二次函数与反比例函数典型习题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数与反比例函数典型习题

1.二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,则反比例函数x

a

-y =与一次函

数y=bx-c 在同一坐标系内的图象大致是( )

2.点P 1(-1,y 1),P 2(3,y 2),P 3(5,y 3)均在二次函数y=-x 2+2x+c 的图象上,则y 1,y 2,y 3的大小关系是( )

A.y 3>y 2>y 1, B 。y 3>y 1>y 2 C 。y 1>y 2>y 3 D 。y 1=y 2>y 3 3.已知点(m-1,y 1),(m-3,y 2)是反比例函数x

m

y =

(m <0)图象上的两点,则y 1y 2(填“>”、“=”、“<”)

4.如图,二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于A 、B 两点,与y 轴交

于点C ,且OA=OC ,则下列结论:①abc <0,②0a 4ac

4-b 2>,③ac-b+1=0,④OA ·OB=a

c

-.其中正确的结论是(只填序号)

5.如图,双曲线x

k

y =

(x >0)经过矩,形OABC 的边AB 的中点F ,交BC 于点E ,且四边形OEBF 的面积为2,则k=。

6.将x=32代入反比例函数y=-x

1

中,所得函数值记为y 1,再将x=y 1+1代入该函

数中,所得函数值记为y 2,再将x=y 2+1代入该函数中,所得函数值记为y 3,...。如此继续下去,则y 2014=。

7.在均速运动中,路程S (km )一定时,速度v (km/h )关于时间t (h )的函数关系的大致图象是( )。

8.已知开口向下的抛物线y=(m2-2)x2+2mx+1的对称轴经过点(-1,3),则m 的值为()

A.2 B。-1 C。2或-1 D。1或-2

9.如图是二次函数y=ax2+bx+c图象的一部分,其对称轴是x=-1,且过点(-3,0),

现有下列说法:①abc<0,②2a-b=0,③4a+2b+c<0,④若(-5,y

1),(

2

5

y 2)是抛物线上两点,则y

1

>y

2

,其中正确的是()

A.①② B。②③ C。①②④ D。②③④

10.若抛物线y=x2-2(k+1)x+16的顶点在x轴上,则k=。

11.若抛物线y=2x2-4x+4与直线y=6x+m只有一个公共点,则m=。

12.如图,已知抛物线C

1、C

2

关于x轴对称,抛物线C

1

、C

3

关于y轴对称,如果

C 2的表达式是y=1

2-

x

4

3

-2

(,那么C3的表达式是。

13.如图,抛物线y=ax2+bx+c(a>0)的对称轴是x=1,且经过P(3,0),则a-b+c 的值是()

A.0 B。-1 C。1 D。2

14.已知y=k

y (k<0)的图象上有两点A(x

1

,y

1

),B(x

2

,y

2

),且x

1

<x

2

,则

y 1-y

2

的值是()

A.正数

B.负数

C.非正数

D.不能确定

15.已知(x

1,y

1

)(x

2

,Y

2

),(x

3

,y

3

)是反比例函数y=−4

x

的图象上三点,

且x

1<0<x

2

<x

3

,则y

1

,、y

2

、y

3

的大小关系为()

A.y

1<0<y

2

<y

3

B.y

1

>0>y

2

>y

3

C.y

1

<0<y

3

<y

2

D.y

1

>0>y

3

>y

2

16.已知两点A(-5,y

1)、B(3,y

2

)均在抛物线y=ax2+bx+c(a≠0)上,点C

(x

0,y

)是抛物线的顶点,若y

1

>y

2

≥y

,x

的取值范围是()

A.x

0>-5 B.x

>-1 C.-5<x

<-1 D.-2<x

<3

17.二次函数y=ax2+bx+c的图象如图所示,给出下列结论:①2a+b>0 ,②b>a >c ③若-1<m<n<1则m+n<−a

b

;④3a+c<2b其中正确的结论是

(写出你认为所有正确的结论的序号)

18.已知反比例函数y

1=k

x

的图象与y

2

=ax+b的图象交于点A(1,4)和点B(-2,m),

点C与点A关于x轴对称;

相关文档
最新文档