条件概率与独立事件
概率与统计中的条件概率与独立事件
概率与统计中的条件概率与独立事件概率与统计是数学的一个重要分支,探究了随机事件的规律与规定。
条件概率与独立事件是概率与统计中两个基本概念,它们在实际问题的解决中具有重要的应用价值。
一、条件概率条件概率是指在已知事件A发生的条件下,事件B发生的概率。
用数学符号表示为P(B|A),读作“在A发生的条件下B发生的概率”。
条件概率的计算公式为:P(B|A) = P(A∩B) / P(A)其中,P(A∩B)表示A和B同时发生的概率,而P(A)表示A发生的概率。
条件概率的计算方法可以通过实际问题进行理解。
例如,假设有一批产品,其中20%是次品。
现在从中随机挑出一个产品,如果已知该产品是次品,那么该产品是A事件,次品的概率是B事件,我们想要计算条件概率P(B|A),即在已知产品是次品的条件下,该产品为次品的概率。
根据条件概率的计算公式,我们可以得到:P(B|A) = P(A∩B) / P(A) = (次品的产品数)/ (总产品数)通过计算,我们可以得到具体的条件概率值。
二、独立事件独立事件是指两个事件A和B相互之间没有影响的事件。
即事件A 的发生与否不会影响事件B的发生概率,事件B的发生与否也不会影响事件A的发生概率。
用数学符号表示为P(A) = P(A|B),P(B) =P(B|A)。
对于独立事件来说,它们的联合概率等于各自的概率的乘积。
即:P(A∩B) = P(A) * P(B)例如,假设有一批产品,其中80%是合格品。
现从中随机取一件产品,不放回地取,再取一件产品。
如果两次取出的产品都是合格品,那么第一次取出的产品为事件A,第二次取出的产品为事件B。
我们希望计算P(A∩B),即两次取出的产品都为合格品的概率。
由于两次取出产品的过程是不放回的,所以第一次取出产品是合格品的概率是80%,第二次取出产品是合格品的概率也是80%。
根据独立事件的概念,我们可以得到:P(A∩B) = P(A) * P(B) = 0.8 * 0.8 = 0.64通过计算,我们得到两次取出产品都是合格品的概率为0.64。
概率与统计中的条件概率与独立事件
概率与统计中的条件概率与独立事件概率与统计是数学中的一个重要分支,广泛应用于各个领域,例如生物学、物理学、经济学等。
其中条件概率与独立事件是概率与统计中的两个重要概念。
本文将就条件概率与独立事件进行深入探讨。
一、条件概率条件概率是指在某个条件下事件发生的概率。
假设有两个事件A和B,那么在事件B发生的前提下,事件A发生的概率即为条件概率。
条件概率用P(A|B)表示,读作“A在B条件下发生的概率”。
在计算条件概率时,我们可以使用以下公式:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
举个例子来说明条件概率的计算方法。
假设有一批产品,其中有10个产品属于A型,90个产品属于B型。
现从中随机抽取一个产品,请问该产品是A型的概率是多少?首先,我们可以计算出产品是A型的概率,即 P(A) = 10 / (10 + 90) = 1/10 = 0.1。
接着,假设我们已知该产品是B型的条件下,它也是A型的概率记作 P(A|B)。
根据上述的条件概率公式,我们可以计算出P(A|B) = P(A∩B) / P(B)。
由于在已知产品是B型的前提下,它也是A型的概率为0,所以P(A∩B) = 0。
因此,P(A|B) = 0 / P(B) = 0。
可见,在已知产品是B型的情况下,该产品是A型的概率为0。
二、独立事件独立事件是指两个事件之间的发生没有相互影响,即一个事件的发生不会改变另一个事件的发生概率。
如果事件A和事件B是独立事件,那么它们的联合概率等于两个事件发生概率的乘积。
数学上,我们用P(A∩B) = P(A) * P(B)来表达事件A和事件B是独立事件。
在日常生活中,我们可以通过一个例子来理解独立事件的概念。
假设有一批骰子,我们分别投掷两次,A表示第一次投掷结果为1的事件,B表示第二次投掷结果为2的事件。
如果A和B是独立事件,那么它们的发生概率应为P(A∩B) = P(A) * P(B)。
条件概率独立
条件概率独立条件概率和独立事件是概率论中的两个重要概念。
在实际应用中,我们常常需要针对某个条件下发生的事件计算概率,而条件概率就为我们提供了一种有效的工具。
而独立事件则是指两个事件之间的关系,这些事件之间互相独立发生,即一个事件的发生不会对另一个事件的发生产生影响。
下面我们将详细介绍条件概率和独立事件的相关内容。
在概率论中,条件概率是指一个事件在满足某个条件下的发生概率。
设A,B为两个事件,P(A)表示A的概率,P(B)表示B的概率,P(A|B)表示在B条件下A的概率。
根据概率的定义,我们可以得到以下公式:P(A|B) = P(AB) / P(B)其中,P(AB)表示A和B同时发生的概率,即交集的概率。
条件概率的计算方法可以通过树形图或者贝叶斯公式计算。
在实际应用中,条件概率通常用于处理具有先后顺序的事件,或者遇到一些限制条件时,以便更精细地描述发生事件的概率。
例如,假设A表示某个人生病,B表示这个人体内含有病毒A,C表示这个人体内含有病毒B,则P(A|B)表示在体内含有病毒A的条件下,这个人生病的概率。
P(A|C)表示在体内含有病毒B的条件下,这个人生病的概率。
这些条件概率在医学领域、生物领域等实际应用中有重要的意义。
独立事件在概率论中,独立事件是指两个事件之间没有影响关系,即一个事件的发生不会影响另一个事件的发生。
具体地说,如果事件A和事件B满足以下条件,则称事件A和事件B 是独立的:(1)P(A|B) = P(A),即B的发生与A的发生概率无关;如果事件A和B不满足独立条件,则称事件A和事件B是相关的。
在实际应用中,独立事件具有非常重要的应用价值。
在进行概率计算时,如果能够确定事件之间的独立性,那么可以大大简化计算的复杂度。
此外,对于一些求解难度较高的问题,如多重条件概率等,通过独立性的假设,可以将这些问题转化为多个单一条件概率的计算,从而更加简便明了。
例如,假设A表示抛掷一枚硬币出现正面,B表示抛掷一枚骰子出现3点,我们可以通过数学推导得到:由此可见,事件A和事件B是独立的。
高二数学概率与统计中的独立事件与条件概率
高二数学概率与统计中的独立事件与条件概率概率与统计是高中数学中的重要部分,也是我们日常生活中经常会用到的知识。
其中,独立事件与条件概率是概率与统计中的两个重要概念。
本文将详细介绍高二数学概率与统计中的独立事件与条件概率,以帮助读者更好地理解和应用这些概念。
1. 独立事件独立事件指的是两个或多个事件之间的发生与否互不影响。
换句话说,如果两个事件是独立的,那么第一个事件的发生概率不会对第二个事件的发生概率产生任何影响。
举个例子来说明独立事件。
假设我们有一副标准的52张扑克牌,从中抽取一张牌,再把它放回去,再抽取一张牌。
这里,第一次抽到红心A的概率是1/52,而第二次抽到红心A的概率也是1/52。
由于两次抽牌是相互独立的,第一次抽到红心A并不会影响第二次抽到红心A的概率。
2. 条件概率条件概率指的是在给定某个条件下,另一个事件发生的概率。
条件概率可以表示为P(A|B),读作“在B发生的条件下,A发生的概率”。
设A、B为两个事件且P(B)≠0,那么A在B发生的条件下的概率P(A|B)可以用下面的公式计算:P(A|B) = P(A∩B) / P(B)这个公式告诉我们,条件概率可以通过将事件A与事件B同时发生的概率除以事件B发生的概率来计算。
再举个例子来说明条件概率的应用。
假设有一个有人口统计数据的城市,其中男性占总人口的一半,女性占总人口的一半。
而且,在所有男性中,有10%是左撇子。
现在,如果我们随机挑选一个人,问他是男性的情况下他也是左撇子的概率是多少?根据题意,我们可以设事件A为“这个人是男性”,事件B为“这个人是左撇子”。
所以我们需要计算的是在A发生的条件下,B发生的概率。
根据已知数据,P(A) = 1/2,P(B|A) = 1/10。
那么根据条件概率公式,我们可以计算出P(B|A) = P(A∩B) / P(A) = (1/10) / (1/2) = 1/5。
所以,在这个城市中,选择的人是男性的情况下他也是左撇子的概率是1/5。
概率与统计中的独立事件与条件概率
概率与统计中的独立事件与条件概率概率与统计是一门研究事物发生概率和规律的学科,独立事件和条件概率是其中的两个重要概念。
独立事件指的是两个或多个事件之间互不影响,而条件概率则是在已知某个事件发生的前提下,另一个事件发生的概率。
以下将对概率与统计中的独立事件和条件概率进行详细阐述。
一、独立事件独立事件是指两个或多个事件之间没有相互影响的情况。
在概率与统计中,我们用P(A)表示事件A发生的概率,P(B)表示事件B发生的概率。
如果两个事件A和B相互独立,那么事件A和B同时发生的概率就等于事件A发生的概率乘以事件B发生的概率,即P(A∩B) = P(A) × P(B)。
例如,假设有一枚公平的硬币,掷硬币的结果有两个可能性,正面和反面,分别记为事件A和事件B。
如果事件A表示掷硬币结果为正面的概率,事件B表示掷硬币结果为反面的概率,那么根据独立事件的定义,我们可以得到P(A∩B) = P(A) × P(B) = 1/2 × 1/2 = 1/4,即事件A和事件B同时发生的概率为1/4。
二、条件概率条件概率是在已知某个事件发生的条件下,另一个事件发生的概率。
条件概率用P(A|B)表示,读作“在事件B发生的条件下,事件A发生的概率”。
条件概率的计算公式为P(A|B) = P(A∩B)/P(B)。
举例来说,假设有一批产品,其中10%的产品有缺陷,现在随机抽取一件产品,事件A表示这件产品有缺陷,事件B表示这件产品是某个特定品牌的产品。
如果已知这件产品是该品牌的产品,我们想要知道它有缺陷的概率,即求解P(A|B)。
根据条件概率的定义,我们可以通过计算P(A∩B)/P(B)来得到答案。
假设该品牌的产品有总体占比为20%,即P(B) = 0.2。
又已知有缺陷的产品占总体的10%,即P(A∩B) = 0.1,将这些数据代入条件概率的计算公式,我们可以得到P(A|B) = P(A∩B)/P(B) = 0.1/0.2 = 0.5。
概率的独立事件与条件概率的应用
概率的独立事件与条件概率的应用概率是数学中的一门重要学科,研究的是随机事件发生的规律性。
在实际应用中,概率理论被广泛应用于统计分析、风险评估、预测等各个领域。
其中,概率的独立事件与条件概率的应用是概率理论中的两个关键概念,下面我将对这两个概念进行详细的讲解和实际应用。
一、概率的独立事件独立事件是指两个事件之间相互独立,即一个事件的发生不会对另一个事件的发生产生影响。
在概率中,独立事件的计算方式是将两个事件的发生概率相乘,即:P(A∩B)=P(A)×P(B)其中,P(A)表示事件A发生的概率,P(B)表示事件B发生的概率,P(A∩B)表示事件A和B同时发生的概率。
例如,假设一道题目是从一副有51张牌的扑克牌中抽出一张红心牌和一张黑桃牌,两次抽牌之间有放回。
那么,抽到红心牌的概率是13/51,抽到黑桃牌的概率是13/51。
因为两次抽牌之间有放回,所以第二次抽到黑桃牌的概率与第一次抽牌是否抽到红心牌没有关系,即事件A和事件B是独立的事件。
因此,抽到一张红心牌和一张黑桃牌的概率是(13/51)×(13/51)=169/2601≈0.065。
二、条件概率的应用条件概率是指在已经发生了一个事件的前提下,另一个事件发生的概率。
在概率中,条件概率的计算方式是将两个事件的联合概率除以条件事件的概率,即:P(B|A)=P(A∩B)/P(A)其中,P(A)表示条件事件A发生的概率,P(A∩B)表示事件A 和事件B同时发生的概率,P(B|A)表示在条件事件A发生的前提下,事件B发生的概率。
例如,假设有一堆红球和绿球,其中红球占一半,绿球也占一半。
从这堆球中随机选择两个,求这两个球都是红球的概率。
由于第一次选择时有50%的概率选择到红球,而第二次选球时,我们已经从十个球中选出了一个红球,所以第二次选球时还剩下九个球中的4个红球。
因此,两次选中红球的概率是(1/2)×(4/9)=2/9≈0.22。
概率的条件与独立事件
概率的条件与独立事件概率是数学中一个重要的概念,用于衡量事件发生的可能性。
在概率理论中,条件概率和独立事件是两个关键概念。
本文将介绍条件概率和独立事件的概念和计算方法,并探讨它们在实际生活和统计学中的应用。
一、条件概率条件概率是指在某些已知条件下,另一个事件发生的概率。
在数学中,条件概率可以用以下公式表示:P(A|B) = P(A∩B) / P(B)其中,P(A|B)表示在事件B发生的情况下,事件A发生的概率;P(A∩B)表示事件A和B同时发生的概率;P(B)表示事件B发生的概率。
条件概率的计算可以通过具体问题进行实例化。
例如,假设有一个盒子,里面有20个红球和30个蓝球。
从中随机选取一个球,如果我们已经知道选中的球是红球,那么选中下一个红球的概率是多少?解答:已知选中的球是红球,表示在已经选中红球的前提下,再次选中红球的概率。
因此,事件A表示第一次选中红球,事件B表示第二次选中红球。
根据条件概率的定义,我们可以计算如下:P(A|B) = P(A∩B) / P(B)P(A|B) = (20/50) / (20/50)P(A|B) = 20/50P(A|B) = 0.4从上述计算可以看出,在已知选中的球是红球的情况下,再次选中红球的概率为0.4。
二、独立事件独立事件是指两个或多个事件之间不会相互影响的事件。
当两个事件A和B是独立事件时,它们的概率计算可以简化为乘法原理:P(A∩B) = P(A) * P(B)例如,假设有一副标准扑克牌,从中随机抽取两张牌,第一张是A,第二张是K。
如果我们已经知道第一张是A,那么第二张是K的概率是多少?解答:已知第一张牌是A,表示在已经知道第一张牌是A的前提下,第二张牌是K的概率。
根据独立事件的定义,我们可以计算如下:P(A∩B) = P(A) * P(B)P(A∩B) = (4/52) * (4/51)P(A∩B) = 1/663从上述计算可以看出,在已知第一张牌是A的情况下,第二张牌是K的概率为1/663。
事件的独立性与条件概率
事件的独立性与条件概率事件的独立性与条件概率是概率论中非常重要的概念,它们的理解与应用在各个领域都具有广泛的意义。
在本文中,我将探讨事件的独立性和条件概率的概念及其关系。
一、事件的独立性事件的独立性是指两个或多个事件之间的发生与否互不影响。
换句话说,当两个或多个事件独立发生时,它们的概率乘积等于它们各自发生的概率之积。
以掷硬币为例,假设我们掷两枚硬币,事件A表示第一枚硬币为正面,事件B表示第二枚硬币为正面。
如果两个事件相互独立,那么P(A∩B) = P(A)×P(B)。
也就是说,第一枚硬币为正面的概率与第二枚硬币为正面的概率乘积等于两枚硬币都为正面的概率。
二、条件概率条件概率是在已知一个或多个事件发生的条件下,另一个事件发生的概率。
通常表示为P(A|B),表示在事件B发生的条件下,事件A发生的概率。
仍以掷硬币为例,事件A表示第一枚硬币为正面,事件B表示两枚硬币都为正面。
如果已知第一枚硬币为正面,即事件A已经发生,那么事件B的概率会发生变化,变成了P(B|A)。
这时,我们可以用条件概率的公式计算出P(B|A)。
三、事件的独立性与条件概率的关系事件的独立性与条件概率有着密切的关系。
当两个事件A和B是相互独立的时候,P(A|B) = P(A),也就是说,当事件B已经发生的情况下,事件A发生的概率与事件B未发生时的概率相等。
反过来讲,如果已知事件B发生,且P(A|B) = P(A),那么事件A 与事件B就是相互独立的。
因此,可以通过条件概率的计算来判断事件之间的独立性。
四、应用举例事件的独立性与条件概率在实际应用中有许多重要的应用。
以下是几个常见的应用场景:1. 疾病诊断:在医学领域,独立性与条件概率可以用于判断多个疾病的共同发生概率。
例如,根据患者的症状,通过条件概率可以计算出某种疾病的患病概率。
2. 金融风险评估:在金融领域,独立性与条件概率可以用于评估投资组合的风险。
通过将不同资产之间的独立性与条件概率应用到投资组合的构建中,可以更准确地评估风险和收益。
高中数学中的事件独立性与条件概率讨论
高中数学中的事件独立性与条件概率讨论概率论是数学中的重要分支,它研究的是不确定事件的数学性质与规律。
在概率论中,事件的独立性和条件概率两个概念是非常重要的,特别是在高中数学中,我们经常会遇到这两个概念的应用。
本文将从理论与实际问题两个方面来讨论高中数学中的事件独立性与条件概率。
首先,我们来讨论事件的独立性。
在概率论中,两个事件A和B被称为独立事件,当且仅当事件A的发生与事件B的发生是互不相关的,即事件A的发生与事件B的发生没有任何影响。
换句话说,事件A的概率与事件B的概率的乘积等于事件A与B同时发生的概率。
考虑一个简单的例子,假设有一个不透明袋子里装有红球和蓝球,比例为1:1。
现在从袋子中连续取两个球,每次取出的球都放回袋子中。
事件A定义为第一次取出的球是红球,事件B定义为第二次取出的球是红球。
根据定义,事件A的概率为1/2,事件B的概率也为1/2。
如果这两个事件是独立的,那么同时发生的概率应该等于事件A和事件B的概率的乘积,即1/4。
我们可以进行实验验证,通过多次重复实验并统计结果,得到1/4的概率,这证明了事件A与事件B的独立性。
然而,并非所有事件都是独立的。
考虑一个新的例子,假设有一个不透明袋子里装有4个红球和2个蓝球。
现在从袋子中连续取两个球,但这次每次取出的球都不放回袋子中。
事件A定义为第一次取出的球是红球,事件B定义为第二次取出的球是红球。
首先,我们计算事件A的概率,即取出红球的概率为4/6,这是一个条件概率。
接下来,事件B的概率需要在第一次取出红球的前提下讨论,即在事件A发生的条件下,第二次取出红球的概率。
第一次取出红球后,袋子中剩余的球变成3个红球和2个蓝球,所以事件B的概率为3/5。
由此可见,事件A发生与否对事件B的概率产生了影响,这说明事件A与事件B不是独立的。
接下来我们来讨论条件概率。
条件概率是指在已知一些相关信息的情况下,某一事件发生的概率。
数学上,事件A在事件B发生的条件下的概率被定义为事件A与事件B同时发生的概率与事件B发生的概率的比值。
条件概率与独立事件
条件概率与独立事件条件概率和独立事件是概率论中的重要概念,它们在许多实际问题的建模和分析中发挥着重要的作用。
本文将详细介绍条件概率和独立事件,探讨它们的定义、性质和应用。
一、条件概率的定义和性质条件概率是指在一个事件发生的条件下,另一个事件发生的概率。
设A、B为两个事件,且P(B)>0,则事件A在事件B发生的条件下发生的概率记作P(A|B),其定义为P(A|B)=P(A∩B)/P(B)。
针对条件概率,有以下两个重要性质:1. 乘法公式:对于两个事件A、B,有P(A∩B)=P(B)×P(A|B)。
这个公式可以从条件概率的定义中推导出来,对于事件A同时发生且B发生的概率,等于B先发生的概率乘以在B发生的条件下A发生的概率。
2. 全概率公式:对于一组互斥事件B1、B2、...、Bn,它们构成了一个样本空间的划分,即B1∪B2∪...∪Bn=Ω(Ω表示样本空间)。
则对于事件A,有P(A)=P(A|B1)×P(B1)+P(A|B2)×P(B2)+...+P(A|Bn)×P(Bn)。
全概率公式的作用在于利用条件概率进行事件概率的计算。
二、独立事件的定义和性质独立事件是指两个事件发生与否互不影响的事件。
设A、B为两个事件,如果P(A|B)=P(A),则称事件A与事件B相互独立。
同理,如果P(B|A)=P(B),也可以认为事件A与事件B相互独立。
独立事件有以下重要性质:1. 事件的独立性是一个对称的概念,即A与B独立等价于B与A独立。
2. 如果事件A与事件B相互独立,那么事件A与事件B的补集A'与B的补集B'也相互独立。
3. 如果事件A与事件B相互独立,那么事件A与B的并集A∪B的概率等于事件A的概率与事件B的概率之和减去事件A与B的交集的概率,即P(A∪B)=P(A)+P(B)-P(A∩B)。
三、条件概率和独立事件的应用条件概率和独立事件在实际问题中有着广泛的应用,例如医学诊断、网络安全、金融风险评估等领域。
概率的条件与独立事件
概率的条件与独立事件概率是数学中的一个分支,用于研究随机事件发生的可能性。
在概率理论中,条件和独立事件是两个重要的概念。
本文将详细探讨概率的条件和独立事件,以及它们在实际生活中的应用。
1. 条件概率条件概率是指在已知某个事件发生的条件下,另一个事件发生的概率。
设A、B为两个事件,P(A|B)表示在事件B发生的条件下事件A 发生的概率。
条件概率的计算公式如下:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
条件概率的应用十分广泛。
例如,在医学诊断中,医生根据病人的症状判断某种疾病的概率就是条件概率;在市场调查中,根据消费者的不同特征,预测其购买某种产品的概率也是条件概率的应用之一。
2. 独立事件独立事件是指两个或多个事件之间相互不影响的事件。
设A、B为两个事件,如果P(A|B) = P(A),则称事件A和事件B是独立事件。
换句话说,如果事件B的发生与事件A的发生无关,那么这两个事件就是独立事件。
独立事件在现实生活中也有很多应用。
例如,投掷一个标准的骰子,每个面出现的概率都是相等的,因此连续投掷两次,第一次投掷结果不会对第二次投掷结果产生影响,这就是独立事件的应用之一。
3. 条件独立事件条件独立事件是指在已知某个事件发生的条件下,另外两个事件是相互独立的事件。
设A、B、C为三个事件,如果P(A∩B|C) = P(A|C) × P(B|C),则称事件A和事件B在事件C的条件下是独立的。
对于条件独立事件来说,假设C事件发生的情况下,事件A和事件B之间的独立性保持不变。
条件独立事件在统计学和机器学习中有广泛的应用,例如朴素贝叶斯分类器是基于条件独立事件假设的。
4. 应用案例为了更好地理解条件和独立事件的概念以及其应用,我们举一个实际的例子。
假设某公司的销售记录表明,在晴天的情况下,销售手机的概率为0.8;而在雨天的情况下,销售手机的概率为0.3。
条件概率与独立事件
条件概率与独立事件条件概率与独立事件是概率论中重要的概念和理论。
它们在统计学、机器学习以及实际问题的解决中扮演着重要角色。
了解条件概率与独立事件的含义和计算方法,对于正确理解概率论的应用具有重要意义。
一、条件概率的概念与计算条件概率是指在已经发生了一个事件的前提下,另一个事件发生的概率。
用数学符号表示为P(A|B),读作“在B发生的条件下,A发生的概率”。
条件概率的计算方法是利用全概率公式和乘法法则。
全概率公式如下:P(A) = P(A|B1)·P(B1) + P(A|B2)·P(B2) + ... + P(A|Bn)·P(Bn)乘法法则如下:P(A∩B) = P(B)·P(A|B)利用这两个公式,我们可以计算出任何两个事件之间的条件概率。
条件概率的计算在实际问题中非常常见,比如在进行相亲配对时,根据对方的爱好与自己的匹配程度,可以计算出彼此喜欢对方的概率。
二、独立事件的概念及判断独立事件是指两个事件发生与否互不影响的情况。
形式化地说,事件A和事件B是独立事件,当且仅当下述条件成立:P(A∩B) = P(A)·P(B)也就是说,当两个事件满足上述等式时,我们可以判断它们是独立事件。
例如,掷一枚硬币两次,第一次出现正面的概率为1/2,第二次出现正面的概率也为1/2,那么可以判断两次投掷的结果是独立事件。
独立事件在实际问题中也有广泛应用,比如在进行统计调查时,如果我们可以确信两个事件是独立的,那么我们可以直接计算它们的联合概率,而不需要考虑任何其他条件。
三、条件概率与独立事件的关系条件概率和独立事件有密切的关系。
当事件A和事件B是独立事件时,条件概率满足以下等式:P(A|B) = P(A)也就是说,当两个事件是独立事件时,一个事件在另一个事件发生的条件下的概率,等于该事件的原始概率。
这意味着,当事件A和事件B是独立的时候,事件B的发生对事件A的发生没有任何影响。
概率论中的独立事件与条件概率
在概率论中,独立事件与条件概率是两个重要的概念。
独立事件是指两个或多个事件之间不存在任何关联,即一个事件的发生不会影响另一个事件的发生。
而条件概率是指在给定一个事件已经发生的情况下,另一个事件发生的概率。
首先,我们来介绍独立事件的概念。
假设有两个事件A和B,它们之间互不相关,即事件A的发生与事件B的发生没有任何关联。
那么,我们可以说事件A 和事件B是独立事件。
换句话说,在已知某个事件A已经发生的情况下,事件B的发生概率不会受到事件A的影响。
数学上可以用以下等式表达:P(A∩B) = P(A)P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(A)和P(B)分别表示事件A和事件B发生的概率。
如果上述等式成立,我们就可以称事件A和事件B 是独立事件。
接下来,我们来看一下条件概率。
条件概率是指在给定一个事件已经发生的情况下,另一个事件发生的概率。
假设有两个事件A和B,我们用P(A|B)表示在事件B已经发生的条件下,事件A发生的概率。
根据条件概率的定义,我们可以得到以下等式:P(A|B) = P(A∩B)/P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B发生的概率。
通过这个等式,我们可以计算在已知事件B发生的情况下,事件A发生的概率。
条件概率的概念在实际问题中非常有用。
例如,在医疗诊断中,假设某种疾病在人群中的发生率为P(D),而该疾病对应的某项检测结果为阳性的概率为P(Pos|D)。
根据贝叶斯定理,我们可以计算某人在检测结果为阳性的情况下真正患病的概率:P(D|Pos) = P(Pos|D)P(D)/P(Pos)其中,P(D|Pos)表示在检测结果为阳性的条件下某人真正患病的概率,P(Pos)表示检测结果为阳性的概率。
贝叶斯定理可以帮助我们更准确地评估某人是否患病的概率。
总结起来,独立事件和条件概率是概率论中的重要概念。
独立事件是指两个或多个事件之间不存在任何关联,而条件概率是指在给定一个事件已经发生的情况下,另一个事件发生的概率。
条件概率与独立事件
概括
求B发生的条件下,A发生的概率,称为B发
P( A B ) ,其中, P( B )
生时A发生的条件概率,记为 P( A B)。 当 P( B ) 0 时, P( A B )
A B 可记为 AB 。
P( AB) 类似地 P( A ) 0 时, P( B A) 。 P( A )
知识回顾 1.古典概型的概念
1)试验的所有可能结果(即基本事件)只 有有限个,每次试验只出现其中的一个结 果;2)每一个结果出现的可能性相同。
2.古典概型的概率公式
事件A包含的可能结果数 m P( A) 试验的所有可能结果 n
问题1:
100个产品中有93个产品的长度合格,90 个产品的质量合格,85个产品的长度、 质量都合格。现在任取一个产品,若已
P( AB ) P( A) P( B ) 0.4 0.4 0.16
推广: 前面讨论了两个相互独立事件的概率公式,
若 A 、B 相互独立,则有 P( AB ) P( A) P( B )
事实上,对于多个独立事件,公式也是成立的。 对于n个相互独立的事件 A1 , A 2 , , A n , 则有 P( A A A ) P( A ) P( A ) P( A )
练习1.判断下列给出的每对事件,(1)是否为互斥 事件,(2)是否为对立事件,并说明理由.
从40张扑克牌(红桃、黑桃、方块、梅花,点数从1到10各4张) 中任取1张: (1)“抽出红桃”与“抽出黑桃”; (2)“抽出红色牌”与“抽出黑色牌”; (3)“抽出的牌点数为5的倍数”与“抽出的牌点数大于9”.
1.1互斥事件
一、基本概念
问题1:抛掷一颗骰子,观察掷出的点数.设事件A 为“出现奇数点”,B为“出现2点”.事件A和事 不可能同时发生 件B可以同时发生吗?
概率与统计中的事件独立性与条件概率
概率与统计中的事件独立性与条件概率概率与统计是数学中的重要分支,研究了随机事件的发生规律和现象的统计规律。
其中,事件独立性和条件概率是概率与统计中的两个重要概念。
本文将详细介绍这两个概念及其在实际问题中的应用。
一、事件独立性在概率论中,事件的独立性指的是两个或多个事件之间的发生与否互不影响。
具体来说,如果事件A和事件B相互独立,那么事件A的发生与否对事件B的发生概率没有影响,反之亦然。
数学上,事件A和事件B的独立性可以表示为P(A∩B) =P(A) · P(B),其中P(A)表示事件A的概率,P(B)表示事件B的概率,P(A∩B)表示事件A和事件B同时发生的概率。
独立性的概念在实际问题中有广泛的应用。
例如,在投掷硬币的问题中,每次投掷的结果都是独立的,前一次投掷得到正面的概率与后一次投掷得到正面的概率是相等的。
二、条件概率在实际问题中,有些事件的发生概率可能受到其他条件的限制或影响。
此时,我们需要引入条件概率的概念。
条件概率指的是在已知事件B发生的条件下,事件A发生的概率。
用数学符号表示为P(A|B),读作“A在B发生的条件下发生的概率”。
条件概率的计算公式为:P(A|B) = P(A∩B) / P(B),其中P(A∩B)表示事件A和事件B同时发生的概率。
条件概率在实际问题中有很多应用。
例如,在一次抽奖活动中,已知有100个人参与,其中10个人中奖。
如果我们想要计算某一个人中奖的概率,就需要考虑其他条件,如该人是否购买了彩票等。
三、事件独立性与条件概率的关系在概率与统计中,事件独立性和条件概率之间存在一定的关系。
如果事件A和事件B相互独立,那么事件A的条件概率与事件B无关,即P(A|B) = P(A);同样地,事件B的条件概率与事件A无关,即P(B|A) = P(B)。
反之,如果事件A和事件B满足P(A|B) = P(A)或P(B|A) = P(B),那么事件A和事件B是相互独立的。
有了事件独立性和条件概率的概念,我们可以解决很多实际问题。
条件概率及互相独立事件-高考数学知识点
条件概率及互相独立事件-高考数学知识点条件概率及互相独立事件一、条件概率
条件概率是一种带有附加条件的概率。
是指若事件A与事件B是相依事件,即事件A的概率随事件B是否发生而变化,同样,事件B的概率与随事件A是否发生而变化,则在事件A已发生的条件下,事件B出现的概率称为事件B的条件概率。
条件概率就是事件 A 在另外一个事件 B 已经发生条件下的发生概率。
条件概率表示为P(A|B),读作“在 B 条件下 A 的概率”。
P(A|B)=P(AB)/P(B),P(B|A)=P(AB)/P(A)
二、独立事件
相互独立事件: 事件A(或B)是否发生对事件B(A)发生的概率没有影响,这样的两个事件叫做相互独立事件。
三、热定预测
预测高考可能会对独立事件的概率、n次独立事件的概率、n次独立重复试验的概率、二项分布重点考察。
解答题仍会保持中等难度,分值约为10分。
条件概率与互相独立事件在高二的课程中就已经还是涉及。
概率计算中的事件独立与条件概率
概率计算中的事件独立与条件概率概率计算是数学中重要的分支之一,它研究的是随机事件发生的可能性。
在概率计算中,有两个重要的概念,即事件独立和条件概率。
本文将介绍这两个概念及其在概率计算中的应用。
一、事件独立在概率计算中,事件独立是指两个或多个事件之间的发生并不相互影响的性质。
具体地说,如果事件A和事件B是独立的,那么事件A的发生与否并不会影响事件B的发生概率,反之亦然。
数学上,事件A和事件B的独立性可以通过以下公式表示:P(A∩B) = P(A) × P(B)其中,P(A)表示事件A的发生概率,P(B)表示事件B的发生概率,P(A∩B)表示事件A和事件B同时发生的概率。
事件独立的概念在实际应用中有很大的意义。
例如,在投掷一枚硬币的情境中,事件A表示硬币正面朝上,事件B表示硬币反面朝上。
由于硬币的正反面朝上是相互独立的,所以投掷硬币正反面的概率都是1/2。
二、条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
数学上,事件A在事件B发生的条件下的概率可以表示为P(A|B),读作“B发生的条件下A的概率”。
条件概率的计算可以通过以下公式求解:P(A|B) = P(A∩B) / P(B)其中,P(A∩B)表示事件A和事件B同时发生的概率,P(B)表示事件B的发生概率。
条件概率的概念在许多实际问题中具有重要意义。
例如,在一副扑克牌中,事件A表示从中抽出一张红色的牌,事件B表示从中抽出一张大王。
已知事件B发生的条件下,事件A发生的概率可以通过计算红色牌中大王的比例得出。
三、事件独立与条件概率的关系事件独立和条件概率之间存在一定的联系。
如果事件A和事件B是独立的,那么条件概率P(A|B)等于事件A的发生概率P(A),反之亦然。
数学上,可以通过以下公式表示独立事件的条件概率:P(A|B) = P(A)这一关系表明,当事件A和事件B相互独立时,事件B的发生并不会对事件A发生的概率产生影响。
条件概率与独立事件例题和知识点总结
条件概率与独立事件例题和知识点总结在概率论中,条件概率和独立事件是两个非常重要的概念。
理解和掌握它们对于解决各种概率问题至关重要。
下面,我们将通过一些具体的例题来深入探讨这两个概念,并对相关知识点进行总结。
一、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为:P(A|B) = P(AB) / P(B) (其中 P(AB) 表示事件 A 和事件 B 同时发生的概率)。
例 1:一个盒子里有 5 个红球和 3 个白球。
先从盒子中取出一个球,不放回,然后再取出一个球。
已知第一次取出的是红球,求第二次取出红球的概率。
解:第一次取出红球后,盒子里剩下 4 个红球和 3 个白球。
所以第二次取出红球的概率为 4 / 7 。
例 2:某班级学生的数学成绩及格率为 80%,英语成绩及格率为70%。
已知小明数学成绩及格,求他英语成绩也及格的概率。
解:设 A 表示小明数学成绩及格,B 表示小明英语成绩及格。
则P(A) = 08,P(B) = 07,P(AB) 表示小明数学和英语成绩都及格的概率。
由于不知道两者的关系,假设数学和英语成绩相互独立,则 P(AB) =08 × 07 = 056 。
所以 P(B|A) = P(AB) / P(A) = 056 / 08 = 07 。
知识点总结:1、条件概率的定义和计算公式要牢记。
2、解决条件概率问题时,要注意分析事件之间的关系,确定已知条件和所求概率的事件。
二、独立事件如果事件 A 的发生不影响事件 B 的发生概率,事件 B 的发生也不影响事件 A 的发生概率,那么称事件 A 和事件 B 是相互独立的。
即P(A|B) = P(A) 且 P(B|A) = P(B) 。
例 3:掷一枚均匀的硬币两次,求两次都出现正面的概率。
解:第一次掷硬币出现正面的概率为 1/2,第二次掷硬币出现正面的概率也为 1/2。
由于两次掷硬币的结果相互独立,所以两次都出现正面的概率为 1/2 × 1/2 = 1/4 。
第三讲 条件概率与独立事件
90 89 10 0.0826 100 99 98
许昌学院数学科学学院
12页
第三讲 条件概率与独立事件
例4:(罐子模型)设罐中有b个黑球,r个红球,每 次随机取出一个球,取出后将原球放回,还加进c 个同色球和d个异色球.记 Bi=“第i次取出的是 Rj 黑球”, =“第j次取出的是红球”.若连续从 罐中取出三个球,其中有两个红球,一个黑球, 则由乘法公式得
P( B1 R2 R3 ) P( B1 ) P( R2 B1 ) P ( R3 B1R2 )
b rd r d c b r b r c d b r 2c 2d
许昌学院数学科学学院
13页
第三讲 条件概率与独立事件
P( R1 B2 R3 ) P( R1 ) P( B2 R1 ) P ( R3 R1B2 )
许昌学院数学科学学院
20页
第三讲 条件概率与独立事件
由全概率公式可得 P(是)=P(白球)P(是1白球)+P(红球)P(是1红球) 由于 P(是)=已知 P(红球)=已知 P(白球)=已知 P(是1白球)=已知 故P(是1红球)可得。
许昌学院数学科学学院
21页
第三讲 条件概率与独立事件
1.4
性质4
贝叶斯公式
若事件B1, B2 , ··, Bn是样本空间的一个分割, ·· ·· 且P(A)>0, P(Bi)>0,则
P( Bi | A) P( Bi ) P( A | Bi )
P( B j ) P( A | B j ) j 1
许昌学院数学科学学院
n
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
条件概率与独立事件【要点梳理】要点一:条件概率1.概念设A 、B 为两个事件,求已知B 发生的条件下,A 发生的概率,称为B 发生时A 发生的条件概率,记为()|P A B ,读作:事件B 发生的条件下A 发生的概率。
要点诠释:我们用韦恩图能更好的理解条件概率,如图,我们将封闭图形的面积理解为相应事件的概率,那么由条件概率的概率,我们仅局限于B 事件这个范围来考察A 事件发生的概率,几何直观上,()|P A B 相当于B 在A 内的那部分(即事件AB )在A中所占的比例。
2.公式.要点诠释:(1)对于古典(几何)概型的题目,可采用缩减样本空间的办法计算条件概率: 古典概型:(|)AB P A B B =包含的基本事件数包含的基本事件数,即()()card (|)card AB P AB B =; 几何概型:(|)AB P A B B =的测度的测度. (2)公式()(|)()P AB P A B P B =揭示了()P B 、()|P AB 、()P AB 的关系,常常用于知二求一,即要熟练应用它的变形公式如,若()P B >0,则()()()=|P AB P A P B A ,该式称为概率的乘法公式.(3)类似地,当()0P A >时,A 发生时B 发生的条件概率为:()()()|=P AB P B A P A .3. 性质(1)非负性:()|0P A B ≥;(2)规范性:()|=1P B Ω(其中Ω为样本空间);(3)可列可加性:若两个事件A 、B 互斥,则()()()+||+|P A B C P A C P B C =.4.概率()P A |B 与()P AB 的联系与区别: 当()0P B >时,()()()|=P A B P A B P B .联系:事件A ,B 都发生了。
区别:①在()|P A B 中,事件A ,B 发生有时间上的差异,事件B 先发生,事件A 后发生;在()P AB 中,事件A ,B 同时发生;②基本事件空间不同在()|P A B 中,事件B 成为基本事件空间,即()()card (|)card AB P ABB =;在()P AB 中,基本事件空间保持不变,仍为原基本事件空间,即()()card ()card AB P AB =Ω。
要点二:独立事件1.定义:事件A (或B )是否发生对事件B (或A )发生的概率没有影响,即(|)()P B A P B =,这样的两个事件叫做相互独立事件。
若A 与B 是相互独立事件,则A 与B ,A 与B ,A 与B 也相互独立。
2.相互独立事件同时发生的概率公式:对于事件A 和事件B ,用A B ⋅表示事件A 、B 同时发生。
(1)若A 与B 是相互独立事件,则()()()P A B P A P B ⋅=⋅;(2)若事件12,,,n A A A 相互独立,那么这n 个事件同时发生的概率,等于每个事件发生的概率的积, 即:1212()()()()n n P A A A P A P A P A ⋅⋅⋅=⋅⋅⋅。
要点诠释(1)P (A B )=P (A )P (B )使用的前提是A 、B 为相互独立事件,也就是说,只有相互独立的两个事件同时发生的概率,才等于每个事件发生的概率的积.(2)两个事件A 、B 相互独立事件的充要条件是()()()P A B P A P B ⋅=⋅。
3.相互独立事件与互斥事件的比较互斥事件与相互独立事件是两个不同的概念,它们之间没有直接关系。
互斥事件是指两个事件不可能同时发生,而相互独立事件是指一个事件是否发生对另一个事件发生的概率没有影响。
一般地,两个事件不可能既互斥又相互独立,因为互斥事件是不可能同时发生的,而相互独立事件是以它们能够同时发生为前提的。
相互独立事件同时发生的概率等于每个事件发生的概率的积,这一点与互斥事件的概率和也是不同的。
4. 几种事件的概率公式的比较已知两个事件A ,B ,它们发生的概率为P (A ),P (B ),则: A ,B 中至少有一个发生记为事件A +B (或A B ); A ,B 都发生记为事件AB (或A B );都不发生记为事件AB (或A B ); 恰有一个发生记为事件+AB AB ; 至多有一个发生记为事件A B A B A B ⋅+⋅+⋅.则它们的概率间的关系如下表所示:典型例题】类型一:条件概率 例1. 一种耐高温材料,能承受200℃高温不熔化的概率为0.9,能承受300℃高温不熔化的概率为0.5,现有一种这样的材料,在能承受200℃高温不熔化的情况下,还能承受300℃高温不熔化的概率是多少?【思路点拨】用集合来表示事件,将所求事件的概率表示成条件概率的形式,根据定义计算.【解析】 用A 表示事件“该材料承受200℃高温不熔化”,用B 表示事件“该材料承受300℃高温不熔化”,则“能承受200℃高温不熔化的情况下,还能承受300℃高温不熔化的概率”可表示为()|P B A .依题意得,()()0.90.5,P A P B ==.因为B ⊆A ,所以A ∩B=B ,故有()()==0.5P AB P B ,由条件概率的定义可得()0.55(|)()0.99P B P B A P A ===. 所以,在能承受200℃高温不熔化的情况下,还能承受300℃高温不熔化的概率是59. 【总结升华】计算条件概率最常用的方法是定义法,其具体步骤如下:(1)将文字语言翻译成集合语言:设出事件A ,B ,将所求概率表示成()|P A B 的形式;(2)计算概率()P A 和()P AB ,特别是;(3)根据条件概率公式()()()|=P A B P A B P B 计算结果;举一反三:【变式1】一个盒子中装有6只好晶体管和4只坏晶体管,任取两次,每次取1只,第一次取后不放回,若第一次取到的是好的,则第二次也取到好的概率为()A .35B.13C.59D.49【答案】C设iA=“第i次取到好的晶体管”(i=1,2)。
因为163()105P A==,12651()1093P A A⨯==⨯,所以12211()5(|)()9P A AP A AP A==。
【变式2】在10000张有奖储蓄的奖券中,设有1个一等奖,5个二等奖,10个三等奖,从中依次买两张,求在第一张中一等奖的条件下,第二张中二等奖或三等奖的概率.【答案】设“第一张中一等奖”为事件A,“第二张中二等奖”为事件B,“第二张中三等奖”为事件C,则1()10000P A=,155()10000999999990000P AB⨯==⨯,11010()10000999999990000P AC⨯==⨯,∴()5(|)()9999P ABP B AP A==,()10(|)()9999P ACP C AP A==.∴5105(|)(|)(|)999999993333P B C A P B A P C A=+=+=.即在第一张中一等奖的条件下,第二张中二等奖或三等奖的概率为53333.例2. 假定生男孩或女孩是等可能的,在一个有3个孩子的家庭中,已知有一个女孩,求至少有一个男孩的概率.【思路点拨】这个古典概型,利用缩减样本空间的方法计算条件概率较简便。
【解析】用A表示为“至少有一个男孩”,用B表示事件“至少有一个是女孩”,则“有一个女孩,至少有一个男孩的概率”可用表示.()|P A B.将B作为样本空间,它可用树形图可以直观的表示出来,如下:所以()card=7B,()card=6AB,所以()()card 6(|)=card 7AB P AB B =. 所以在有一个女孩的情况下,至少有一个男孩的概率为67. 【总结升华】对于古典概率求条件概率型题目,可采用缩减基本事件总数的方法,具体方法如下:(1)将文字语言翻译成集合语言:设出事件A ,B ,将所求概率表示成()|P A B 的形式;(2)写出样本空间B ,并找出B 中A 发生(即事件AB )的基本事件数;(3)计算()()card card B AB ,;(4)根据条件概率公式()()card 6(|)=card 7AB P AB B =计算结果. 举一反三:【变式1】在100件产品中有95件合格品,5件不合格品.现在从中不放回的取两次,每次任取一件,试求:在第一次取到不合格品后,第二次再次取到不合格品的概率.【答案】在第一次取到不合格品后,产品总数为99件,其中:合格品:95件,不合格品:4件。
由条件概率的概率可知,所求条件概率为在第一次取到不合格品后,不合格品占产品总数的比例,即设事件“第二次取到不合格品”为A ,事件“第一次取到不合格品”为B ,则499. 【变式2】从一副不含大小王的扑克牌(共52张)中不放回地抽取2次,每次抽1张,若第一次抽到J ,则第二次也抽到J 的概率为________。
【答案】第1次抽到J 后,总扑克牌数为51张,其中:J 有3张。
由条件概率的定义可知,“第一次抽到J ,则第二次也抽到J ”表示在第1次抽到J 后,J 所占总扑克牌数的比例,即13=5117. 类型二:独立事件例3. 容器中盛有5个白乒乓球和3个黄乒乓球.(1)“从8个球中任意取出1个,取出的是白球”与“从剩下的7个球中任意取出1个,取出的还是白球”这两个事件是否相互独立?为什么?(2)“从8个球中任意取出1个,取出的是白球”与“把取出的1个白球放回容器,再从容器中任意取出1个,取出的是黄球”这两个事件是否相互独立?为什么?【思路点拨】 从相互独立事件的定义入手.【解析】 (1)“从8个球中任意取出1个,取出的是白球”的概率为58,若这一事件发生了,则“从剩下的7个球中任意取出1个,取出的仍是白球”的概率为47;若前一事件没有发生,则后一事件发生的概率为57.可见,前一事件是否发生,对后一事件发生的概率有影响,所以二者不是相互独立事件. (2)由于把取出的白球放回容器,故对“从中任意取出1个,取出的是黄球”的概率没有影响,所以二者是相互独立事件.【总结升华】 判断两事件是否相互独立的方法有:(1)通过计算P (B|A )=P (B )可以判断两个事件相互独立:(2)通过验证P (AB )=P (A )P (B )也可以判断两个事件相互独立.举一反三:【变式】判断下列各对事件是互斥事件还是相互独立事件.(1)运动员甲射击1次,“射中9环”与“射中8环”;(2)甲、乙两运动员各射击1次,“甲射中10环”与“乙射中9环”:(3)甲、乙两运动员各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”;(4)甲、乙两运动员各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”.【答案】(1)甲射击1次,“射中9环”与“射中8环”这两个事件不可能同时发生,二者是互斥事件.(2)甲、乙各射击1次,“甲射中10环”发生与否对“乙射中9环”的概率没有影响,二者为相互独立事件.(3)甲、乙各射击1次,“甲、乙都射中目标”与“甲、乙都没有射中目标”不可能同时发生,二者是互斥事件.(4)甲、乙各射击1次,“至少有1人射中目标”与“甲射中目标,但乙没有射中目标”可能同时发生,二者构不成互斥事件,但也不可能是相互独立事件.例5. 要制造一种机器零件,甲机床的废品率为0.04,乙机床的废品率是0.05,从它们制造的产品中,各任意抽取一件,求:(1)其中至少有一件废品的概率;(2)其中恰有一件废品的概率;(3)其中至多有一件废品的概率;(4)其中没有废品的概率;(5)其中全是废品的概率.【思路点拨】 依题意记事件A 为“从甲机床生产的产品中抽得的一件是废品”,事件B 为“从乙机床生产的产品中抽得的一件是废品”,两事件对应的概率为P (A )=0.04,P (B )=0.05,则此题可解.显然,这两台机床的生产应当看作是相互独立的.【解析】 记事件A 为“从甲机床生产的产品中抽得的一件是废品”,事件B 为“从乙机床生产的产品中抽得的一件是废品”.则P (A )=0.04,P (A )=0.96,P (B )=0.05,P (B )=0.95.由题意可知,A 与B ,A 与B ,A 与B ,A 与B 都是相互独立的.(1)“至少有一件废品”为事件A+B ,则()1()1()()10.960.950.088P A B P AB P A P B +=-=-=-⨯=.(2)“恰有一件废品”为事件AB AB +,则()()()()()()()P AB AB P AB P AB P A P B P A P B +=+=+=0.96×0.05+0.04×0.95=0.048+0.038=0.086.(3)方法一:“至多有一件废品”为事件AB AB AB ++, 则()()()()P AB AB AB P AB P AB P AB ++=++()()()()()()P A P B P A P B P A P B =++=0.04×0.95+0.96×0.05+0.96×0.95=0.998.方法二:“至多有一件废品”的对立事件为“两件都是废品”,即事件AB ,则()1()1()()10.040.050.998P AB AB AB P AB P A P B ++=-=-=-⨯=.(4)“其中没有废品”就是“两件都是正品”,即事件AB ,则()()()0.960.950.912P AB P A P B ==⨯=.(5)“其中全是废品”为事件AB ,则P (AB )=P (A )P (B )=0.04×0.05=0.002.【总结升华】(1)审题应注意关键的词句,例如“至少有一个发生”“至多有一个发生”“恰有一个发生”等,应学会在求复杂事件的概率时对事件等价拆分来求解.(2)求相互独立事件同时发生的概率的方法有:①利用相互独立事件的概率乘法公式;②正面计算较繁琐时,可以从对立面入手求解.举一反三:【变式1】甲、乙两个袋中均装有红、白两种颜色的球,这些球除颜色外完全相同,其中甲袋装有4个红球、2个白球,乙袋装有1个红球、5个白球。