抽屉原理(B)六年级奥数题之专题串讲试题(附答案)2013

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

十八 抽屉原理(2)

年级 班 姓名 得分

一、填空题

1.半步桥小学六年级(一)班有42人开展读书活动.他们从学校图书馆借了212本图书,那么其中至少有一人借 本书.

2.今天参加数学竞赛的210名同学中至少有 名同学是同一个月出生的.

3.学校五(一)班40名学生中,年龄最大的是13岁,最小的是11岁,那么其中必有 名学生是同年同月出生的.

4.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒里,一次至少摸出 个,才能保证有2个小球是同色的.

5.有红、黄、蓝、白四色小球各10个,混合放在一个暗盒中,一次至少摸出 个,才能保证有6个小球是同色的.

6.布袋中有60个形状、大小相同的木块,每6块编上相同的号码,那么一次至少取出 块,才能保证其中至少有三块号码相同.

7.某商店有126箱苹果,每箱至少有120个苹果,至多有144个苹果.现将苹果个数相同的箱子算作一类.设其中箱子数最多的一类有n 个箱子,则n 的最小值为 .

8.有形状、大小、材料完全相同的黑筷、白筷、红筷各4双,混杂在一起,要求闭着眼睛,保证从中摸出不同颜色的2双筷子,则至少要摸出 根.

9.袋子里装有红色球80只,蓝色球70只,黄色球60只,白色球50只.它们的大小与质量都一样,不许看只许用手摸取,要保证摸出10对同色球,至少应摸出 只.

10.有红笔、蓝笔、黄笔、绿笔各2支,让一位小朋友随便抓2支,这位小朋友至少抓 次才能确保他至少有两次抓到的笔的种类完全相同.(每抓一次后又放回再抓另一次)

二、解答题

11.某游旅团一行50人,随意游览甲、乙、丙三地,问至少有多少人浏览的地方完全相同.

12.从一列数1,5,9,13,…,93,97中,任取14个数.证明:其中必有两个数的和等于102.

13.在一个边长为1的正三角形内,任给5个点,证明:其中必有两个点之间的距离不大于1/2.

14.设,,21x x …,12x 是任意互异的12个整数,试证明其中一定存在8个整数

,,21x x …,8x ,使得:)()()()(87654321x x x x x x x x -⨯-⨯-⨯-恰是1155的倍数.

———————————————答 案——————————————————————

1. 6

将42名同学看成42个抽屉,因为212=5⨯42+1,故至少有一个抽屉中有6本或6本以上的书.

2. 18

因210=17⨯12+16,故一定有18个或18个以上同学在同一月出生.

3. 2

这40名同学的年龄最多相差36个月(三年)因40=1⨯36+4,故必有2人是同年、同月出生的.

4. 5

从极端考虑:即使先取走取的4个球都是不同色的,那么取第5个球时就必有二球同色了.

5. 21

将球按颜色分成4类,每次各取5个时,也无6球同色,故应取(6-1)⨯4+1=21(个)球,才能保证一定有6球同色.

6. 21

将布袋中的木块按编号分成60÷6=10(类)要保证其中某一类至少有三个,至少应拿出(3-1)⨯10+1=21(块).

7. 6

每箱数目是120~144,共有25种可能.因126=5⨯25+1,故至少有5+1=6(个)装相同苹果数的箱子,即n 最小为6.

8. 11

当摸出10根时,可能是8根黑筷,白筷,红筷各一根,没有“不同颜色的二双”.当摸出11根时,至多有8根属于同一颜色,那么另3根中至少有二根是同色的.

9. 23

当摸出22只球时,可能有9对同色球,但剩余四球分别为红、蓝、黄、白各一只,达不到10对,另一方面,每摸出5个球,就会出现一对同色球,将这一对挪开,再摸出两个球,就必然会又出现一对红色球,如此下去,摸出23只球就能保证有10对同色球.

10. 11

两支笔的种类可分为同色与异色.同色的有4种,异色的有3+2+1=6种,为了保证至少有两次抓到笔的种类完全相同,至少要抓1⨯10+1=11(次).

11. 浏览一个地方的,有3种,浏览二个地方的,有3种,浏览三个地方的,有1种,一个地方也不去的,有1种,共有8种方式.故至少有718150=+⎥⎦⎤⎢⎣⎡-(人).

浏览的地方是完全相同的.

12. 给出的数是一个等差数列,它一共有25个数,将这25个组分成13组:{}{}{}{}{}{}53,49,57,45,,89,13,93,9,97,5,1 .

在这25个数中任取14个数来,必有二数属于上述13组中的同一组,故这一组二数之和是102.

13. 如图,将三角形三边中点连结起来,就将原三角形分成了四个小三角 形, 其边长均为21

,在原三角形内,任意给5个点,其中至少有两点在同一个小三角形内,这两点的距离小于小三角形的边长21

.

14. 对1155分解质因数得1155=3⨯5⨯7⨯11.

在所给的12数中,必有2数除以11,余数相同,设这2数为x 1,x 2,则(x 1-x 2)是11的倍数.

在剩下的数中,必有2数除以7,余数相同,设这2数为x 3,x 4,则(x 3-x 4)是7的倍数.

在剩下的8数中,必有2数除以5,余数相同,设这2数为x 5,x 6,则(x 5-x 6)是5的倍数.

在剩下的6数中,必有2数除以3,余数相同,设这二数为x 7,x 8,则(x 7-x 8)是3的倍数.

故存在8个数x 1,x 2,…x 8,使(x 1-x 2) (x 3-x 4) (x 5-x 6) (x 7-x 8)是1155的倍数.

相关文档
最新文档