电能都转成了热能,而在通过纯容性或者纯感性负载的时候,并不做功,也就是说没有消耗电能,即为无功功率,当然实际负载,不可能为纯容性负载或者纯感性负载,一般都是混合性负载,这样电流在通过它们的时候,就有部分电能不做功,就是无功功率,此时的功率因数小于1,为了提高电能的利用率,就要进行无功补偿。

二、采用无功补偿提高功率因数的作用第一,提高供电设备的利用率。

在供电设备视在功率S一定的情况下,功率因数COSΦ越大,该供电设备可以带更多的有功负载(P=S*COSΦ)。

第二,提高输电效率。

当有功负载(P)一定时,因为(P=UI*COSΦ),电压U不变化,COSΦ越大,则电流I越小,电流I在线路中的损耗就越小。

第三,改善供电质量。

电流I越小,线路中电压损耗就越小,线路末端电压就可以得到更好的保证。

第四,提高输电安全性。

电流I小,线路发热降低,提高输电线路的安全性。

三、补偿容量的选择对于用量最多的每分钟1500转和3000转的电机用额定容量(kW)30%士0.5(kvar)的估算方法,可迅速简便地求出所需补偿电容的容量。

以30kW电机为标准,如果电机容量小于30kW的每台增加0.5kvar。

容量大于30kW的每台就减少0.5kvar。

一般农村配电网中的电容容量的速算法:电动机:随机补偿——Qc=(0.95-0.98)√3IoUnIo——电动机的励磁电流;Un——电动机的额定电压。

对于排灌用普通电动机:随机补偿——Qc=(0.5-0.6)PnPn——排灌电动机额定有功功率。

配电网电容电流超标问题研究

配电网电容电流超标问题研究

配电网电容电流超标问题研究崔应宇;贺芳;张永晖;杨增涛;李娜【摘要】In order to accurately and effectively solve the problem of capacitive current exceeding the standard in the current distribution network, this paper proposes a combining reactive compensation method of distributed fixed and centralized tracking for the 10 kV ungrounded system. The problem of capacitive current and conventional reactive compensation is analyzed by using data instance and mathematical statistics method, and the solution of decentralized fixed and centralized tracking is given. Using the method of Matlab/Simulink to simulate the solution, the results show that the proposed method is effective and practical for solving the problem of capacitance current exceeding 10 kV ungrounded system by using the combination of distributed fixed compensation and centralized tracking compensation. Meanwhile, this scheme has a certain significance to the planning and design of the substation, and the reactive power configuration of 10 kV opening and closing station.%为了准确有效地解决当前配电网电容电流超标问题,针对10 kV 不接地系统,提出一种分散固定和集中跟踪相结合的无功补偿方法.利用数据实例和数理统计方法分析了当前运行配电网电容电流与常规无功补偿的问题,并给出分散固定与集中跟踪解决方案.利用Matlab/Simulink对该方案进行仿真校验.仿真结果表明,分散固定补偿与集中跟踪补偿相结合的方法对治理10 kV不接地系统电容电流超标问题是有效和实用的.同时,该方案对规划设计中的变电站和10 kV开闭所在无功配置方面具有一定的指导意义.【期刊名称】《电力系统保护与控制》【年(卷),期】2017(045)021【总页数】5页(P147-151)【关键词】配电网;变电站;电容电流;补偿;仿真【作者】崔应宇;贺芳;张永晖;杨增涛;李娜【作者单位】河南省电力公司新乡供电公司,河南新乡453000;河南省电力公司新乡供电公司,河南新乡453000;河南省电力公司新乡供电公司,河南新乡453000;河南省电力公司新乡供电公司,河南新乡453000;河南省电力公司新乡供电公司,河南新乡453000【正文语种】中文随着城区配电网电缆线路所占的比重越来越大,变电站电容电流也将越来越大[1]。

单相接地电容电流的危害

单相接地电容电流的危害

2单相接地电容电流的危害当电网发展到一定规模,10kV出线总长度增加,对地电容较大时,单相接地电流就不容忽视。

当单相接地电流超出允许值,接地电弧不易熄灭,易产生较高弧光间歇接地过电压,波及整个电网。

单相接地电容电流过大的危害主要体现在五个方面:1)弧光接地过电压危害当电容电流过大,接地点电弧不能自行熄灭,出现间歇性电弧接地时,产生弧光接地过电压,这种过电压可达相电压的3-5倍或更高,它遍布于整个电网中,并且持续时间长,可达几小时,它不仅击穿电网中的绝缘薄弱环节,可使用电设备、电缆、变压器等绝缘老化,缩短使用寿命,而且对整个电网绝缘都有很大的危害。

2)造成接地点热破坏及接地网电压升高单相接地电容电流过大,使接地点热效应增大,对电缆等设备造成热破坏,该电流流入接地网后由于接地电阻的原因,使整个接地电网电压升高,危害人身安全。

3)交流杂散电流危害电容电流流入大地后,在大地中形成杂散电流,该电流可能产生火花,引燃可燃气体、煤尘爆炸等,可能造成雷管先期放炮,并且腐蚀水管,气管等金属设施。

4)接地电弧还会直接引起火灾,甚至直接引起可燃气体、煤尘爆炸。

5)配电网对地电容电流增大后,架空线路尤其是雷雨季节,因单相接地引起的短路跳闸事故占很大比例。

3、单相接地电容电流因中性点不接地方式在中压电网中,仅是一种短期的过渡方式,最终是要过度到经消弧线圈或小电阻接地方式,而在改造前要对电网中的电容电流进行计算和测量,以给改造提供技术数据。

中压电网单相接地电容电流有以下几部分构成:3.1.系统中所有电气连接的全部线路(电缆线路、架空线路)的电容电流。

3.2系统中相与地之间跨接的电容器产生的电容电流。

3.3因变配电设备造成的电网电容电流的增值。

系统中的电容电流可按下式计算:ΣIc=(Σic1+Σic2)(1+k%)式中:Σic电网上单相接地电容电流之和ΣIc1线路和电缆单相接地电容电流之和Σic2系统中相与地间跨接的电容器产生的电容电流之和k%配电设备造成的电网电容电流的增值。

基于谐振原理测量配电网电容电流的新方法

基于谐振原理测量配电网电容电流的新方法


算到一次侧的等效电流,假设电压互感器的变比为
k,则有

Is ' =
1

Is

l
'=kL
'
,
R
=
r
3。
k
调节电抗 l ' ,根据等值电路发生谐振状态的条件,
可获得下面两等式,以求得配电网络三相对地电容。
⎧ ⎪ ⎪⎪φ ⎨
1
=
arctg
ω 1(L
+
l1')
− R
1 ω1C sum
=0
⎪ ⎪ ⎪φ ⎩
2
Qi Hui Qi Zhenbiao (Anhui Electric Power Corporation Huaibei Power Supply Company, Huaibei, Anhui 235000)
Abstract Capacitance currents is an important parameter for protection and control in effectively earthed power systems. A novel method---resonance measurement for the cpacitance current measurement is preasented in the paper. An adjustable reactor is in series connection with the low voltage side of voltage transformer in arc suppression coil. System resonance frequency is sought by injecting a current signal with constant frequency. By changing the reactor inductance value,another resonance frequency can also be sought.The ground capacitance current can thus be calculated using the two resonance frequencies for the power systems. The PSCAD/EMTDC emulator is utilized to simulation and experiment ,The measurement results from simulation tests are used to prove the feasibility and the validity of such method in capacitance current detection.

35kV系统接地电容电流的计算

35kV系统接地电容电流的计算

35KV配电网络中性点接地华北水利水电大学周国安摘要电网中性点接地是关系到电网安全可靠运行的关键问题之一。

该文通过介绍中性点接地的基本概念、设计思想和理论联系实际的方法展开分析与研究。

阐明了35kV配电网络中性点采取消弧线圈接地方式的原因及解决其接线的具体措施。

通过理论分析,明确了消弧线圈的作用,并深入地讨论了消弧线圈的调整范围及方法。

清楚地表达了35KV配电网络中性点消弧线圈的整定值的合理性。

文中还明确了35KV配电网络进一步完善措施与该网络形成的接地设施之间的内在联系,从而提出了对35KV配电网络完善要求的具体措施。

关键词 35KV配电消弧线前言农村和城市配电网的负荷逐步在增大,就有110KV和35KV电网直接深入负荷区,这样给供电的安全、可靠性提出了更高的要求。

为此,必须分析和研究关系到整个供电系统安全、可靠的关键问题之一即35KV配电网络中性点接地方式问题。

对于大型变电站主变压器一般选择220/110/35KV或220/110/10KV,其接线组别为Y0/Y0/Δ,三角形接线侧为35KV或10KV,35KV或10KV是中性点不直接接地系统,只有选择接地变压器接在不同的母线段上,来完成接地补偿等问题。

另外,弄清这个问题,便于进一步完善该网络时,尽可能考虑采取技术合理、经济节省的相应措施。

1 规划设计的中性点接地方式1.1 中性点接地方式基本概念电力系统中电网中性点接地方式分直接接地和不接地(或称绝缘)的两种方式。

电网中性点直接接地,中性点就不可能积累电荷而发生电弧接地过电压,其各种形式的操作过电压均比中性点绝缘电网要低,但接地为短路故障,特别是瞬间接地短路,必须通过保护动作切除,再依靠重合闸恢复正常供电。

现今110KV及以上电网大都采用中性点直接接地方式。

但若较低电压等级的电网采用中性点接地的运行方式,则其接地事故频繁,甚至引起很多更严重的事故,操作次数多,且会因此增加许多设备,即可能引起供电可靠性降低,又不经济,故在我国3~35KV甚至60KV电网中性点采用非直接接地运行方式。

10kV配网系统电容电流的测算

10kV配网系统电容电流的测算

10kV配网系统电容电流的测算冉启鹏;陈欣;代正元;董伟【摘要】对10kV配网系统电容电流的工程计算公式和现场测试方法进行了概述,同时对21个变电站电容电流现场测试结果进行了统计分析,对现场测试结果偏大和异常的变电站进行了理论计算,并对二者存在偏差的原因进行了分析.针对测算结果偏大和异常的情况以及现场测试中的几种典型异常情况提出了解决方案.【期刊名称】《云南电力技术》【年(卷),期】2010(039)006【总页数】4页(P46-49)【关键词】配网;电容电流;危害;测试;计算方法【作者】冉启鹏;陈欣;代正元;董伟【作者单位】云南电网公司昆明供电局,云南,昆明,650200;云南电网公司昆明供电局,云南,昆明,650200;云南电网公司昆明供电局,云南,昆明,650200;云南电网公司昆明供电局,云南,昆明,650200【正文语种】中文【中图分类】TM73电力系统中的线路和设备都存在一定的对地分布电容,在交流电压作用下,就会产生电容电流,特别是在配网系统中,随着系统规模的扩大、电力线路和设备不断增加以及电缆线路的大量投运,使得电容电流越来越大。

当电网稳定运行时,在不考虑系统参数和相电压误差的情况下,三相对地电容大小相等,在系统未接地时,三相对地电容电流数值相等,相位相差120°,其矢量和为零,中性点无电流流入。

由于配网系统往往直接面向用户供电,系统情况复杂,系统参数也不可能完全对称,因此,运行中的配网系统中总是存在电容电流。

更为严重的情况是当系统发生单相接地或间歇性电弧接地时,中性点电位升为相电压,其他两相电压将在振荡过程后上升为线电压,流过接地点的电容电流为其他两相电压在其对地电容上产生的电流矢量和,在不稳定单相接地过程中,将对电网造成间隙性电弧接地过电压,这种过电压的幅值有时可达相电压的 3~5倍或更高,往往会造成电网薄弱环节被击穿,甚至发展成相间短路,还可能引起电缆着火、避雷器爆炸等事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

配电网电容电流计算
一、概述
目前,电容电流的测定方法很多,通常采用附加电容法和金属接地法进行测量和计算,但前者测量方法复杂,附加电容对测量结果影响较大,后者试验中具有一定危险性。

目前,根据各种消弧线圈不同的调谐原理,有多种间接测量电网电容电流的方法。

其根本思想都是利用电网正常运行时的中性点位移电压、中性点电流以及消弧线圈电感值等参数,计算得到电网的对地总容抗,然后由单相故障时的零序回路,计算当前运行方式下的电容电流。

在实际运行中,对于出线数较多、线路较长或包含大量电缆线路的配电系统,当其发生单相接地故障时,对地电容电流会相当大,接地电弧如果不能自熄灭,极易产生间隙性弧光接地过电压或激发铁磁谐振,持续时间长,影响面大,线路绝缘薄弱点往往还会发展成两相短路事故。

因此,DL/T620-1997《交流电气装置的过电压保护和绝缘配合》规定:3~10kV钢筋混凝土或金属杆塔的架空线路构成的系统和所有35kV、66kV系统,当单相接地故障电流大于10A时应装设消弧线圈;3~10kV电缆线路构成的系统,当单相接地故障电流大于30A,又需在接地故障条件下运行时,应采用消弧线圈接地方式。

消弧线圈一般为过补偿运行(即流过消弧线圈的电感电流大于电容电流),也就是说装设的消弧线圈的电感必须根据对地电容电流的大小来确定,以防止中性点不接地系统发生单相接地而引起弧光过电压。

故障后,消弧线圈必须快速合理地补偿电容电流,以使接地电弧快速自熄,所以消弧线圈应实时跟踪电网运行方式的变化,在电网正常运行时,测量计算当前运行方式下的电容电流,以合理调节消弧线圈的出力。

显然,电网电容电流的计算精度,将直接影响消弧线圈的调谐和补偿效果。

随着电力系统对安全可靠性要求的日益提高,用户对消弧线圈调谐精度和补偿效果的要求也越来越高。

而现有的各种消弧线圈自动跟踪补偿装置中所采用的计算理论和方法,无法很好满足用户的要求。

要提高消弧线圈的调谐精度和补偿效果,首先就要进一步提高电容电流的计算精度。

本章对电容电流的计算理论和计算方法作了进一步深入的研究,减小和消除了对地容抗计算的误差,并计及电网不平衡对电容电流计算的影响,提高了电容电流的计算精度。

二、电容电流的估算
1. 架空电力线路电容电流估算法
中性点不接地系统对地电容电流近似计算公式为: 无架空地线:31.1 2.710C I U L A =⨯⨯⨯⨯ 有架空地线:31.1 3.310C I U L A =⨯⨯⨯⨯ 式中,U ——额定线电压(千伏);
L ——线路长度(公里)
; 1.1——系数,因水泥杆,铁塔线路增10%。

几点说明:○1双回线路的电容电流为单回路的1.4倍(6—10kV 系统);

2一般实测表明:夏季比冬季电容电流增值10%; ○
3由于变电所中电力设备所引起的电容电流增值估算见表4–1。


4一般估算 6kV :C I =0.015(安/公里)
10kV :C I =0.025(安/公里)
表4–1 因变电所设备引起的电容电流增值估算
2. 电力电缆线路的电容电流
电缆线路在同样的电压下,每公里的电容电流为架空线25倍(三芯电缆)或者50倍(单芯电缆),近似计算公式如下:
6kV :95 3.122006C e S
I U S +=
+(安/公里)
10kV :95 1.222000.23C e S
I U S
+=+(安/公里)
式中: S ——电缆截面积(毫米2)
U——额定线电压(千伏)
e
上述的计算公式主要适用于油浸纸电力电缆,对目前采用的聚氯乙烯绞联电缆每公里对地的电容电流比油浸纸要大,根据厂家提供的参数和现场实测检验约增大20%左右。

3. 经验数据表
表4–2 6~35kV油浸纸电缆电容电流计算Array
表4–3 架空线路单相接地电容电流(安/公里)计算
表4–4 6kV交联聚氯乙烯电缆接地电容电流计算
注:此表适用于6kV小电流接地系统中铜芯交联聚氯依稀绝缘电力电缆。

表4–5 10千伏交联聚氯乙烯绝缘电力电缆接地电容电流计算
注:1.此表适用于10kV小电流接地系统中铜导体交联聚氯乙烯绝缘电力电缆;
2.电缆的绝缘厚度为4.5mm ;
3.接地电容电流6112310(/)C I f C U A km φπ-=⨯⨯⨯式中U φ取11千伏
以下的相电压。

相关文档
最新文档