认识无理数优秀教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1认识无理数
(第一课时)
一、教学目标叙写
1.学生通过预习教材21页,并思考情景引入中的问题1.
2.学生通过合作探究部分,初步感知数不够用了,让学生充分感受“新数”(无理数)的存在.
3.学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.4.学生能正确地进行判断某些数是否为有理数,加深对有理数和无理数的理解.
二、教学重难点
1.重点:让学生经历无理数的发现过程.
2.难点:会判断一个数是否为无理数.
三、教学过程
(一)、情景引入
[师]同学们,我们上了好多年的学,学过不计其数的数,概括起来我们都学过哪些数呢?
[生]在小学我们学过自然数、小数、分数.
[生]在初一我们还学过负数.
[师]对,我们在小学学了非负数,在初一发现数不够用了,引入了负数,即把从小学学过的正数、零扩充到有理数范围,有理数包括整数和分数,那么有理数范围是否就能满足我们实际生活的需要呢?下面我们就来共同研究这个问题.
1、思考:⑴一个整数的平方一定是整数吗?⑵一个分数的平方一定是分数吗?
2、已知一个直角三角形的两条直角边长分别为1和2,算一算斜边长x的平方,并提出问题:x是整数(或分数)吗?
(二)、自主探究
1.问题的提出
[师]请大家四个人为一组,拿出自己准备好的两个边长为1的正方形和剪刀,认真讨论之后,动手剪一剪,拼一拼,设法得到一个大的正方形,好吗?
[生]好.(学生非常高兴地投入活动中).
[师]经过大家的共同努力,每个小组都完成了任务,请同学们把自己拼的图展示一下.
同学们非常踊跃地呈现自己的作品给老师.
[师]现在我们一齐把大家的做法总结一下:
下面再请大家共同思考一个问题,假设拼成大正方形的边长为a ,则a 应满足什么条件呢?
[生甲]a 是正方形的边长,所以a 肯定是正数.
[生乙]因为两个小正方形面积之和等于大正方形面积,所以根据正方形面积公式可知a 2=2.
[生丙]由a 2=2可判断a 应是1点几.
[师]大家说得都有道理,前面我们已经总结了有理数包括整数和分数,那么a 是整数吗?a 是分数吗?请大家分组讨论后回答.
[生甲]我们组的结论是:因为12=1,22=4,32=9,…整数的平方越来越大,所以a 应在1和2之间,故a 不可能是整数. [生乙]因为9
13131,943232,412121=⨯=⨯=⨯,…两个相同因数的乘积都为分数,所以a 不可能是分数.
[师]经过大家的讨论可知,在等式a 2=2中,a 既不是整数,也不是分数,所以a 不是有理数,但在现实生活中确实存在像a 这样的数,由此看来,数又不够用了.
活动内容:【议一议】→【释一释】→【忆一忆】→【找一找】
将两个边长为1的小正方形,剪一剪、拼一拼,设法得到一个大的正方形.设这个大的正方形的边长为a,a 满足什么条件?
【议一议】: 已知2
2a =,请问:①a 可能是整数吗?②a 可能是分数吗?
【释一释】:释1.满足22a =的a 为什么不是整数?
释2.满足22a =的a 为什么不是分数?
【忆一忆】:让学生回顾“有理数”概念,既然a 不是整数也不是分数,那么a 一定不是有理数,这表明:有理数不够用了,为“新数”(无理数)的学习奠定了基础
(四)、整理反思
1.通过本课学习,感受有理数又不够用了, 请问你有什么收获与体会?
2.客观世界中,的确存在不是有理数的数,你能列举几个吗?
3.除了本课所认识的非有理数的数以外,你还能找到吗?
2.1认识无理数
(第二课时) 一、教学目标叙写
1、学生通过预习教材22-23页,初步感知无理数的估算过程.
2、学生通过合作探究“活动1”部分,让学生有充分的时间进行思考和交流,逐渐地缩小范围,借助计算器探索出a =1.41421356…,b =2.2360679…,是无限不循环小数的过程,体会无限逼近的思想,通过学生的活动2并探究得出无理数的概念.
3、学生通过交流知识点、易错点和思想方法,培养学生归纳能力和有条理的表达能力.
4、学生通过完成“五、当堂评价”,能正确地对给出的数进行分类,加深对有理数和无理数的理解.
二、教学重难点
1.重点:了解无理数与有理数的区别并能正确判断.
2.难点:无理数概念的建立及估算,会判断一个数是无理数还是有理数.
三、教学过程
(一)、复习引入
1. 有理数是如何分类的?
整数(如1-,0,2,3,…)
有理数
分数(如31,52-
,119,0.5,… )
2. 除上面的数以外,我们还学习过哪些不同的数? 如圆周率π,0.020020002…上节课又了
解到一些数,如22=a ,
25=b 中的a ,b 不是整数,能不能转化成分数呢?那么它们究竟是什么数呢?本节课我们就来揭示它们的真面目.
(二)、自主探究
1.探索无理数的小数表示
请看图,判断下面3个正方形的边长之间有怎样的大小关系?边长a 的取值范围大致是多少?如何估算的?是否存在一个小数的平方等于2?说说你的理由.
(归纳总结:a是介于1和2之间的一个数,既不是整数,也不是分数,则a一定不是有理数.如果写成小数形式,它们是无限不循环小数).
[生]因为3个正方形的面积分别为1,2,4,而面积又等于边长的平方,所以面积大的正方形边长就大.
[师]大家能不能判断一下面积为2的正方形的边长a的大致范围呢?
[生]因为a2大于1且a2小于4,所以a大致为1点几.
[师]很好.a肯定比1大而比2小,可以表示为1<a<2.那么a究竟是1点几呢?请大家用计算器进行探索,首先确定十分位,十分位究竟是几呢?如 1.12=1.21,1.22=1.44,1.32=1.69,1.42=1.96,1.52=2.25,而a2=2,故a应比1.4大且比1.5小,可以写成1.4<a<1.5,所以a是1点4几,即十分位上是4,请大家用同样的方法确定百分位、千分位上的数字.
[生]因为1.412=1.9881,1.422=2.0164,所以a应比1.41大且比1.42小,所以百分位上数字为1.
[生]因为 1.4112=1.990921,1.4122=1.993744,1.4132=1.996569,1.4142=1.999396,1.4152=2.002225,所以a应比1.414大而比1.415小,即千分位上的数字为4.
[生]因为1.41422=1.99996164,1.41432=2.00024449,所以a应比1.4142大且比1.4143小,即万分位上的数字为2.
[师]大家非常聪明,请一位同学把自己的探索过程整理一下,用表格的形式反映出来.
[生]我的探索过程如下.
[师]还可以继续下去吗?
[生]可以.
[师]请大家继续探索,并判断a是有限小数吗?
[生]a=1.41421356…,还可以再继续进行,且a是一个无限不循环小数.
[师]请大家用上面的方法估计面积为5的正方形的边长b的值.边长b会不会算到某一位时,它的平方恰好等于5?请大家分组合作后回答.(约4分钟)
[生]b=2.236067978…,还可以再继续进行,b也是一个无限不循环小数.
[生]边长b不会算到某一位时,它的平方恰好等于5,但我不知道为什么.
[师]好.这位同学很坦诚,不会就要大胆地提出来,而不要冒充会,这样才能把知识学扎实,学透,大家应该向这位同学学习.这个问题我来回答.如果b算到某一位时,它的平方恰好等于5,即b是一个有限小数,那么它的平方一定是一个有限小数,而不可能是5,所以b不可能是有限小数.
2.探索有理数的小数表示,明确无理数的概念
思考:分数化成小数,最终此小数的形式有哪几种情况?——分数只能化成有限小数或无限循环小数,即任何有限小数或无限循环小数都是有理数.