异方差、自相关检验
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计量经济学作业
一、异方差
(1)
Dependent Variable: Y
Method: Least Squares
Date: 09/29/11 Time: 22:09
Sample: 1 29
Included observations: 29
Variable Coefficient Std. Error t-Statistic Prob.
C 58.31791 49.04935 1.188964 0.2448
X 0.795570 0.018373 43.30193 0.0000
R-squared 0.985805 Mean dependent var 2111.931 Adjusted R-squared 0.985279 S.D. dependent var 555.5470 S.E. of regression 67.40436 Akaike info criterion 11.32577 Sum squared resid 122670.4 Schwarz criterion 11.42006 Log likelihood -162.2236 F-statistic 1875.057 Durbin-Watson stat 1.893970 Prob(F-statistic) 0.000000
(1)戈徳菲尔德—匡特检验:简单步骤如下:
1、先排列
2、分成两组1-11,19-29,做回归检验,得残差平方和
3、得 F ,查表比较。
Dependent Variable: Y
Method: Least Squares
Date: 09/29/11 Time: 19:38
Sample: 1 11
Included observations: 11
Variable Coefficient Std. Error t-Statistic Prob.
C 55.84840 60.15527 0.928404 0.3774
X 0.802769 0.021586 37.18930 0.0000
R-squared 0.993535 Mean dependent var 2203.182 Adjusted R-squared 0.992816 S.D. dependent var 660.2351 S.E. of regression 55.95928 Akaike info criterion 11.05009 Sum squared resid 28182.97 Schwarz criterion 11.12244 Log likelihood -58.77550 F-statistic 1383.044
Durbin-Watson stat 1.657950 Prob(F-statistic) 0.000000
第一组:Sum squared resid(残差平方和)=28182.97
Dependent Variable: Y
Method: Least Squares
Date: 09/29/11 Time: 19:39
Sample: 19 29
Included observations: 11
Variable Coefficient Std. Error t-Statistic Prob.
C 92.44615 96.01293 0.962851 0.3608
X 0.782281 0.035369 22.11798 0.0000
R-squared 0.981935 Mean dependent var 2141.455
Adjusted R-squared 0.979928 S.D. dependent var 590.5276
S.E. of regression 83.66352 Akaike info criterion 11.85445
Sum squared resid 62996.26 Schwarz criterion 11.92679
Log likelihood -63.19947 F-statistic 489.2051
Durbin-Watson stat 1.770865 Prob(F-statistic) 0.000000
第二组:Sum squared resid(残差平方和)=62996.26
F=62996.26/28182.97=2.23526,给定显著性水平a=0.05
查F分布临界值表可得临界值F0.05(11,11)=2.85,
所以统计量F< F0.05(11,11),支出模型不存在异方差。
(2)利用加权最小二乘法估计如下:
权重先用1/x,检验结果并不是很理想,因为R方较小,拟合比较差,所以陆续用了1/X^2,X^(-1/2),效果还好。
Dependent Variable: Y
Method: Least Squares
Date: 09/29/11 Time: 19:47
Sample: 1 29
Included observations: 29
Weighting series: 1/X^2
Variable Coefficient Std. Error t-Statistic Prob.
C 103.7747 68.93265 1.505450 0.1438
X 0.776927 0.030854 25.18060 0.0000
Weighted Statistics
R-squared 0.978844 Mean dependent var 1922.584 Adjusted R-squared 0.978061 S.D. dependent var 431.8719 S.E. of regression 63.96817 Akaike info criterion 11.22112 Sum squared resid 110482.0 Schwarz criterion 11.31542 Log likelihood -160.7062 F-statistic 634.0624 Durbin-Watson stat 1.841591 Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.985240 Mean dependent var 2111.931 Adjusted R-squared 0.984693 S.D. dependent var 555.5470 S.E. of regression 68.73310 Sum squared resid 127554.5 Durbin-Watson stat 1.921310
利用加权最小二乘法估计模型如下:
Y=103.7747+0.776927X
Dependent Variable: Y
Method: Least Squares
Date: 09/29/11 Time: 22:29
Sample: 1 29
Included observations: 29
Weighting series: X^(-1/2)
Variable Coefficient Std. Error t-Statistic Prob.
C 73.82633 53.09180 1.390541 0.1757
X 0.789562 0.021139 37.35117 0.0000
Weighted Statistics
R-squared 0.932667 Mean dependent var 2053.653 Adjusted R-squared 0.930173 S.D. dependent var 251.3231 S.E. of regression 66.41175 Akaike info criterion 11.29610 Sum squared resid 119084.1 Schwarz criterion 11.39039 Log likelihood -161.7934 F-statistic 1395.110 Durbin-Watson stat 1.882707 Prob(F-statistic) 0.000000
Unweighted Statistics
R-squared 0.985749 Mean dependent var 2111.931 Adjusted R-squared 0.985221 S.D. dependent var 555.5470