各种差动保护比较

合集下载

差动保护和比例差动保护原理(含图)

差动保护和比例差动保护原理(含图)

1.比率差动是差动电流和制动电流的制约,要考虑到励磁涌流的影响;2.差流速断是当差流过定值后不考虑制动电流直接出口跳闸,在整定时就躲过励磁涌流。

3.变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。

随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。

为防止差动保护误动作,引入比率差动保护。

其能可靠地躲过外部故障时的不平衡差动电流。

1.差动速断保护反映变压器内部或引出线严重短路故障,任一相电流大于整定值,保护跳闸并发信号,其动作方程为:Id>I1式中,Id为短路电流,I1差动保护定值。

Ih为高压侧电流,Il为低压侧电流TAP=(VWDG2×CT2×C)/(VWDG1×CT1)式中:VWDG1为高压侧线电压;VWDG2为低压侧线电压;CT1为高压侧CT变比;CT2为低压侧CT变比。

当相位调整选择“退”时,为外部接线补偿,C=3。

差动电流的计算方法为:Id=|Ih+ Il*TAP| ,其中Idh、Idl都为矢量。

制动电流的计算方法为:Ir= Imax |Ih、Il*TAP|。

(表示选择其中最大相)当相位调整选择“投”时,为内部软件补偿,。

C=1单加高压侧形成的差动电流的计算方法为:Idh=Ih线/3;单加低压侧形成的差动电流的计算方法为:Idl=Il*TAP;高压侧和低压侧同时施加,各相差动电流的计算方法为:Id=|Idh +Idl| ,其中Idh、Idl都为矢量。

高压侧和低压侧同时施加,各相制动电流的计算方法为:Ir=Imax |Idh、Idl|。

差动速断保护原理逻辑图如下:图6-1 差动速断保护原理逻辑图2.比率差动保护变压器在正常负荷状态下,差动保护的最小动作电流大于额定电流下流入差动回路的不平衡电流,保护不会误动。

随着外部短路电流的增大,电流互感器可能饱和,误差随之增大,不平衡电流也就不断增大。

变压器主保护纵差保护与差动速断保护的区别

变压器主保护纵差保护与差动速断保护的区别

变压器主保护纵差保护与差动速断保护的区别下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!1. 引言在变压器保护中,纵差保护和差动速断保护是两种常见的保护方式。

几种型号的分相电流差动保护的异同

几种型号的分相电流差动保护的异同

几种常见型号的分相电流差动保护的比较本文将对目前工区范围内常见的几种分相电流差动的保护原理,装置结构、日常运行操作等方面做一个简要的介绍和比较,从而找出其共性和不同之处,为日常运行工作提供参考。

1. 分相电流差动的基本原理1) 基本原理保护通过通讯通道把一端的带有时标的电流信息数据传送到另一端,各侧保护利用本地和对侧电流数据按相将同一时刻的电流值进行差动电流计算,比较两端的电流的大小与相位,以此判断出是正常运行、区内故障还是区外故障。

以母线指向线路为正方向,根据基尔霍夫电流定律,在不考虑电容电流和CT 采样误差的情况下:正常运行或区外故障时一侧电流由母线流向线路,为正值,另一侧电流由线路流向母线,为负值,两电流大小相同,方向相反,所以0M N I I +=,差流元件不动作。

区内故障时两侧实际短路电流都是由母线流向线路,和参考方向一致,都是正值,差动电流会很大,满足差动方程,差流元件动作。

2) 与相差高频在原理上的区别相差高频保护是比较被保护线路两侧电流相位的高频保护。

当两侧故障电流相位相同时保护被闭锁,两侧电流相位相反时保护动作跳闸。

两者区别在于相差高频不比较电流值只比较相位,分相电流差动同时比较两侧的电流幅值和相位。

3) 保护的通道分相电流差动保护需要将线路两端的电流信息进行比较,应此要有专门的通道来传输这些电流信息,目前保护通道主要有载波通道与光纤通道。

由于光纤通道具有可靠性好,传输信息量大的优点,因此分相电流差动保护均使用光纤通道。

光纤通道分为两种:一种为复用通道,另一种为专用通道。

专用光纤通道:专用纤芯方式相对比较简单,运行的可靠性也比较高 ,220kV 及以下线路光纤保护多采用专用纤芯方式复用光纤通道:两地之间通过通信网通信。

由于通信网是复用的,所以需要用通信设备进行信号的复接。

多用于500kV 长距离输电线路。

2. 分相电流差动保护的优势与高频距离、相差高频等纵联保护相比分相电流差动主要有以下优点: A. 分相电流的差动保护中只要引入电流量就能实现故障判别,而无需引入电压量。

差动保护分类

差动保护分类

差动保护分类
差动保护是电力系统中常用的一种保护方式,其作用是在电气设备出现故障时及时切断故障电路,保护设备和人员的安全。

根据不同的应用场景和保护对象,差动保护可分为以下几类:
1. 线路差动保护:主要用于保护输电线路和配电线路的故障,可分为单相差动保护和三相差动保护两种。

2. 变压器差动保护:主要用于保护变压器的故障,可分为主变差动保护和副变差动保护两种。

3. 发电机差动保护:主要用于保护发电机的故障,可分为定子差动保护和转子差动保护两种。

4. 母线差动保护:主要用于保护母线的故障,可分为单相母线差动保护和三相母线差动保护两种。

5. 母线联络线差动保护:主要用于保护母线联络线的故障,可分为单相母线联络线差动保护和三相母线联络线差动保护两种。

6. 柔性直流输电系统差动保护:主要用于保护柔性直流输电系统的故障,可分为单相差动保护和三相差动保护两种。

以上是常见的差动保护分类,不同的保护对象需要选择不同类型的差动保护来实现保护功能。

在实际应用中,还需要结合具体的电气设备和工程条件来进行选择和配置。

- 1 -。

线路的差动保护课件

线路的差动保护课件
根据保护对象的不同,差动保护可以分为变压器差动保护、 发电机差动保护、母线差动保护等。
பைடு நூலகம்
差动保护的应用场景
差动保护广泛应用于电力系统的变压器、发电机、母线等 关键设备的保护。
在变压器中,差动保护用于检测和隔离变压器绕组和引线 的短路故障。在发电机中,差动保护用于检测和隔离定子 绕组和转子绕组的短路故障。在母线中,差动保护用于检 测和隔离母线及其连接设备的短路故障。
模拟线路故障情况,测试线路差动保护装置 的故障检测和隔离能力。
现场测试
在电力系统中,对实际运行的线路差动保护 装置进行测试,验证其功能和性能。
耐压测试
对线路差动保护装置进行高电压测试,验证 其在高电压下的性能和稳定性。
线路差动保护的验证过程
功能验证
验证线路差动保护装置的基本功能,如故障 检测、隔离等是否正常。
某500kV超高压输电线路的差动保护测试
经过严格的功能和性能验证,该线路差动保护装置在超高压输电线路中表现出良好的性能和稳定性。
05
线路差动保护的发展趋 势与展望
线路差动保护技术的未来发展方向
数字化发展
利用数字信号处理技术提 高差动保护的可靠性和灵 敏度。
智能化发展
结合人工智能和大数据技 术,实现差动保护的智能 诊断和预警。
缺点
差动保护装置也存在一些缺点。例如,它容易受到电流互感器饱和和涌流的影响,导致误动作或拒动作。此外, 对于小电流接地系统,差动保护装置的应用也受到限制。
线路差动保护的关键技术
01
电流互感器选择
选择合适的电流互感器是差动保护的关键之一。电流互感器应具有高精
度、低饱和、低误差等特点,以保证差动保护的可靠性和准确性。

两种变压器差动保护原理比较

两种变压器差动保护原理比较

器K值可取2.0~5.0。
证门槛电压始终略高于不平衡输
必须说明的是,对于实际装置的整定值要根 出,保证在系统振荡或频率偏移
据实际情况具体来设定。
情况下,保护不误动;
Icd=Iq+K1(Ires-Ig1)+K2(Ires-Ig2) (Ires≥Ig2)
式中 Iq——差动保护启动定值,Iq(= 0.2~0.5)Ie。
Ie为变压器二次额定电流;
K1——比率制动斜率,工程上的建议取值范
围为K1(= 0.10~0.30);
仿真模型是基于 MATLAB 的 SIMULINK 仿真 工具下的。变压器参数:10.5 kV/110 kV;低压侧 是三角形接线;高压侧星形接线、中性点直接接 地; 变压器容量31.5 MVA。模拟变压器在额定负 载运行,在0.1s时变压器C相发生高阻接地短路。 图6(折算到一次侧,以下同)是0.1s变压器发生C 相高阻接地短路时,在没有加保护的情况下,变压 器高压侧 C 相电流波形。
1 引言
差动保护是变压器主保护之一,其主要形式 有:常规比率差动保护和故障分量比率差动保护, 以及模糊逻辑和小波变换在变压器差动保护中的 应用研究。现在国内许多厂家的变压器保护装置 所采用的大都是常规的比率差动保护和故障分量 比率差动保护。本文根据这两种不同变压器差动 保护原理进行分析,介绍了它们在实际保护装置 中的应用,分析对比了两种保护的可靠性和灵敏 度,并通过仿真模型来验证分析比较的正确性。
电流的另一种表达式
量电流的影响,具体的灵敏度会发生变化,但是不
√ √ 1
I r es = 2 ( I 2load+ΔI 21+ I 2load+ΔI 22 ) (6)
会影响上述灵敏度的定性比较结论。可以通过变 压器在额定负载下,发生内部故障时不同短路电

电流保护和比率差动保护

电流保护和比率差动保护

电流保护和比率差动保护1. 电流保护电流保护是一种保护措施,通过检测电路中的电流来保护电气设备。

电流保护系统在发生过流时向电路提供及时的保护,可以避免因电气故障或人为故障造成的损坏或危险事故。

电流保护一般分为两种类型:短路保护和过载保护。

1.1 短路保护短路保护是指当电路中出现了短路故障时,保护系统能够及时切断电源,防止电气设备受到损坏或引起危险事故。

一般来说,短路保护需要检测电路中的电流,该电流通常比额定电流大得多。

短路保护可以通过电流互感器或电流传感器来实现。

1.2 过载保护过载保护是指当电路中的电流超过设备额定电流的一定百分比时,保护系统能够及时切断电源,避免设备受到损坏或引起危险事故。

过载保护的灵敏度一般调整为额定电流的10%至20%左右。

过载保护可以通过电流互感器或电流传感器来实现。

2. 比率差动保护比率差动保护是一种保护电气设备的方法,其基本原理是通过比较电气设备两端的电流,判断电气设备是否处于正常运行状态。

比率差动保护可以检测电气设备的故障,如绕组短路和绝缘击穿等,可以有效保护电气设备免受故障的损害。

比率差动保护有两种类型:零序比率差动保护和正序比率差动保护。

2.1 零序比率差动保护零序比率差动保护广泛用于三相变压器、发电机和电动机等电气设备的保护中。

零序比率差动保护通常采用电流互感器来检测电气设备的电流,并将电流信号传递给保护系统。

利用比较电气设备两端的电流差来判断设备是否处于故障状态。

2.2 正序比率差动保护正序比率差动保护主要用于高压线路和发电机的保护中。

正序比率差动保护通常采用电压互感器和电流互感器来检测电气设备的电流和电压,并将信号传递给保护系统。

利用比较电气设备两端的电流和电压差来判断设备是否处于故障状态。

3. 结论综上所述,电流保护和比率差动保护是保护电气设备常用的两种方法。

电流保护主要通过检测电路中的电流来保护电气设备,其分为短路保护和过载保护。

比率差动保护主要通过比较电气设备两端的电流和电压差判断设备是否处于故障状态,其分为零序比率差动保护和正序比率差动保护。

发电机差动保护

发电机差动保护

一、发电机完全差动与不完全差动保护的区别:
由图1可以看出,发电机完全纵差保护与不完全纵差保护的区别是:对于完全纵差保护,在发电机中性点侧,输入到差动元件的电流为每相的全电流,而不完全差动保护,由中性点输入到差动元件的电流为每相定子绕组某一分支的电流。

1 、完全纵差保护:
发电机完全纵差保护,是发电机相间故障的主保护。

由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。

其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。

2 、不完全纵差保护:
不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。

但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。

另外,当差动元件两侧TA型号不同及变比不同时,受系统暂态过程的影响较大。

二、纵差保护与横差保护的区别:
以发电机为例:横差保护是反映发电机定子绕组的一相匝间短路和同一相两关联分支间的匝间短路的保护。

纵差保护是指反映发电机定子相间及引线的短路的保护。

区别:在定子引出线或中性点附近相间短路时,两中性点连线中的电流较小,横差保护不能动作,出现死区,而纵差保护就能取代。

发电机差动保护

发电机差动保护

发电机差动保护发电机差动保护的分类1.比率制动式差动保护是发电机内部相间短路故障的主保护.2.不完全纵差保护是发电机(或发变组)内部故障的主保护,既能反映发电机(或发变组)内部各种相间短路,也能反映匝间短路和分支绕组的开焊故障。

3.标积式差动保护可应用于发电机、变压器等作为内部故障的主保护.发电机差动保护的原理差动保护是利用基尔霍夫电流定理工作的,当发电机正常工作或区外故障时,将其看作理想发电机,则流入变压器的电流和流出电流(折算后的电流)相等,差动继电器不动作。

当发电机内部故障时,两侧(或三侧)向故障点提供短路电流,差动保护感受到的二次电流和的正比于故障点电流,差动继电器动作。

环流电流差动保护依据进入和离开保护区的电流相等的原理工作,这些电流的任何差别就代表着保护区中出现故障。

如果电流互感器s的连接如图1所示,可以看出流过保护区的电流会引起二次绕组有环流电流,如果电流互感器的变比相同并具有相同的磁化特性,它们就将产生相同的二次电流,因此零电流将流过继电器。

假如在保护区内出现故障,来自电流互感器的输出之间就存在差值,这个电流差值流过继电器,使继电器动作。

作为保护装置,差动继电器由位于系统中两个不同位置的电流互感器提供反馈信息。

差动继电器对电流进行比较,如果存在不同则表示受保护区域内有故障存在。

这些装置常被用于保护发电机或变压器的线圈。

使用差动保护的原因定子绕组或连接的绝缘的缺陷可以导致绕组和定子铁芯的严重损坏,损坏的程度取决于事故电流的大小和事故的持续时间。

采用保护来限制损坏的程度以控制修理的费用。

对一次发电设备,从电力系统中快速解列以维持系统的稳定性也是必要的。

对额定出力在1MVA以上的发电机,最普通的方法是采用发电机差动保护,一旦出现严重过流事故,这种单元保护的方式可以及时快速判断检测的绕组故障。

由电流互感器的位置所确定的保护的范围应与其它设备,如母线或升压变压器的保护范围相重迭。

不使用差动保护的情况(1)差动保护二次回路及电流互感器回路有变动或进行校验时。

各种差动保护比较..

各种差动保护比较..

采样值差动于常规相量差动的比较与常规相量差动相比较,采样值差动的一个突出特点是它不是计算某一数据窗的差流值,而是通过多点重复判别来判定动作与否。

利用这个特点,通过合理选择重复判别次数R,S,可有效抑制区外故障时TA暂态响应不一致对差动保护的影响。

利用采样值差动能有效区分区内区外故障,同时也能有效鉴别励磁涌流,比传统相量差动更能保证故障快速动作具体分析见《采样值差动及其应用》胡玉峰、陈树德、尹相根,电力系统自动化,2000,24,No10,第42页。

基于故障分量的菜采样值差动保护与常规相量差动和采样值差动的比较常规的相量电流差动保护还是采样值电流差动保护,都无法解决差动保护在内部高阻接地故障时的敏度和负荷电流对差动保护的影响等问题.而基于故障分量的保护存原理上与正常运行时的负荷几关,与接地故障时的过渡电阻大小无直接关系,具有相当优越性故障分量的差动保护与常规相量差动保护相比,其突出特点是可大幅度提高保护灵敏度,并可较好地解决高阻接地或轻微短路且有负荷电流流出时差动保护所存在的缺陷,采样值电流差动保护可以提高电流差动保护的动作速度,但是并没有改善保护的灵敏度故障分量差动保护动作特性详见||王维倚(Wang Weijian).电气主设备继电保护原理与应用(The Theory and Application of Electric Main Equipments Protection).北京I中国电力出版社(Beiiing:China Electdeal Powar Press),1996/尹项根,陈德树,张哲,等(Yin Xianggent Chen Deshu—Zhang Zhe,et a1).故障分量差动保护(DifferentialProtection Ba sed On Fault—Component).电力系统自动化(Automation of Electric Power Systems).1999.23(11)由图中可以看出,由于制动区与动作区之间存在一个缓冲区,因而可使故障分量差动保护具有极为优良的动作选择性。

差动保护的概念及原理(线路、变压器、电动机差动)

差动保护的概念及原理(线路、变压器、电动机差动)

差动保护的概念及原理Q:差动保护的概念。

A:差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。

保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

按保护的设备分为线路纵差保护、变压器差动保护、电动机差动保护。

Q:差动保护的原理。

A:1、线路纵差保护:通过比较线路两端电流的大小和相位决定是否动作。

(1)系统正常运行或区外短路时,线路上流经两个电流互感器的电流如图1(a),I1m=I1n,因此,流入差动保护的电流Ikd=I2m-I2n≈0,保护不会动作。

(2)线路上发生短路,线路上流经两电流互感器的电流如图1(b),此时短路点电流为Ik=I1m+I1n,流入电流元件的电流Ikd=I2m+I2n= (I1m+I1n) /n BC = Ik/n BC,(n BC为互感器变比)数值很大,使保护动作切除故障。

2、变压器差动保护:动作原理与线路纵差保护相同,通过比较变压器两端电流的大小和相位决定是否动作。

(1)变压器正常运行或外部故障,根据图2(a)所示电流分布,此时流入差动保护KD的电流是变压器两侧电流的二次值相量之差,即Ikd=│I1'-I2'│=│I1'/n1BC -I2'/n2BC│, (n1BC、n2BC为互感器变比)实际流入差动保护的电流为不平衡电流,不会动作。

(2)变压器内部故障,根据图2(b)所示电流分布,此时流入差动保护KD的电流是变压器两侧电流的二次值相量之和,使保护动作。

若变压器两侧有电源,则Ikd=│I1'+I2'│=│I1'/n1BC+I2'/n2BC│;若变压器只有一侧电源,则只有该侧的电流互感器二次电流流入差动保护。

使用场合:电压在 10kV 以上、容量在10MVA 及以上的变压器,采用纵差保护。

3、电动机差动保护:用于容量为2MW及以上、或容量小于2MW但电流速断保护不能满足灵敏度要求的电动机,作为电动机定子绕组及电缆引线相间短路故障的主保护。

两种变压器差动保护原理比较与校验方法

两种变压器差动保护原理比较与校验方法

0 引 言
12 相 位 补 偿 .
差动 保护 因其 具有 的选择 性好 、灵 敏度 高等 一 系列 优 点成 为
变 压器 电动机 及母 线等 元件 的主 保护 ,这里 差动 保 护 的基本 原理 是相 同的 。 但变 压器 差动 保护还 要考 虑接 线组 别 、 比及励磁 涌流 变 等 因素 的影 响 , 以 同其 他差 动 保护相 比实现起 来更 复杂 些 。 所 各个 厂家差动 保 护实现 原理 和装 置结 构有 很大 差异 ,现 场校 验 时必须 认真 区别对 待 ,因此需 要掌 握各 个厂 家实现 保护 的原理 和计 算 方
() 2 然后计 算各 侧平 衡系 数 :
1 高压侧 平衡 系数 : 1 ) K 。 2 中、 ) 低压 侧平 衡系 数 :
两种 保护 差 动 曲 线的 测试 方 法相 同 ,只 是 接线 方 法 不 同 , 本
1Xn A L K ̄ : U L T
Ul H
() 。
t : = l = l l / - 、 YO l l | l = e/ o
法 的 异 同 。 本 文 比 较 了 具 有 代 表 性 的 南 瑞 R s9 8和 四 方 c 一7
C C 3 6 种型 号变 压器 差动保 护 的不 同点 , S -2 两 并从 不 同点入 手 , 以
Y / — 1 接线 三绕组 变 压器 为例 ,分析 了主 变差 动保 护 在校 验 0A l 型
时应 该注意 的 问题 。
1 南 瑞 和 四 方 实 现 差 动 保 护 原 理 的 异 同
11 幅值 归算 .
A : fl / 3 ; I x - ; 1 f 3 。 l= 3 v: I=q 7 /3 l=( l

发变组保护纵差、横差、匝间保护原理及异同

发变组保护纵差、横差、匝间保护原理及异同

发变组保护纵差、横差、匝间保护原理及异同2020年10月14日二纵差保护三横差保护四匝间保护一、差动保护的概念Ø差动保护的理论基础-基尔霍夫电流定律(KCL)对任一集总参数电路中的任一节点,在任一瞬间,流经该节点的所有电流的代数和恒为零,即就参考方向而言,流出节点的电流在式中取正号,流入节点的电流在式中取负号。

基尔霍夫电流定律是电荷守恒定律在电路中的体现。

0=∑==Nk k k iØ差动保护的特点选择性:同时测量并比较被保护设备各端电流的幅值及相位关系,能正确反应正常运行、区外故障与区内故障的不同;而后备保护仅测量某一端的电流与(或)电压,为不越级跳闸,其动作值与动作时限必须与相邻元件配合,或加装方向元件。

速动性:因具有天然的选择性,所以不需与相邻元件的保护在定值和时间上配合,动作快速。

灵敏性:区外故障时,差动电流仅为不平衡电流,区内故障时差动电流远大于制动电流。

可靠性:采用比率制动特性,并采取必要的闭锁条件(如二次谐波、五次谐波闭锁)。

、纵差保护Ø纵差保护作用:反映发电机定子绕组及其引出线相间短路故障的主保护。

Ø发电机纵差保护的接线方式:完全纵差动保护;不完全纵差动保护。

Ø原理发电机完全纵差保护和不完全纵差保护均是比较发电机两侧同相电流的大小和相位而构成。

Ø区别:完全纵差保护是比较每相定子首末两端的全相电流;不完全纵差动保护是比较机端每相定子全相电流和中性点侧每相定子的部分相电流而构成。

一、系统概述Ø保护范围:发电机完全纵差保护是发电机相间故障的主保护。

由于差动元件两侧TA的型号、变比完全相同,受其暂态特性的影响较小。

其动作灵敏度也较高,但不能反应定子绕组的匝间短路及线棒开焊。

不完全纵差保护除保护定子绕组的相间短路之外,尚能反应定子线棒开焊及某些匝间短路。

但是,由于在中性点侧只引入其一分支的电流,故在整定计算时,尚应考虑各分支电流不相等产生的差流。

差动保护知识点总结

差动保护知识点总结

差动保护知识点总结差动保护是电力系统中一种常见的电气保护装置,主要用于检测和保护电力系统中的发电机、变压器、母线等设备。

差动保护的作用是在设备内部发生故障时,能够迅速检测到故障并及时切断故障电路,保护设备和系统的安全运行。

在电力系统中,差动保护是非常重要的一部分,掌握差动保护的知识对于电力系统的稳定运行和设备的安全保护至关重要。

一、差动保护原理差动保护的基本原理是通过比较设备两端的电流,对两端电流的差值进行检测,当这个差值超出一定范围时,即视为设备内部发生故障,需要切断电路。

在差动保护中,通常使用比率系数和阈值等参数来确定差值的范围,并设置报警和动作信号。

差动保护主要有线性差动保护和非线性差动保护两种形式。

线性差动保护是指在一定电流范围内,设备两端电流之差与设备载流量成正比。

而非线性差动保护则指设备两端电流之差与设备在额定载流以下时成正比,在超过额定载流时成指数关系。

这两种差动保护的选择取决于具体的设备类型和应用场合。

二、差动保护的应用差动保护主要应用于发电机、变压器、母线等设备的保护。

发电机的差动保护是断路器和继电保护装置之间的一个重要环节,用于检测发电机线圈内部的短路、接地故障等情况。

变压器的差动保护则是用于检测变压器绕组内部的故障,如短路、接地等。

母线的差动保护主要是用于保护母线两端设备的并联运行,确保母线两侧设备的平衡运行。

此外,差动保护还可以应用于电力系统中的其他设备保护,如电网端口、电容器等。

差动保护在发电厂、变电站、工矿企业等电力系统中都有广泛的应用。

三、差动保护的特点1. 灵敏性高:差动保护能够灵敏地检测设备内部的故障,迅速切断电路,保护设备和系统的安全运行。

2. 可靠性好:差动保护的设计和运行经验丰富,经过长期的实践检验,具有较高的可靠性。

3. 抗干扰能力强:差动保护能够在电力系统复杂的工况下,依然能够正常工作,具有很强的抗干扰能力。

4. 适应性强:差动保护在不同类型的设备上都能够灵活应用,适应性较强。

差动保护分类

差动保护分类

差动保护分类
差动保护是电力系统中重要的保护方式之一,根据不同的保护对象和保护方式,可以将差动保护分为多种类型。

一、母线差动保护
母线差动保护主要针对电站、变电站的母线进行保护,其原理是通过比较母线两端电流的差值,当差值超过设定值时触发保护动作。

母线差动保护常用于高压电力系统的电力变电所、换流站等场所。

二、发电机差动保护
发电机差动保护是一种针对发电机的保护方式,它通过比较发电机定子电流和电枢电流的差值,当差值超过设定值时触发保护动作,保护发电机免受故障的损害。

三、变压器差动保护
变压器差动保护是一种针对变压器的保护方式,它通过比较变压器两端电流的差值,当差值超过设定值时触发保护动作。

变压器差动保护可以有效地保护变压器免受内部短路或绕组间接触的损害。

四、线路差动保护
线路差动保护是一种针对电力线路的保护方式,它通过比较线路两端电流的差值,当差值超过设定值时触发保护动作。

线路差动保护可以有效地保护电力线路免受短路、接地故障等损害。

综上所述,差动保护可分为母线差动保护、发电机差动保护、变压器差动保护和线路差动保护等多种类型。

这些保护方式在电力系统中起着重要的作用,可有效地保护电力设备和电力系统的安全运行。

电力系统差动保护

电力系统差动保护

电力系统差动保护差动保护是电力系统中一种重要的保护方式,它能够有效地检测电力系统中的故障,保护系统的稳定运行和设备的安全运行。

本文将着重介绍差动保护的原理、分类、应用以及未来发展趋势。

一、差动保护原理差动保护是基于电流差动原理实现的。

电力系统中,正常工作情况下,电流应该在各个元件间平衡。

而当发生故障时,电流的分布就会失去平衡,这时差动保护就能够通过测量元件间的电流差异来判断是否存在故障,并快速地切除故障点,保护系统的安全运行。

二、差动保护分类根据差动保护的应用对象不同,可以将其分为传统差动保护和继电保护两种类型。

1. 传统差动保护:传统差动保护主要应用于变压器保护。

通过在变压器的低压侧和高压侧分别接入差动元件(如电流互感器),测量和比较两端电流的差值,以实现对变压器的保护。

传统差动保护具有结构简单、响应速度快等优点,广泛应用于电力系统中。

2. 继电保护:继电保护主要应用于电力系统的母线、线路和发电机等元件的保护。

继电保护通过在元件的两端接入差动元件,测量和比较两端电流的差值,以实现对元件的保护。

继电保护具有适用范围广、可靠性高等优点,在电力系统中得到广泛应用。

三、差动保护应用差动保护在电力系统中的应用非常广泛。

主要包括以下几个方面:1. 变压器保护:差动保护是变压器保护的主要手段之一。

它能够有效地检测变压器内部故障,并迅速切除故障点,保护变压器的安全运行。

2. 母线保护:差动保护在电力系统母线的保护中起着重要的作用。

它能够实时监测母线的电流分布情况,一旦发现异常情况,及时切除故障点,保护母线的安全运行。

3. 线路保护:差动保护在电力系统线路的保护中也具有重要的地位。

它能够监测线路两端电流的差异,一旦发现故障,能够快速切除故障点,保护线路的安全运行。

4. 发电机保护:差动保护在发电机的保护中起着关键的作用。

它能够实时监测发电机的电流分布情况,快速切除故障点,保护发电机的安全运行。

四、差动保护的未来发展趋势随着电力系统的发展和变化,差动保护也在不断演化和改进。

线路的差动保护

线路的差动保护
差动保护是利用线路两端电流的相位差或电流大小差来实现的。当线路发生故障 时,故障点附近的电流相位或大小会发生明显变化,差动保护装置通过比较线路 两端电流的大小和相位,判断是否发生故障,并采取相应的动作来切除故障。
变电站
变电站是电力系统中对电压进行变换、对电能进行汇集和分 配的重要节点。在变电站中,母线是连接各个设备的枢纽, 一旦母线发生故障,将导致大面积的停电事故。因此,对母 线进行差动保护是十分必要的。
通过智能传感器和数据采集技 术,实时监测线路运行状态, 提高保护的准确性和可靠性。
实现自适应和自学习的差动保 护算法,根据线路运行状态和 历史数据,自动调整保护定值 和策略。
网络化发展
利用通信网络技术,实现差动保 护装置之间的信息共享和协同工
作。
通过高速通信网络,实时传输线 路运行状态和故障信息,提高保
线路的差动保护
目录
• 差动保护概述 • 线路差动保护的种类 • 线路差动保护的优缺点 • 线路差动保护的应用场景 • 线路差动保护的发展趋势
01
差动保护概述
差动保护的定义
01
差动保护是一种通过比较线路两 端电流的大小和相位来检测和切 除故障的保护装置。
02
它利用线路两端的电流差值作为 动作判据,当差值超过预定阈值 时,保护装置将启动切除故障。
和策略。
THANKS
感谢观看
母线差动保护的原理与线路差动保护类似,通过比较母线各 相电流的大小和相位来判断是否发生故障。当母线发生故障 时,差动保护装置会迅速切除故障,保障电力系统的稳定运 行。
配电系统
配电系统是直接面向电力用户的系统,负责将电能分配给各个用户。由于配电系统中的线路和设备数 量众多,且运行环境复杂,容易发生各种故障。为了保障用户的正常用电,需要对配电系统中的线路 和设备进行差动保护。

主变的几种差动保护区别

主变的几种差动保护区别

1.比率差动
二次谐波制动主要区别是故障电流励磁涌流, 主变空载投运时会产生比较大励磁涌流,并伴随有二次谐波分量, 使主变不误动,采用谐波制动原理; 判断二次谐波分量,是否达到设定值来确定是主变故障主变空载投运, 决定比率差动保护是否动作;二次谐波制动比一般取0.12~0.18; 有些大型变压器, 增加保护可靠性,也有采用五次谐波制动原理;
2.工频变化量比率差动
工频变化量构成灵敏度很高的工频变化量比率差动元件,来检测常规稳态比率差动无法或很难反映的小电流故障.只反映故障分量,不受变压器正常运行时负荷电流的影响、过渡电阻影响很小、采用高比率制动系数抗TA电流互感器饱和、采用浮动门槛技术保证在系统振荡和频率偏移等其他情况下,保护不误动;保护的灵敏度高,可靠性好;
3.差动速断
当变压器内部或变压器引出线套管在差动保护范围内发生严重故障时,由于TA 饱和二次电流的波形将发生严重畸变,其中含有大量的谐波分量,使涌流判别元件误判成励磁涌流引起的差流,使差动保护拒动或延缓动作,严重损坏变压器;为克服差动保护上述缺点,设置差动速断元件.差动速断元件反映的也是差流,与差动保护不同的是它只反映差流的有效值,不管差流的波形是否畸变及含有谐波分量的大小,只要差流的有效值超过整定值,就将迅速动作,跳开变压器各侧开关,把变压器从电网中切除;。

2种变压器差动保护的比较与校验

2种变压器差动保护的比较与校验
关键 词: 变压器 ; 差动保护 ; 校验 中图分类号 :M 4 35 T 0 . 文献标志码 : B 文章编号 :64—15 (0 1 1 05 0 17 9 1 2 1 )0— 0 1— 3
0 引言
差 动保护 因其选择 l 、 生好 灵敏度 高等优 点成 为变 压 器 电动机 及母 线 等元 件 的 主保 护 。差 动 保 护 的基
压器差动保护。现在对 2 套保护幅值归算方法进行 详细解释。 111 C C一 2 型变压器差动保护幅值归算方法 .. S 36 C C一 2 型变压器差动保护幅值归算采用了第 S 36
1 方法 , 种 以高压侧 为 基准 , 算 变压器 中 、 侧 平 计 低压 衡系数 , 中、 压 侧各 相 电流 与相 应 的平 衡 系数 相 将 低 乘 , 幅值 补偿后 的各 相 电流 。 即得

要 : 器微机差动保护与常规差动保护的原理和装置结构有很大差异 , 变压 即使同是微机型差动保 护装 置 , 同生产厂 不
家的装置也各不相同 , 现场检验 时必须认真区别对待 。比较 了南京南瑞继电保护有 限责任公司 R S 9 8和北京 四方继保 C 一7 自动化股份有限公司 C C一 2 S 3 6差动保护实现原理的差别 , 在此基础上 , Y / O D一1 以 OY/ 1型三绕组变压器 为例, 介绍 了差 动保护 的校验步骤和校验方法 。
择思路是 : 如果各侧 数值之间差别不大 ( 比值倍数 小于4 )则选取最大侧 , 为基准 ; 倍 , 如果差别太大 ( 比值倍数大于 4 倍)则以 4 , 倍的最小 值为基准。
平衡 系数公式
K = ( p / , L)
f = I Ia

△: 侧
{: 。 1 , , ,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

采样值差动于常规相量差动的比较与常规相量差动相比较,采样值差动的一个突出特点是它不是计算某一数据窗的差流值,而是通过多点重复判别来判定动作与否。

利用这个特点,通过合理选择重复判别次数R,S,可有效抑制区外故障时TA暂态响应不一致对差动保护的影响。

利用采样值差动能有效区分区内区外故障,同时也能有效鉴别励磁涌流,比传统相量差动更能保证故障快速动作具体分析见《采样值差动及其应用》胡玉峰、陈树德、尹相根,电力系统自动化,2000,24,No10,第42页。

基于故障分量的菜采样值差动保护与常规相量差动和采样值差动的比较常规的相量电流差动保护还是采样值电流差动保护,都无法解决差动保护在内部高阻接地故障时的敏度和负荷电流对差动保护的影响等问题.而基于故障分量的保护存原理上与正常运行时的负荷几关,与接地故障时的过渡电阻大小无直接关系,具有相当优越性故障分量的差动保护与常规相量差动保护相比,其突出特点是可大幅度提高保护灵敏度,并可较好地解决高阻接地或轻微短路且有负荷电流流出时差动保护所存在的缺陷,采样值电流差动保护可以提高电流差动保护的动作速度,但是并没有改善保护的灵敏度故障分量差动保护动作特性详见||王维倚(Wang Weijian).电气主设备继电保护原理与应用(The Theory and Application of Electric Main Equipments Protection).北京I中国电力出版社(Beiiing:China Electdeal Powar Press),1996/尹项根,陈德树,张哲,等(Yin Xianggent Chen Deshu—Zhang Zhe,et a1).故障分量差动保护(DifferentialProtection Ba sed On Fault—Component).电力系统自动化(Automation of Electric Power Systems).1999.23(11)由图中可以看出,由于制动区与动作区之间存在一个缓冲区,因而可使故障分量差动保护具有极为优良的动作选择性。

将采样值差动与故障分量原理相结合,同样可起到提高灵敏度的作用。

对于采样值差动,由于存在过零点附近采样值差动判据不满足,最严重时可能出现过零点为两采样值的中点而导致连续两点不满足判据。

故差动电流需达到一定幅值才能保证可靠动作。

因而对于某些故障情况,如变压器轻微匝问故障同时有负荷电流流出时,采样值差动同样存在一个灵敏度问题,将故障分量与采样值差动结合,是解决这一问题的有效方法,同时对于采样值差动判据i ≥Ki ,可充分利用故障分量缓冲区来消除判据的模糊区,具体方法是合理选择系数K,使其对应的模糊区完全落在缓冲区内.这样既结台了两种原理的优点,又克服了采样值差动模糊区的影响。

============================================================================================================采样值电流差动保护原理的研究袁荣湘1陈德树1马天皓张哲1尹项根11.华中理工大学电力系,湖北武汉4300742.中兴通讯公司监控产品部,广东深圳518004常规的电流差动保护中差动量和制动量的求取一般是反应电流的有效值或平均值等,通过滤波等办法消除非周期分量和谐波分量的影响。

在计算机继电保护的有效值计算方法中,故障时引起的非周期分量和谐波分量尽管衰减很快,但可能在较长时间内影响计算的准确性,即采用时间窗为一个周期的算法,若开始几个采样值中含较高的非基波分量,则将影响与这些采样值相关的各个周期的计算结果。

如果要保证保护动作的可靠性,势必影响保护的动作速度。

若电流差动保护的动作判据按每一个采样值分别判断,则可以在原理上完全消除这种影响,有效地提高电流差动保护的动作速度与可靠性。

正是基于这些方面的考虑,参考文献[1]讨论了采样值电流差动保护的有关问题,本篇将在此基础上对采样值电流差动保护与常规电流差动保护的关系和它们的动作边界变化区作进一步的研究。

1 电流差动保护的传统方法电流差动保护适用任何数量支路的条件,其判据亦有很多种,但不论是哪一种判据,其基本部分(动作量)总是以Ii 为基础的,其中Ii为任一支路的电流(规定母线流向线路为电流正方向),n为线路数。

各种判据的区别在于附加的制动项构成的方法不同,但它们都是各线路电流的函数,可简单将其归并为两端电流,分别以Im ,In表示。

这样可归纳出传统电流差动保护常见的动作判据有以下几种形式:|Im +In|≥I;|Im+In|≥K1(ImIn);|Im +In|≥K2max(Im,In);|Im+In|≥K3|Im-In|;|Im+In|2≥-K4ImIncosI m ,In为两端电流向量;Im,In为两端电流向量的幅值;I为整定的动作门槛值;K 1~K4为整定系数;为两端电流向量的夹角。

对电流差动保护的分析方法可采用以两端电流Im,In的关系表示。

这类分析中有两种常见的方法:比率差动特性法是在线路两端电流相位相差180°的条件下作出的,主要适于分析在外部故障时保护的动作行为;相位特性法是在线路两端电流大小相等的条件下作出的,适于分析在线路两端电流大小相等时保护在内部和外部故障时的动作行为。

对电流差动保护的分析也可以用差动电流和制动电流的关系表示,通常称为制动特性。

传统电流差动保护性能的分析可参见文献[2],在此不赘述。

2 采样值电流差动保护与常规电流差动保护的关系采样值电流差动保护利用电流采样的瞬时值来实现基于相量的常规电流差动保护动作判据。

假设故障时采样的电流仅由基波分量构成,即已滤去谐波分量、非周期分量等非工频成分,则前面的各种判据一般可简化为如下两种形式或这两种形式的组合,即|A|>|B| (1)或|A|>C (C为常数) (2)先考虑(1)式,对应的采样值电流差动保护判据为|Asinθ|>|Bsin(θ-Δθ)|(3)式中A对应于Asinθ;B对应于Bsin(θ-Δθ);θ为变量;Δθ为两相量A 和B之间的角差;A,B分别为A,B的幅值。

由于两相量角差可用区间[0,π]表示,故不妨设Δθ∈[0,π]。

当Δθ=0或π时,若(1)式成立,则(3)式恒成立;当0<Δθ<π时,不妨先设A=B,则(3)式判据变为|sinθ|>|sin(θ-Δθ)|(4)当Δθ≤θ≤π时,(4)式成为sinθ>sin(θ-Δθ),亦即2sin(Δθ/2)cos(θ-Δθ/2)>0。

由于sin(Δθ/2)>0,则上式等价于cos(θ-Δθ/2)>0,即Δθ<θ<(Δθ π)/2。

当π≤θ≤π Δθ时,(4)式成为-sinθ>sin(θ-Δθ),亦即2cos(Δθ/2)sin(θ-Δθ/2)<0。

由于cos(Δθ/2)>0,则(4)式等价于sin(θ-Δθ/2)<0,即πΔθ/2<θ<π Δθ。

综上可知,θ在(π Δθ)/2<θ<π Δθ/2的范围内不满足(4)式,其范围大小为π/2,如图1(a)所示,动作函数与制动函数1比较为此时的最不利情形,即动作量与制动量的相位相差90°。

图1 采样值与常规电流差动保护关系示意图现讨论当A,B不相等时,由于A>B,故θ不满足(1)式的范围将小于π/2,图1(a)中的动作函数与制动函数2比较为此种条件下的最不利情形示意图,θ不满足(1)式的范围为,小于π/2。

对(2)式,对应的采样值电流差动保护判据为|Asinθ|>C(5) 式中A对应于Asinθ,θ为变量。

当C<>时,θ亦在小于π/2范围内,不满足(5)式,动作函数与制动函数C的比较如图1(b)所示。

因此,如果不考虑非基波分量的影响和抗干扰性能时,对于采样值电流差动保护,理论上只要在半个周期中有>90°的角度范围满足其判别方程,制动效果则与其所对应的常规电流差动保护判据的制动效果相当3 保护动作边界变化范围的确定采样值电流差动保护动作判据方程在>90°的角度范围内成立,对于每周期采样12个点的数字式继电保护装置来说,相当于在半个周期内有4点以上满足保护动作判据。

采样初始时刻的随机性,使得采样值差动保护的动作边界并不固定。

实际上,数字式保护都可能存在类似的问题,只是我们将其影响归结为求相量时的误差,而在分析保护性能时假设所求相量是绝对精确的,故没有保护动作区边界变化一说。

即当采用傅氏算法、曲线拟合法等与采样初始时刻无关的算法时,当然无变化的动作边界;当采用最大值算法、半周积分法、导数算法等受采样值初始时刻变化影响的算法,则存在一定的动作边界变化区域,而且,采样值电流差动保护受采样初始时刻随机性的影响最大。

采样值电流差动保护的动作区边界变化范围不会因为加长数据窗、使出口动作速度变慢而减少,仅与采样频率有关。

仍以每周期采样12个点的计算机继电保护装置为例,对于(2)式判据,如图2(a)所示,图中动作函数1与制动函数的比较表示最有利的情形,即动作函数峰值附近的两连续采样值相等,此时动作函数峰值是制动量C的2倍,图中动作函数2与制动函数的比较表示最不利的情形,即有一采样点正好是动作函数峰值,此时动作函数峰值是制动量C的倍,对应于(2)式判据的动作区边界变化范围是:A∈(C,2C)图2 保护动作边界变化范围计算示意图对于(1)式判据,如图2(b)所示,图中动作函数1与制动函数的比较为最有利的情形,即动作函数峰值附近的两连续采样值相等,此时动作函数峰值与制动函数峰值相等,图中动作函数2与制动函数的比较表示最不利的情形,即有一采样点正好是动作函数峰值,此时动作函数峰值是制动函数峰值的倍,则对应于(1)式判据的动作区边界变化范围是:A/B∈(K,K),K为保护判据中的比例系数上述采样值差动保护的动作边界变化区域可在比率制动特性平面上清楚表示,如图3所示,其横坐标为制动量的幅值,纵坐标为差动量的幅值。

动作区和制动区之间的区域为不定部分。

图3(b)不定部分中角度为θ=arctan(-1)K/(1 K2)。

当保护装置每周期采样点数为N时,推而广之可以得到采样值电流差动保护动作边界的变化范围。

对于(2)式的动作区,边界变化范围是:图3 采样值电流差动保护动作边界变化范围示意图对于(1)式,其动作边界变化范围是:由上式可以知道,提高保护装置的采样率可以减少保护动作区边界的不定区域范围,其极限是N→∞时,这种不确定区域消失。

4 采样值电流差动保护的动作速度使用采样值电流差动保护的重要原因之一是试图提高电流差动保护的动作速度。

相关文档
最新文档