风电对电力系统的影响

合集下载

风力发电对电力系统的影响及解决措施

风力发电对电力系统的影响及解决措施

风力发电对电力系统的影响及解决措施摘要:近年来,我国经济社会取得了快速发展,对能源的需求日益增多,能源危机日趋严重。

风力发电作为新型可再生能源具有良好的发展前景,受到人们的重视,取得了较快的发展。

但是风力发电在电力系统的实际应用过程中,还存在一定的问题,需要采取科学有效的措施予以解决,提高风力发电的效率和效果。

关键词:风力发电;电力系统;影响一、力发电对电力系统的影响分析一是发电站规模对电力系统的影响。

近几年,我国风力发电项目规模逐渐增大,在系统化电网管理结构中,风电装机容量占据的比重较小,在注入风力发电能量后,整体项目对于电网的冲击在不断减少,并不会对电网产生非常大的影响,因此,多数风力发电项目并不会对发电场的规模有所标注和限制。

但是,在对于一些区域风能资源较为丰富的地区,由于地理位置距离市中心较远,其电网容量并不大,自身的抗扰动能力也相对薄弱,这就导致风力资源的随机性以及不可控性出现了严重的偏差。

加之风力资源存在随机性以及不可控性,并没有非常完备的技术对其风力功率进行集中预测,相互影响也就十分明显。

二是风力发电对电能质量的影响。

在风力发电项目中,对电能质量产生的主要影响:①谐波影响,在变速风险机组并网操作后,风力发电项目中的变流器会一直处于工作状态,这就会导致整体结构中出现了严重的谐波问题;②电压波动和闪变影响,在并网的风电机组中,常规化运行会使得机组产生功率的波动情况,也会导致电压波动和闪变问题,而究其原因,控制系统不足、电网状况运行缺失以及发电机型等因素都是会导致电压波动以及闪变出现;③电压跌落的影响,在并网风机运行过程中,使用异步电机的频率较高,会从电网中直接吸收无功功率,这就会对电网整体测定的电压产生严重的影响,若是存在大量的风机,在接收到弱电网时,整体电压跌落现象就会被放大,甚至导致整个电压突然下降。

二、风力发电的技术优势在风力发电的过程中,其技术在实际应用中存在很多的优点,并且现如今随着我国风力发电事业快速发展,其技术的应用越来越普通,通过充分的结合风力发电技术存在的优点,主要是存在着以下几个方面:一是经济性十分好。

风电并网对电力系统电压稳定性的影响

风电并网对电力系统电压稳定性的影响

风电并网对电力系统电压稳定性的影响摘要:随着科技的快速发展,风力发电机技术得到了不断的更新,相应的单元结构得到了优化,有关性能得到了提高。

在这种形势下,风电正逐步走向产业化。

加速风能的开发和利用,有利于提高保护环境和减少能源消耗。

事实上,风力发电机的功率是非常不稳定的,在风电场并网的时候,会对电力系统的电压稳定性和安全性产生很大的影响。

因此,对风电场并网带来的电力系统稳定性的影响进行系统的了解,有助于明确科学的管控措施,从而保证电网运行的稳定性。

关键词:风电并网;电力系统;电压稳定性前言:风力发电是一种新的可再生能源,在全球范围内得到了快速的发展。

目前,我国风电建设正处于高速发展期,大型风电机组接入电网是风电发展的必然要求。

风电场接入电网分析是风电技术三大核心问题之一,对风电场的规划、设计、运行等方面都有重要意义。

随着风电机组装机容量在电网中的比重不断增大,风电机组对电网的影响也日益突出。

为了保证电网的安全稳定运行,有必要对其进行深入的分析。

1风电并网的主要问题1.1电压波动和闪变目前大部分风电机组都已实现了软并网,但是,由于风电机组的起动存在着很大的冲击。

当速度大于切断速度时,风扇将在额定输出功率下自动停止运转。

若风电场中全部风机在同一时间运行,则其对配电网络的影响将非常显著。

除此之外,风速的变化以及风机的塔影效应都会造成风机出力的波动,而其波动恰好处于可以产生电压闪变的频率范围之内(小于25 Hz),当风机在正常运转时,也会给电网带来闪变问题,对电能质量造成影响。

风电并网运行时,造成电网电压波动、闪变等现象的主要原因是风电机组出力不稳定。

风力发电系统中的有功与无功共同作用于电网电压的变化。

风力发电机的有功功率在很大程度上取决于风速;对于无功而言,恒速风力机所需的无功会随着有功的变化而变化,而双馈电动机通常都是恒定的功率因子,所以其无功的变化幅度很小。

风电并网后,除了在连续运行的情况下,还会在启动、停机以及机组的切换等过程中发生电压波动与闪变。

风能光伏能源发展对电力系统产生的影响研究

风能光伏能源发展对电力系统产生的影响研究

风能光伏能源发展对电力系统产生的影响研究随着全球环保意识的不断加强,清洁能源逐渐走入人们的视野。

其中最为常见的清洁能源便是风能和光伏能源。

这两种能源具有绿色环保、永续发展等诸多优势,因此得到了广泛的推广和应用。

而随着它们在能源领域的应用范围越来越广,也对电力系统产生了一定的影响。

下面,本文将探讨风能和光伏能源发展对电力系统产生的影响。

一、风能发电对电力系统产生的影响1. 电力系统调峰能力缺乏风力发电具有不稳定性,容易受到天气、季节等自然因素的影响。

因此,在风力发电中,电力系统调峰能力十分重要。

调峰能力可以保证风能发电的顺畅运行,使其尽量发挥出其优势。

但是,在许多地区,电力系统调峰能力不够强,导致风能发电的效率不高。

2. 电网安全稳定性受到影响在电力系统中,稳定性是十分重要的一个指标。

而风能发电的不稳定特性会对电网安全稳定性产生一定的影响。

在发电量波动较大的情况下,电网的负荷也会跟着波动。

如果电力系统的调控能力不足,那么就会增加电网的运行风险。

因此,在风能发电中,如何保证电网安全稳定性尤为重要。

3. 低投资成本是优势所在虽然风能发电对电力系统带来了某些负面影响,但其低投资成本是其优势所在。

在大规模风能发电项目构建过程中,大多采用了大量标准化的技术和设备,有效降低了建设成本。

此外,由于风能发电的并网电价较高,一定程度上减轻了电力公司的负担。

因此,风能发电发展前景广阔。

二、光伏能源发展对电力系统产生的影响1. 具有高可靠性和生态环保特点与传统的火力发电相比,光伏发电没有燃烧物质、不会产生二氧化碳等有害物质,且设备不易损坏,具有高可靠性。

因此,其对环境的影响较小,更适合应用于城市等人口密集地区。

2. 稳定性不足需要加强调峰能力与风能发电类似,光伏发电也具有不稳定性。

由于受到天气、季节、昼夜等因素的影响,光伏发电存在着较为明显的波动性。

因此,在实际应用中,需要加强光伏发电的调峰能力,保证其能够持续稳定运行。

大规模风电并网对电力系统的影响及应对措施

大规模风电并网对电力系统的影响及应对措施

大规模风电并网对电力系统的影响及应对措施摘要:风能具有可再生、无污染等特点,在新能源领域具有巨大的发展潜力。

随着风电装机容量在电网中所占比重的不断提高,大规模风电并网对电网的影响越来越严重。

因此,根据风电场实际运行情况,分析大规模风电并网对电力系统的影响,并采取有效措施,这对电力系统的稳定安全运行具有重要的现实意义。

本文详细论述了大规模风电并网对电力系统的影响及解决措施。

关键词:大规模风电并网;电力系统;影响;解决措施风能作为一种清洁可再生能源,不仅是最具大规模开发利用的能源,也是最具竞争力的非常规能源。

我国集中开发的大型风电场大多远离负荷中心,当地电网结构薄弱,吸纳风电的能力差,必须远距离输电;而且风能具有一定的间歇性及随机性,风电场出力随风速的变化而变化,其有功无功潮流经常发生变化,易发生电压失稳事故,若上述因素不能有效解决,将直接影响电网的安全稳定运行。

一、风能发电的特点1、风能的稳定性差。

风能属于过程性能源,不可控,具有随机性、间歇性、不稳定性特点,风速和风向决定了风力发电机的发电状态及出力大小。

2、风能不能储存。

对于单机独立运行的风力发电机组,要保证不间断供电,必须配备相应的储能装置。

3、风电场的分布位置通常较偏远。

我国的风电场多数集中在风能资源较丰富的西北、华北和东北地区。

二、大规模风电并网给电力系统的影响1、调峰调频容量的影响。

在风力发电系统中,基本无调峰现象,接入电网时多采用软并网方式,系统启动运行中,会产生较大的冲击电流。

特别是当风速超过切出风速时,风机将从额定出力状态解列退出运行,大规模风电并网时,大量风电机组的解列将对电网造成巨大影响。

另外,风速变化和塔影效应会引起风电机组出力波动,导致电网电压闪变。

虽然单台风电机组对电网电压影响较小,但单机对电网电压的影响也需持续一段时间才能基本消失,而大规模风电并网造成的电压冲击往往会造成电网电压的骤降。

当风速增大时,系统输入有功功率增大,风电场母线电压先降后升,此种现象在风电场与电力系统间等效阻抗较大时产生的电压波动更为明显。

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响

风力发电对电力系统运行的影响摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方而的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这此技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。

关键词:风力发电,电能质量,稳定性,解决方案0引言能源是推动社会进步和人类赖以生存的物质基础。

目前,全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度。

在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。

对于可再生能源的开发和利用变得颇为急切。

在各种可再生能源利用中,风能具有很强的竟争力。

风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。

经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。

我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力。

江苏省如东县建设了我国第一个风电场特许权示范项目。

该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。

江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。

大规模的风力发电必须要实现并网运行。

风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。

风电并网对电力系统的影响

风电并网对电力系统的影响

风电对电力系统的影响由于风速变化是随机性的,因此风电场的出力也是随机的。

风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。

在风电容量比较高的电力网中,可能会产生质量问题。

例如电压波动和闪变、频率偏差、谐波等问题。

即可分为:对电能质量的影响,对稳定性的影响,对保护装置的影响。

1.对电能质量的影响风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量 ,,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。

电压波动和闪变是风力发电对电网电能质量的主要负面影响之一。

电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机自动控制设备的正常工况等。

影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。

并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。

风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。

另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。

异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过 5~6 倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。

风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。

但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。

2.对稳定性的影响风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。

因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃[11,13]。

大规模风电并网对电力系统稳定性的影响及应对策略

大规模风电并网对电力系统稳定性的影响及应对策略

大规模风电并网对电力系统稳定性的影响及应对策略引言近年来,随着全球对可再生能源的需求不断增加,风电发电已成为最可行的选择之一。

然而,大规模风电并网对电力系统的稳定性产生了一系列的挑战。

如何应对这些挑战,保持电力系统的稳定运行,成为不容忽视的问题。

本论文将以大规模风电并网对电力系统稳定性的影响以及相应的应对策略为主题进行探讨。

一、大规模风电并网对电力系统稳定性的影响1. 发电波动带来的频率稳定问题大规模风电并网引入了更多的不确定性和变动性因素,由于风速的不稳定性,风电场的发电量会出现波动。

这种发电波动会对电力系统的频率稳定性产生一定的影响。

频率稳定性是电力系统正常运行的基础,发电波动产生的频率变化可能导致系统频率偏离额定值,进而影响系统的稳定运行。

因此,需要制定相应的应对措施以确保电力系统的频率稳定。

2. 电压稳定问题大规模风电并网会导致电力系统中的短路电流增加,进而影响系统的电压稳定性。

由于风电的不确定性和变动性,其发电功率对网侧电压的影响较大。

风电场的接入可能导致系统电压的波动,甚至引发电压不稳定的现象。

电压不稳定性对电力系统的设备安全运行和用户供电质量都会产生重要影响。

因此,必须采取相应的措施来解决电压稳定问题。

3. 功率控制问题大规模风电并网会引起系统功率波动,可能会产生电网负荷与风电出力的不匹配情况。

由于风电的输出功率较难控制,这给电力系统的运行带来了一定的困难。

功率控制问题的解决,对于保持电力系统的平衡运行至关重要。

二、应对策略1. 频率稳定问题的应对策略为了解决大规模风电并网带来的频率稳定问题,可以考虑以下措施:设置合理的调度策略,通过调整其他发电源的出力来平衡风电波动的影响;引入先进的频率响应控制技术,由风电场主动参与系统频率调控,提高系统的稳定性;制定风电场接入的频率稳定性评估标准和约束条件,以保证系统的频率稳定。

2. 电压稳定问题的应对策略针对大规模风电并网引发的电压稳定问题,可以采取以下措施:增加发电侧的无功支撑能力,通过合理的无功控制手段来调整风电场的输出功率;优化风电场与电网之间的电压控制策略,确保系统的电压在合理范围内稳定;采用电压稳定恢复装置和控制器等技术手段,提高电力系统的电压稳定性。

大规模风电并入电网对电力系统的影响

大规模风电并入电网对电力系统的影响

大规模风电并入电网对电力系统的影响摘要:风力发电是可再生能源发电形式中技术最成熟、最具开发规模和商业化发展前景的,然而风电场的出力不可控,为配合风电场出力的频繁波动,需要其他常规发电厂出力及系统备用的频繁改变。

随着新能源风电总装机容量的增加,这些问题将会严重影响电力系统的安全性、可靠性、经济性等指标。

分析风电并入电网后对电力系统的影响对于新能源应用水平的提高和我国电力事业的发展都有着积极的意义。

针对于此本文就大规模风电并入电网对电力系统的具体影响进行了分析。

关键词:风力发电;电力系统;电能质量随着风力发电技术的快速发展和国家在政策上对可再生能源发电的重视,我国风力发电建设已进入了快速发展的时期。

我国风资源较丰富,但适合大规模开发风电的地区一般都处于电网末端,由于此处电网网架结构较薄弱,因此大规模风电接入电网后可能会出现电网电压水平下降、线路传输功率超出热极限、系统短路容量增加和系统暂态稳定性改变等一系列问题。

一、风电对电力系统电压的影响电压稳定问题取决于风电场及接入电网的无功特性。

由于一般风能资源丰富地区距离负荷中心较远,大规模的风力发电是无法就地消纳的,需要通过输电网远距离输送到负荷中心。

在风电场的风电出力较高时,大量风电功率的远距离输送往往会造成线路压降过大,风电场的无功需求及电网线路的无功损耗增大,电网的无功不足,局部电网的电压稳定性受到影响、稳定裕度降低。

随着接入风电容量的增大。

风电场从系统中吸收的无功功率逐渐增大,如果系统不能提供充足的无功,网内相关节点电压会逐渐降低。

电网的电压稳定极限限制了风电场最大的装机容量,在电网规划没有与风电规划协调时,往往电网接纳风电的能力不能适应风电规划的发展,接入的风电场容量受到电网自身条件的限制。

通过采用一定的无功补偿手段,可以增加电网的电压稳定裕度,提高风电场的最大装机容量。

如果在风电场中安装一定容量的无功补偿装置(如并联电容器组)来提高风电场并网点的电压水平,能够改善风电接人地区的电压水平,提高电压稳定裕度,增加风电场的最大装机容量。

风能发电对电力系统的影响分析

风能发电对电力系统的影响分析

风能发电对电力系统的影响分析随着全球对清洁能源的需求增加以及对化石燃料使用的限制,风能作为一种可再生能源逐渐受到重视,并在电力系统中的应用逐渐扩大。

本文将对风能发电对电力系统的影响进行分析,并探讨其在可持续发展中的潜力。

一、风能发电的基本原理风能发电利用风能驱动风机叶片旋转,通过发电机将机械能转变为电能。

风能作为可再生能源,具有丰富、广泛分布以及无污染等优点,成为电力系统中的重要组成部分。

二、风能发电对电力系统的影响1. 多样化能源结构:引入风能发电可以使能源结构更加多样化,减少对传统能源的依赖程度,降低对化石燃料的需求。

2. 绿色环保:风能发电不产生污染物和温室气体的排放,对环境没有负面影响,有利于改善大气质量和生态环境。

3. 减少温室气体排放:风能作为清洁能源,可以替代传统燃煤发电厂等高污染、高排放的发电方式,有效减少温室气体的排放量,有利于应对气候变化。

4. 降低能源价格波动风险:引入风能发电可以降低对石油、煤炭等传统能源价格波动的依赖,减少能源价格的风险。

5. 提高电网安全性:由于风能具有分散性和可再生性,引入风能发电可以提高电力系统的供应可靠性和稳定性,缓解火力发电集中供应带来的供电压力。

三、风能发电的挑战1. 不稳定性:风能发电受到天气条件的限制,风力不稳定会导致风能发电量的波动,给电力系统的稳定供电带来一定的挑战。

2. 电力质量:风能发电的波动性对电力系统的电压、频率和功率质量提出了一定的要求,需要通过技术手段来解决。

3. 输电需求:风能资源分布不均匀,往往离负荷中心较远,需要建设远距离的输电线路,增加电网的投资成本。

四、风能发电的应对措施1. 储能技术:通过储能技术,将风能转化为可控、可调度的能源,减少电力系统的波动性,提高供电的可靠性。

2. 增加灵活性:通过灵活调度、合理规划等手段,充分利用风能发电的差异性,提高电力系统的灵活性,降低风电对电网的影响。

3. 智能电网建设:通过智能电网的建设,实现对风能发电的精细调控,提高电力系统的稳定性和可控性。

风电接入对电力系统调峰的影响

风电接入对电力系统调峰的影响

风电接入对电力系统调峰的影响风电是一种清洁能源,发展风电意义重大。

但是,风电是一种间歇性、波动性的能源,风电接入电力系统面临一系列问题,其中,风电接入电网调峰问题最为突出,要实现电力系统调峰,首先要对风电功率进行预测,在预测的基础上实现电力供需平衡,使电力系统安全经济运行,同时降低系统备用容量。

标签:风电;调峰;电力系统;风电功率预测TB0 引言风能作为一种清洁能源,越来越受到人们的重视,近年来,风电发展突飞猛进,截至2010年底,全球的风力发电总装机容量为197GW,其中,中国的装机容量达到44.73GW,居世界首位。

我国的风电资源主要集中于“三北”和东南沿海,储量丰富,但没有得到充分的开发,根据国家《新能源产业振兴规划》,我国将打造7个千万千瓦级的风电基地,到2020年我国风电总装机容量将达1.5亿千瓦。

众所周知,能源问题是当今世界性难题,发展风电是解决未来能源问题的有效途径之一,但是,风电接入面临了三大关键问题:电源基地建设、接入方案与电网规划,以及并网运行研究。

此外,风电是一种间歇性、波动性和反调峰性的能源,给电力系统安全经济运行带来极大的负面影响。

如调频调峰的影响、稳态潮流的影响、暂态稳定的影响、无功及电压的影响等。

在这些影响中,调峰涉及电力运行的经济代价、电源结构及风电功率的准确预测等,对电力系统的影响较大,是目前公认的制约电力系统接纳风电能力的主要因素。

因此,对风电接入电力系统调峰的研究极其迫切,调峰的本质要求系统发电量与负荷需要之间必须时刻保持平衡,电力系统如果不能有效控制出现供需失衡,将影响用户的用电可靠性甚至会导致系统大范围的事故。

考虑到国内外风电建设与发展情况的不同,调峰的策略与技术实现也是有差别的,国外尤其是北欧,风电场装机容量大多较小,主要是分散接入配电网就地消纳,且北欧的丹麦、挪威、瑞典和芬兰实现跨国电网互连,北欧风电—水电联合实现互补,以水电调峰的方便快捷平滑风电的波动性。

风电技术发展对电力系统的影响有哪些

风电技术发展对电力系统的影响有哪些

风电技术发展对电力系统的影响有哪些在当今能源转型的大背景下,风电技术作为一种清洁能源技术,取得了长足的进步。

风电技术的发展不仅为我们提供了更多的绿色能源,也给电力系统带来了多方面的影响。

首先,风电技术的发展增加了电力系统的能源供应多样性。

过去,电力系统主要依赖传统的化石能源,如煤炭、石油和天然气。

然而,随着对环境问题的日益关注和能源可持续发展的需求,风电作为一种可再生能源,逐渐成为电力供应的重要组成部分。

这种多样性有助于降低对有限且不可再生的传统能源的依赖,增强了能源供应的稳定性和安全性。

风电的大规模接入改变了电力系统的电源结构。

传统电源,如火力发电,其输出相对稳定且可控。

而风力发电则具有间歇性和波动性的特点。

这意味着风电的输出功率会随着风速的变化而不断变化。

在风速较高时,风电出力大;在风速较低时,出力则小。

这种不稳定性给电力系统的调度和运行带来了挑战。

为了应对这一挑战,电力系统需要更加灵活的调度策略和先进的预测技术,以更好地平衡供需关系。

风电技术的发展对电力系统的电能质量产生了影响。

由于风电输出的波动性,可能导致电压波动、频率偏差等电能质量问题。

这对于对电能质量要求较高的用户,如精密制造业等,可能会产生不利影响。

为了保障电能质量,电力系统需要采取一系列措施,如安装无功补偿装置、优化电网结构等。

在电网规划方面,风电的发展也带来了新的要求。

为了有效地消纳风电,需要建设更加坚强、智能的电网。

这包括加强输电线路的建设,提高输电能力,以及发展智能电网技术,实现电网的智能化监控和管理。

同时,在电网规划中还需要考虑风电的分布特点和季节性变化,以确保电网的可靠性和经济性。

从电力市场的角度来看,风电的发展也推动了电力市场机制的改革和完善。

由于风电的成本和价格与传统能源存在差异,需要建立合理的市场机制来促进风电的消纳和发展。

这可能包括制定差异化的电价政策、建立绿色证书交易制度等,以激励各方积极参与风电的开发和利用。

风电并网对电力系统的影响

风电并网对电力系统的影响

风电并网对电力系统的影响摘要:由于风速具有波动性和间歇性,风力发电具有较强的不确定性。

为了确保电力系统的安全、稳定运行,研究风电并网对电力系统的影响是非常必要的。

本文分析了风电并网对电力系统的影响,之后提出了解决问题的措施,以供参考。

关键词:风电并网;电力系统;影响;措施随着现代工业的飞速发展和化石能源的日趋枯竭,能源和环境问题日益严峻,风电作为一种可再生的绿色能源,已成为世界上发展最快的可再生能源。

我国风力发电建设进入了一个快速发展的时期,大规模的风力发电必须要实现并网运行。

风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一。

随着风电场容量在系统中所占比例的增加,风电场对系统的影响越来越显著。

因此,必须深入研究这些影响,确保电力系统的安全、稳定运行。

1 风电并网对电力系统的影响1.1 风电并网对系统稳定性的影响一方面,风电并网引起的稳定问题主要是电压稳定问题。

风力发电随风速大小等因素而变化,同时由于风能资源分布的限制,风电厂大多建设在电网的末端,网架结构比较薄弱,所以在风电并网运行时必然会影响电网的电压质量和电网的电压稳定性。

同时大型风电厂的风力发电机几乎都是异步发电机,在其并网运行时需从电力系统吸收大量无功功率,增加电网的无功负担,有可能导致小型电网的电压失稳。

另一方面,风电并网改变了配电网的功率流向和潮流分布,这是既有的电网在规划和设计时未曾考虑的。

因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将超出安全运行范围,影响系统的稳定性。

随着各地风力发电的蓬勃发展,风电场的规模不断扩大,风电装机容量在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加明显。

情况严重时,将会使系统失去动态稳定性,导致整个系统瓦解。

1.2 风电并网对系统运行成本的影响风力发电的运行成本与火电机组相比很低,甚至可以忽略不计。

风电接入对电力系统的影响

风电接入对电力系统的影响

风电接入对电力系统的影响摘要:随着世界各国的快速发展,能源危机已经成为当前急需解决的问题,因此,很多国家为了寻求长远发展,将开发与利用新能源作为一个工作重点。

由于风电自身的优势极为明显,所以备受人们的关注和认可。

在我们使用电力系统时,如果接入风电,能够减少系统的损害和故障率,保障电网的正常运行,提高电力使用的效率。

笔者通过对风电接入的发展现状,对电力系统产生的影响和面对故障应该如何解决做了重点的阐述和分析,旨在借助科学的手段促进电力行业的科学化发展。

关键词:风电接入;新能源;电力系统;科学发展在可持续发展、节能减排的大形势下,各个国家都在积极探索切实可行的方法来解决这一问题。

在当前,各个国家都将节能减排落实到实处。

在这种情况下,增加新能源的利用具有一定的现实意义。

在今天,风电接入方式在电力系统中有了极其广泛的运用,但是这个过程也并不是一帆风顺的,由于地区的多元性,在不发达地区,网架的结构相对单一,如果接入风电,可能会导致电能的质量和传输效率。

我们在此大背景下,研究风电接入对电力系统的影响是十分有必要的,通过细致的分析,让电力系统能够更好的发挥作用,通过切实可行的方法,促进电力行业的良性可持续发展。

一、风电接入发展现状改革开放以来,我国的电力事业也取得了极大的突破和发展。

对于每一个中国人来说,这是可喜可贺的好消息。

从整体来看,我国的风电建设具有明显特点,主要表现在以下几个方面:首先,风电装机的总容量增长速度非常快,在整个电网中的占比非常高。

其次,风电接入的整体态势呈现良好状态,风电场的装机容量也处于不断增加的状态。

并且,电网中的电压等级也在不断提高。

除此之外,风电机组的形式也是多种多样的。

从这里我们就可以看出,风电接入的发展态势十分可观,其发展前景也非常广阔。

但好坏参半,它存在的局限和不足也需要我们密切关注,比如,风能的稳定性和随机性都不容乐观,这势必会对电网的运行造成极大干扰,从而降低电网的安全性,影响人们的日常生活。

风力发电并网对电力系统的影响

风力发电并网对电力系统的影响

风力发电并网对电力系统的影响摘要:风力发电作为一种重要的可再生能源形式,越来越受到人们的广泛关注。

随着风电设备制造技术的日益成熟和风电设备价格的逐步降低,近些年来,无论是发达国家还是发展中国家都在大力发展风力发电。

特别是自20世纪80年代以来,大、中型风电场并网容量发展最为迅猛,对常规电力系统运行造成的影响逐步明显和加大,由此提出了一系列值得关注和研究的问题。

风力发电的主要特点是随机性与不可控性,主要随风速变化而变化。

因此,风电并网运行对主电网运行带来诸多不利影响。

分析风电场并网对电网影响是风电事业发展的关键技术问题,同时也是电网部门安全、经济运行的一个新课题。

关键词:电力系统;电网电压;电网频率;措施1 风电并网对主电网运行的影响由于风速变化是随机性的,因此风电场的出力也是随机的。

风电本身这种特点使其容量可信度低,给电网有功、无功平衡调度带来困难。

在风电容量比较高的电力网中,可能会产生质量问题。

例如电压波动和闪变、频率偏差、谐波等问题。

更重要的是:系统静态稳定、动态稳定、暂态稳定、电压稳定都需要验证。

当然,相同装机容量的风电场在不同的接入点对电网的影响也是不同的。

在短路容量大的接入点对系统影响小。

反之,影响就大。

定量分析风电场对主电网运行的影响,要从稳态和动态两方面进行分析。

稳态分析就是对含风电场的电力系统进行潮流计算。

在稳态潮流分析中,风电场高压母线不能简单视为PQ节点或PV节点。

含风电场的电力系统对平衡节点的有功、无功平衡能力提出更高要求,要分别分析含风电场电网在电网大、小运行方式下,是否满足系统的安全稳定运行的各种约束。

由于不同的风电机组的工作原理、数学模型都不相同,因此,对不同类型风电场的潮流计算方法也有所差异。

对于异步发电机组组成的风电场。

采用风电场、主系统分别迭代的方法:首先要设定风速,取值范围为风机切入风速到切出风速之间。

考虑尾流效应,利用RAHMAN模型计算出各台风机轮毂处风速。

风电场并网对电力系统的影响及其分析

风电场并网对电力系统的影响及其分析

风电场并网对电力系统的影响及其分析近年来,随着能源的不断开发,风能作为一种新型的清洁能源备受关注。

为了有效利用风能资源,风电场并网已成为风电发展的必然趋势。

然而,风电场并网不仅给电网带来了各种优势,同时也带来了一些问题和挑战。

本文将从多个角度分析风电场并网对电力系统的影响。

一、对电力系统安全稳定运行的影响1. 电网短路电流问题风电场并网后,其接口点的电网等效电容值降低,转而增加了电网短路电流,会使电力系统的稳定性受到影响。

因此,在风电场的设计和设置上,需要考虑到电网短路电流问题,以确保电力系统的安全稳定运行。

2. 电网故障问题风电场并网后,电力系统的故障处理将变得更加困难,因为电力系统中任何一个节点的故障都会影响整个电网的运行。

如果风电场的故障诊断和恢复能力没有及时跟进,容易导致电网故障扩散,从而影响到电力系统的运行。

因此,为了保持电力系统的稳定运行,风电场并网需要有一个可靠的故障诊断和恢复系统。

二、对电力系统能源结构的影响1. 电力系统可再生能源比例提高随着风电场的逐步普及,其并网信息与维护技术越来越成熟,风电场的电力贡献比例也不断提高,从而实现了电力系统可再生能源比例的增加。

这是电力系统实现清洁能源发展的非常重要的一步。

2. 反问题发电由于风电场的发电量和消费负载之间难以保证完全匹配,因此容易造成风电场的发电功率与消费负载之间的失衡,产生反问题发电。

这意味着发电功率无法被调节,更加明显的反问题发电情况会影响电力系统的稳定性,甚至可能导致电力系统失去稳定运行状态。

三、对电价的影响随着风电场逐渐普及,电力系统的电价也将会受到影响。

风电场的发电成本相对传统的火电等能源要低得多,这意味着风电场的并网将对电价产生一定程度的影响。

四、对能效的影响风电场并网后,对于电力系统的能效也发生了变化。

风电场的巨大容量意味着可以充分地利用风能资源,从而使能源利用效率更高,降低燃料消耗量和温室气体排放量,实现电力系统的绿色低碳化。

风力发电并网对电力系统安全的影响及应对措施

风力发电并网对电力系统安全的影响及应对措施

一风力发电研究的意义和发展情况1.风能的发电原理。

太阳的热辐射不均匀会造成世界各地大气压力不均,这驱使空气沿着水平方向运动最后形成风。

风力发电原理是风能使发电机的风力叶轮旋转,然后通过齿轮箱使风力发电机转子高速旋转,产生感应电动势。

风力机将风能转换为机械能,然后转换成电能。

2.风力发电的历史。

1887年,第一台小型风力发电机在苏格兰的一栋别墅中安装,用于房间照明。

1888年,美国建筑师查理斯主持设计和建设一个风机转子达17米的大型风机,虽然它的功率只有12千瓦。

世界上第一座风力发电试验基地于19世纪末在丹麦建成,用于对风力发电的研究。

1931年,具有现代化身影的水平轴发电机在苏联克里米亚半岛的雅尔塔建成,它的功率为100千瓦,可以接到当地6.3千伏的电网上。

20世纪30年代的美国,风力发电机在离大城市比较远的地区,特别是西部很受欢迎。

它们不仅可以磨面和提水,还可以发电,它们对这些地区的发展和社会进程产生了非常重要的影响。

我国20世纪80年代才开始接触有关风电方面的技术。

由于风电的技术要求高,我国并未大规模发展风电,当时很多风机都需要从欧美国家进口。

1986年经政府同意,在山东建成了第一个示范性风电场,但当时的发电机组是进口的55千瓦的风电机组。

1989年新疆达阪城和广东南澳风电场成立,并于当年并网发电。

我国政府部门也认识到化石燃料日益枯竭的现状,对风力发电技术,政府也比较重视。

1996年提出大规模发展风电的《乘风计划》,主要是在鼓励发展我国自己的中型风力发电机制造技术,同时也提倡以技贸结合的形式与国外优秀企业合作。

在建设大型风电场的同时,能够吸收它们的技术并消化,从而达到自主研发、设计和制造自己的风电设施的目的。

1998年,新疆金风科技的发展在中国遥遥领先,成为当时我国最好的风力发电机厂家。

3.风力发电的意义和必要性。

由于全球温室效应、环境污染和化石燃料的日益枯竭,目前各国政府的工作之重都是如何最大效益地对各种新能源进行开发和持续利用。

风力发电对电网的影响

风力发电对电网的影响

风力发电对电网的影响:1、对电能质量影响:由于风能的随机性以及并网风组的运行特性,将影响电网的电能质量,主要表现为:电压波动,电压闪变,电压跌了及谐波。

2、对电网稳定性影响:接入电网末端,改变了配电网功率单向流动的特点;使系统潮流分布发生了变化;从而影响电网的稳定系。

3、大型风电机组,由于没有独立的励磁装置,并网时会产生5~8倍于额定电流的冲击电流;对于小容量的电网,并网瞬间会造成电网电压的较大幅度下降。

1、风电场规模问题电力系统中风电规模的大小采用以下2个指标来表征。

A)风电穿透功率极限。

风电穿透功率是指系统中风电场装机容量占系统总负荷的比例。

风电穿透功率极限定义在满足一定技术指标的前提下接入系统的最大风电场装机容量与系统最大负荷的百分比,表征系统能够承受的最大风电场装机容量。

B)风电场短路容量比。

风电场短路容量比定义为风电场额定功率与该风电场与电力系统连接点的短路容量比,表征局部电网承受风电扰动的能力。

以上2个指标的经验数据只供参考。

要确切分析电网接纳风电能力,还是应该通过对系统稳定性、电能质量、电网调峰能力等具体问题进行分析之后才能确定。

2、电压波动和系统稳定性问题在风电机组启动、退出和风速变化的情况下,往往会一起电压波动。

风电机组启动引起的电压波动可采用软并网启动方式和多台机组分组启动来解决。

但风速超过切出风速或系统发生故障时,风电机组会从额定出力状态退出并网状态,从而引起电网电压的突降。

而由于机端的电容补偿抬高了机组脱网前风电场的运行电压,因此脱网会使电网电压突降更加明显。

大型风电场的风力发电机几乎都是异步发电机,在其并网运行时需要从系统吸收大量无功,增加了电网的无功负担。

严重情况下,当系统发生三相接地短路时,有可能造成电网电压失稳。

因此在风电场接入电网之前应采用恰当的风电机组模型来计算分析系统电压稳定性问题。

同时,风电场应采取必要的措施预防此类问题,如分组投切电容器静止无功补偿装置、超导储能装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

风力发电对电力系统运行的影响杨彬彬,李扬,范见修,郑亚先(东南大学电气工程系,江苏南京210096)摘要:风力发电作为一种绿色能源有着改善能源结构,经济环保等方面的优势,也是未来能源电力发展的一个趋势,但风力发电技术要具备与传统发电技术相当的竞争力,还存在一些问题有待解决,本文从风力发电对电力系统的影响入手,总结了风电网并入电网主要面临的一些技术问题,如风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等;然后针对这些技术问题,综合比较了各国研究和工程技术人员在理论和实际运行方面的相关解决方案,指出各方案的优缺点,期待更加成熟的风力发电技术的形成,以建设我国具有自主产权的风电产业。

关键词:风力发电,电能质量,稳定性,解决方案0引言能源是推动社会进步和人类赖以生存的物质基础。

目前全球能源消耗速度逐年递增,大量能源的消耗,已带来十分严重的环境问题,如气候变暖、生态破坏、大气污染等,并且传统的化石能源储量有限,过度的开采利用将加速其耗竭的速度.在中国由于长期发电结构不合理,火电所占比例过大,由此带来了日益严重的燃料资源缺乏和环境污染问题。

对于可再生能源的开发和利用变得颇为急切。

在各种可再生能源利用中,风能具有很强的竞争力。

风能发电在技术上日趋成熟,商业化应用不断提高,是近期内最具有大规模开发利用前景的可再生资源。

经济性方面,风力发电成本不断降低,同时常规能源发电由于环保要求增高使得成本进一步增加;而且随着技术的进步,风力发电的成本将有进一步降低的巨大潜力。

我国的海洋和陆地风能资源很丰富,江苏位于东南沿海,海上风能资源有很大的开发潜力[1,2]。

江苏省如东县建设了我国第一个风电场特许权示范项目。

该项目是国内迄今为止最大的风电场项目,其一期建设规模为100MW,单机容量1MW,100台风机,全部采用双馈感应发电机。

江苏省盐城也正在准备建风电场,但目前江苏乃至全国的风力发电技术都还不成熟。

大规模的风力发电必须要实现并网运行[3~6]。

风电场接入电力系统的分析是风电场规划设计和运行中不可缺少的内容,是风力发电技术的三大课题之一(其余两项为风能储量调查与风力发电机组技术)。

尽管欧美的风电大国对风力发电的建设和运行已经有一些实际经验和技术规定[7,8],但由于和我国电网结构的实际情况差别很大,并不能完全适合我国的情况。

本文主要介绍风力风电并网对电力系统的影响。

1风力发电对电力系统的影响风力发电在电力中的比例逐年增加,而在风力资源丰富地区,电网往往较弱,风力发电对电网间的影响也是应该考虑的问题。

风电场并入电网主要会面临以下一些技术问题[3~6]:风力发电场的规模问题,对电能质量的影响,对稳定性的影响,对保护装置的影响等。

1.1风力发电场的规模问题目前,我国正在进行全国电网互联,电网规模日益增大。

对于接入到大电网的风电场,其容量在电网总装机容量中占的比例很小,风电功率的注入对电网频率影响甚微,不是制约风电场规模的主要问题。

然而,风能资源丰富的地区人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了电网的潮流分布,对局部电网的节点电压产生较大的影响,成为制约风电场规模的重要问题。

风力发电的原动力是自然风,因此风电场的选址主要受风资源分布的限制,在规划建设风电场时首先要考虑风能储量和地理条件。

然而风力资源较好的地区往往人口稀少,负荷量小,电网结构相对薄弱,风电功率的注入改变了局部电网的潮流分布,对局部电网的电压质量和稳定性有很大影响,限制了风电场接入系统的方式和规模[9]。

另外风力发电的原动力是不可控的,它是否处于发电状态以及出力的大小都决定于风速的状况,风速的不稳定性和间歇性决定了风电机组的出力也具有波动性和间歇性的特点[10]。

在现有的技术水平下风力发电还无法准确预报,因此风电基本上是不可调度的。

从电网的角度看,并网运行的风电场相当于一个具有随机性的扰动源,对电网的可靠运行造成一定的影响。

由此可见,确定一个给定电网最大能够承受的风电注入功率成为风电场规划设计阶段迫切需要解决的问题。

1.2对电能质量的影响风资源的不确定性和风电机组本身的运行特性使风电机组的输出功率是波动的,可能影响电网的电能质量[11],,如电压偏差、电压波动和闪变、谐波以及周期性电压脉动等。

电压波动和闪变[12]是风力发电对电网电能质量的主要负面影响之一。

电压波动的危害表现在照明灯光闪烁、电视机画面质量下降、电动机转速不均匀和影响电子仪器、计算机、自动控制设备的正常工况等。

影响风力发电产生波动和闪变的因素有很多:随着风速的增大,风电机组产生的电压波动和闪变也不断增大。

并网风电机组在启动、停止和发电机切换过程中也产生电压波动和闪变。

风电机组公共连接点短路比越大,风电机组引起的电压波动和闪变越小。

另外,风电机组中的电力电子控制装置如果设计不当,将会向电网注入谐波电流,引起电压波形发生不可接受的畸变,并可能引发由谐振带来的潜在问题。

异步电机作为发电机运行时,没有独立的励磁装置,并网前发电机本身没有电压,因此并网时必然伴随一个过渡过程,流过5~6倍额定电流的冲击电流,一般经过几百毫秒后转入稳态。

风力发电机组与大电网并联时,合闸瞬间的冲击电流对发电机及电网系统安全运行不会有太大影响。

但对小容量的电网而言,风电场并网瞬间将会造成电网电压的大幅度下跌,从而影响接在同一电网上的其他电器设备的正常运行,甚至会影响到整个电网的稳定与安全。

1.3对稳定性的影响风力发电通常接入到电网的末端,改变了配电网功率单向流动的特点,使潮流流向和分布发生改变,这在原有电网的规划和设计时是没有预先考虑的。

因此,随着风电注入功率的增加,风电场附近局部电网的电压和联络线功率将会超出安全范围,严重时会导致电压崩溃[11,13]。

由于采用异步发电机,风电系统在向电网注入功率的同时需要从电网吸收大量的无功功率。

因此,为了补偿风电场的无功功率,每台风力发电机都配有功率因数校正装置,目前常用的是分组投切的并联电容器。

电容器的无功补偿量的大小与接入点电压的平方成正比,当系统电压水平较低时,并联电容器的无功补偿量迅速下降,导致风电场对电网的无功需求上升,进一步恶化电压水平,严重时会造成电压崩溃。

由于异步发电机的功率恢复特性,当电网发生短路故障时,若故障切除不及时,也将容易导致暂态电压失稳。

另一方面,随着风电场规模的不断扩大,风电场在系统中所占的比例不断增加,风电输出的不稳定性对电网的功率冲击效应也不断增大,对系统稳定性的影响就更加显著,严重情况下,将会使系统失去动态稳定性,导致整个系统的瓦解。

1.4对保护装置的影响为了减少风电机组的频繁投切对接触器的损害,在有风期间风电机组都保持与电网相连,当风速在起动风速附近变化时,允许风电机组短时电动机运行,因此风电场与电网之间联络线的功率流向有时是双向的。

因此,风电场继电保护装置的配置和整定应充分考虑到这种运行方式。

异步发电机在发生近距离三相短路故障时不能提供持续的故障电流,在不对称故障时提供的短路电流也非常有限[14]。

因此风电场保护的技术困难是如何根据有限的故障电流来检测故障的发生,使保护装置准确而快速的动作。

另一方面,尽管风力发电提供的故障电流非常有限,但也有可能会影响现有配电网络保护装置的正确运行,这在最初的配电网保护配置和整定时是没有考虑到的。

2解决措施2.1风力发电场的规模问题2.1.1衡量风力发电规模的两个指标国内外的学者和工程技术人员通常采用以下两个指标来表征电力系统中风力发电规模的大小[15],以此作为计算分析和进行评价的依据:(1)风电穿透功率极限:风电穿透功率(wind power penetration)是指:系统中风电场装机容量占系统总负荷的比例。

风电穿透功率极限定义为在满足一定技术指标的前提下接入系统的最大风电场装机容量与系统最大负荷的百分比。

表征系统能够承受的最大风电场装机容量。

根据欧洲国家的一些统计数据,风电穿透功率达到10%是可行的。

(2)风电场短路容量比:定义为风电场额定容量Pwind与该风电场与电力系统的连接点—PCC(Point of Common Coupling)的短路容量Ssc 之比。

短路容量表示网络结构的强弱,短路容量大说明该节点与系统电源点的电气距离小,联系紧密。

风电场接入点的短路容量反映了该节点的电压对风电注入功率变化的敏感程度。

风电场短路容量比小表明系统承受风电扰动的能力强。

对于风电场表1分析风电场最大注入功率的方法比较方法思路缺点时域仿真法假定一个输出功率,选取几个典型的系统运行方式,仿真校验系统的安全性和稳定性只能用来校验某个系统,不能得到具体值稳态潮流仿真法在规划阶段进行潮流仿真不能考虑到对暂态的影响静态安全约束和优化的方法求解一定的安全约束条件下最大的风电注入功率未考虑动态约束稳态频率约束的方法计算系统失去风电出力后,电网的频率降低是否在允许的范围内只考虑了频率约束的短路容量比这一指标,欧洲国家给出的经验数据为 3.3%~5%,日本学者认为短路比在10%左右也是允许的。

2.1.2风电场最大注入功率的影响因素和计算方法风电场的最大注入功率不仅取决于风电场的运行特性和系统中其它发电设备的调节能力,还与风电接入的系统的网络结构等诸多因素密切相关。

主要的因素有[16~20]:风电场接入点负载能力的强弱;风电场与电网的联接方式;系统中常规机组的调节能力的大小;风电机组的类型和无功补偿状况;地区负荷特性等。

分析风电场最大注入功率的主要方法有[17]:时域仿真法,稳态潮流仿真法,静态安全约束和优化的方法,稳态频率约束的方法,各种方法重点考虑的影响因素不同,适用的范围也不同,也可以将其中两种或两种以上进行组合计算。

具体的方法分析如表1所示。

文献[21]给出了包含风电场的电力系统潮流的交替迭代计算方法,结合实际系统分析了影响风电机组最大注入功率的各种因素。

分析计算表明,制约风机––异步发电机组的最大注入功率的主要原因是风电功率注入引起的节点电压越限。

风电机组的最大注入功率是风电场接入地区的中枢点电压水平、风电系统负荷的轻重、风电场的无功补偿容量大小以及风电场接入系统的联络线的x/r的大小等因素综合作用的结果。

提高风电接入系统的电压调整能力、适当增加风电场的无功补偿量和采用x/r 较小的联络线将有利于提高风电场的最大注入功率。

文中最后根据我国实际情况,从风电场接入地区的局部电网的电压水平和稳定性出发,以风电场短路容量比为指标,用时域仿真和稳态潮流仿真相结合的方法对某个实际的系统进行计算,计算结果表明,该系统中风电场的最大安装容量可以突破短路比10%的限制。

2.2改善电能质量问题2.2.1改善电网结构并网风电机组的公共连接点短路比和电网的线路X/R比是影响风电机组引起的电压波动和闪变的重要因素。

相关文档
最新文档