非线性光学材料研究

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
非线性光学材料研究
非线性光学材料研究

非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。本文通过对三种非线性光学材料—石墨烯、碳纳米管和量子点的性能、制备以及应用展开综合性描述。阐述当今时代非线性光学材料的发展前景和探索其未来更广阔的的应用领域。
关键词:
非线性光学材料;石墨烯;碳纳米管;量子点;综述
非线性光学材料是指一类受外部光场、电场和应变场的作用,频率、相位、振幅等发生变化,从而引起折射率、光吸收、光散射等变化的材料。在用激光做光源时,激光与介质间相互作用产生的这种非线性光学现象,会导致光的倍频、合频、差频、参量振荡、参量放大,引起谐波。利用非线性光学材料的变频和光折变功能,尤其是倍频和三倍频能力,可将其广泛应用于有线电视和光纤通信用的信号转换器和光学开关、光调制器、倍频器、限幅器、放大器、整流透镜和换能器等领域。
Study on nonlinear optical materials
Abstract:
Nonlinear optical material is a kind of optoelectronic functional material which has wide application prospect in the fields of photoelectric conversion, optical switch, optical information processing and so on. In this paper, the properties, preparation and application of three kinds of nonlinear opticalmaterials - graphene, carbon nanotubes and quantum dots, are described. The development of nonlinear optical materials in the present age and itsfutureapplication fields are described.
自上个世纪60年代至今,非线性光学不断发展,一些重要的非线性光学效应相继被发现,新型的非线性光学晶体材料的试制成功,皮秒激光器件的广泛使用以及飞秒激光器的研究,使得利用超快脉冲进行非线性光学的研究得到重大推进,取得许多新的科研成果。非线性光学的应用离不开非线性光学(NLO)材料,它能实现光波频率转换,这种能力为实现全光学计算、开关和远距离通信提供了可能,应用前景广阔。
下面对现在已知的非线性光学材料进行分类,并进行简单介绍。
无机非线性光学材料
1975年Chemla等人提出了用“分子工程学”方法探索有机非线性光学材料取得了很大的进展。1979年陈创天在阴离子基团理论及研究无机非线性光学材料基础上,提出了用分子工程学方法探索无机非线性材料的可能性,并总结出无机非线性材料的一些结构规律:(1)氧八面体或其它类似的阴离子基团的畸变愈大,对产生大的非线性系数愈有利;(2)当基团含有孤对电子时,该基团屹具育较大的二阶极化率;(3)具有共扼π轨道的无机平面基团将同样能产生较大的非线性系数。
微结构非线性光学材料
微结构的合理引入可以使材料的非线性光学效应显着增强,且往往能显示出常规材料不具备的新特性。由于其调制周期往往在亚微米量级,也有人称之为纳米材料,由于微加工手段的限制,这类材料问世较晚。这几年微结构非线性光学材料的发展十分迅猛,在理论和实验上都有许多重大进展。
Key words:
Nonlinear optical materials;graphene; carbon nanotubes; quantum dots; review
1
非线性光学材料是一类在光电转换、光开关、光信息处理等领域具有广泛应用前景的光电功能材料。在目前信息技术高速发展的时代,光电子工业发展迅猛,对光电功能材料的需求也日趋增长。在光电子工业中如光开关、光通讯、光信息处理、光计算机、激光技术等都需要以非线性光学材料为基础材料,因此,近几十年来非线性光学材料引起了人们的广泛关注,对它的研究也以日新月异的速度发展着。
本文将要描写的三种非线性光学材料,石墨烯、碳纳米管和量子点均拥有优良的三阶非线性光学性质,实验研究证明,均存在着高的三阶非线性极化特性,在和其它材料进行复合后,取得了理想的非线性光学性质,效果显着。
2
作为一种较好的非线性光学材料,必须满足:(1)有适当大小的非线性系数;(2)在工作波长应有很高的透明度(一般吸收系数α<;(3)在工作波长可以实现相位匹配;(4)有较高的光损伤阀值;(5)能制成具有足够尺寸、光学均匀性好的晶体;(6)物化性能稳定,易于进行各种机械、光学加工。
有机非线性光学材料
有机非线性光学材料由于非线性系数大、响应快、可根据需要进行分子设计等突出特点,长期以来被人寄予厚望并已形成一个极为庞杂的体系。有机非线性光学材料与无机材料相比有下列优点:(1)有机材料的光极化来源于高度离域的π电子的极化,其极化比无机材料的离子极化容易,故其非线性光学系数比无机材料高1-2个数量级,可高达10-5esu量级;(2)响应速度快,接近于飞秒。而无机材料只有皮秒;(3)光学损伤阀值高,可高达GW/cm-2量级,而无机材料只能达MW/cm-2量级;(4)可通过分子设计、合成等方法优化分子性能;(5)可通过聚集态没计控制材料性能,满足器件需要;(6)可进行形态设计,加工成体材、薄膜和纤维。有机非线性光学材料在频率转换和信号处理等方面有广阔的应用前景,已成为重要的研究课题之一。
非线性光学是随着激光技术的出现Leabharlann Baidu发展形成的一门学科分支,是近代科学前沿最为活跃的学科领域之一。数十年间,非线性光学在基本原理、新型材料的研究、新效应的发现与应用方面都得到了巨大的发展,成为光学学科中最活跃和最重要的分支学科之一。
1960年Maiman制成了世界上第一台红宝石激光器,人们对于光学的认识发生了重大变化。在高强度的激光作用到介质体系时,人们在大量的不同材料中都观察到与常见光学效应截然不同的现象,如介质的折射率和吸收系数会随光电场强度的变化而变化,这些新现象需要用非线性光学的基本原理予以解释。
相关文档
最新文档