人教版初一数学下册含参数的一元一次不等式组的解集

合集下载

数学人教版七年级下册含参数的一元一次不等式组的解集教学设计 - 学案

数学人教版七年级下册含参数的一元一次不等式组的解集教学设计 - 学案

含参数的一元一次不等式组的解集预习学案1、⑴不等式组⎩⎨⎧-≥>12x x 的解集是 . ⑵不等式组⎩⎨⎧-<-<12x x 的解集是 .⑶不等式组⎩⎨⎧≥≤14x x 的解集是 . ⑷不等式组⎩⎨⎧-≤>45x x 的解集是 . 2、关于x 的不等式组12x m x m >->+⎧⎨⎩的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( )A. 4B. 5C. 6D. 74、不等式组⎩⎨⎧--≤-.32,281x >x x 的最小整数解是( )A .-1B .0C .2D .35、满足21≤<-x 的所有整数为___________ __.6、满足21≤≤-x 的所有整数为________________ __.7、请写出一个只含有三个整数1、2和3的解集为 。

例1、预习学案1、2变式1:若一元一次不等式组的两个基数相同时,不等式组的解集如何呢?(1)⎩⎨⎧≥>22x x (2)⎩⎨⎧<<22x x (3)⎩⎨⎧≥≤22x x (4)⎩⎨⎧≤>22x x 变式2:若a<2, 请确定下列不等式组的解集 (1)⎩⎨⎧≥>a x x 2 (2)⎩⎨⎧<<a x x 2 (3)⎩⎨⎧≥≤a x x 2 (4)⎩⎨⎧-<->a x x 2变式3:若去掉变式2中条件“2<a ”,则上述不等式组的解集又如何呢?(1)⎩⎨⎧≥>a x x 2 (3)⎩⎨⎧≥≤a x x 2 变式4:(1)若不等式组⎩⎨⎧≥>ax x 2的解集是2>x ,则a 的取值范围为(2)若不等式组⎩⎨⎧≥≤a x x 2的解集时2≤≤x a ,则a 的取值范围为(3)若不等式组⎩⎨⎧≥≤a x x 2无解,则a 的取值范围为 例2、处理预习学案5、6、7变式1:若不等式组⎩⎨⎧≤>ax x 0只含有三个整数1、2和3,则a 的取值范围为 ;变式2:若不等式组⎩⎨⎧<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式3:关于x 的不等式组010x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是( )A. -3≤a ≤-2B. -3≤a <-2C. -3<a ≤-2D. -3<a <-2例3、拓展应用(1)若不等式组12x x m <≤⎧⎨>⎩有解,则m 的取值范围是( ). A .m<2 B .m≥2 C .m<1 D .1≤m<2(2)不等式组⎩⎨⎧<->-10a x a x 的解集中的任一个x 值均不在2≤x ≤5范围内,则a 的范围为 。

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)

9.3一元一次不等式组课时2-2022-2023学年七年级数学下册同步精品随堂教学课件(人教版)
3 − 7 ≤ 8, ②
解不等式①,得 x≥3.
解不等式②,得 x≤5.
∴ 不等式组的解集为 3≤x≤5.
∴ x 可取的整数值是 3,4,5.
课堂小结
1.求一元一次不等式组的特殊解的方法:
先求出不等式组的解集,然后在不等式组的解集中找出符
合条件的特殊解(如非负整数解、最小整数解等),还可以借
助数轴直观地找特殊解.
第九章
不等式与不等式组
9.3 一元一次不等式组(课时2)
人教版七年级◑下册
主讲:XXX
温故知新
一元一次不等式组的解集有四种情况:
不等式组
(a>b>0)
各不等式组
的解集在数
轴上的表示
不等式组的
解集
巧记口诀
0 b a
0 b a
0 b a
0 b a
x>a
x<b
无解
b<x<a
同大取大 同小取小
大大小小 大小小大
都成立?
5 + 2 > 3( − 1),
1

2
−1≤7−
3
.
2
求不等式组解集中
的整数值
新知探究
知识点1:一元一次不等式组的应用
解:解不等式组
5 + 2 > 3( − 1), ①
1

2
−1≤7−
x>
3
, ②
2
5
2
解不等式①,得
.
解不等式②,得 x≤4.
5
所以不等式组的解集是− <x≤4,
中间找
无处找
解不等式组:
8 − 4 < 0, ①

数学人教版七年级下册含参数的一元一次不等式组的解法

数学人教版七年级下册含参数的一元一次不等式组的解法

含参数的一元一次不等式组的解法【教学目标】1、含参数的一元一次不等式组的概念;2、会解含参数的一元一次不等式组。

【教学重点】1、一元一次不等式组中字母参数的讨论;2、运用数轴分析含参数的不等式组的解集。

【教学难点】通过含参数不等式组的分析与讨论,让学生理解和掌握分类讨论和数形结合的数学思想。

【教学过程】一、学前准备师:同学们,上节课我们刚刚学习了不等式组的解法,谁来说一说这么解不等式组。

那么今天老师给同学们带来了这样一个不等式组,请观察和以前的不等式组有什么不同呢?(引入课题)请同学们拿出导学案,我们来看看同学们对这节课的课前准备工作做得怎么样呢?首先看到第一题,点名提问学生说出第一题的答案。

(出示ppt)第二题,某同学,说出你的答案,并口述你的做法。

(出示ppt)我们再来观察这个不等式,它除了有我们一般不等式里面的未知数x和常数外,还有什么?生:还有一个a师:这个a不是未知数,也不是数集里面的常数,我们把它叫做参数,在不等式里面当做常数看待。

同时,这样的不等式就叫做含参数的不等式。

第三题,某同学,说出你的答案。

(出示ppt )现在我们通过这道题目的解题过程,一起大声地总结出解不等式组的步骤。

生:(1)分别解出不等式组中的每个不等式;(2)利用数轴表示不等式中各个不等式解的公共部分;(3)写出不等式组的解集。

师:既然知道步骤了,我们解什么样的不等式组都应该没有问题了,对不对?学生:对二、新课讲解来看看这样一个不等式组:例 : 解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->---≥-1x 2133x )2(x x a 首先请大家观察,这个不等式组和第三题的不等式组有什么不同之处?学生:这个不等式组里面含有参数。

说得非常好,一针见血,今天我们要来学习的就是《含参数的一元一次不等式组的解法》(板书课题)那怎么解呢?我们有解题法宝是不是?就是解不等式组的解题步骤哦!根据步骤(1),男生解第一个不等式,女生解第二个不等式,时间一分钟。

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第9章一元一次不等式(组)含参专题——有、无解问题(专题课)教案

人教版初中数学七年级下册第九章一元一次不等式(组)含参专题——有、无解问题(专题课)教案核心素养:1.使学生加深对一元一次不等式组和它的解集的理解,会用数轴确定含参数的一元一次不等式组的参数范围;2.培养学生探究、独立思考的学习习惯,感受数形结合的作用,熟悉并掌握数形结合的思想方法,提高分析问题和解决的能力;3.提升学生之间合作与交流以及对问题的探讨能力,从中发现数学的乐趣.【教学重难点】重点:含参一元一次不等式组的分类解法难点:1.一元一次不等式中字母参数的讨论2.一元一次不等式中运用数轴分析参数的范围【教学过程】1.问题引导 合作交流出示问题:请同学们解下列两个不等式(1)x-2m<0,(2)x+m >3并思考m 的取值范围. 同学们不难得出不等式(1)的解为x <2m ;(2)的解为x >3-m.引导分析m 的取值范围. 师引导,生回答:任意实数.[问题1]如果将上述两个不等式联立成不等式组⎩⎨⎧>+<-302m x m x ,你能确定不等式组的解集吗? 师提示学生画数轴 ,问:能画几种情况[问题2]如果这个不等式组无解,你能确定m 的取值范围吗?(学生分组讨论)(借助数轴)师生一起分析:如果不等式组无解,则2m <3-m ,解得m <1。

确定一下“<”要不要添加“=”(这是参数取值问题中的难点)学生借助数轴讨论.师生总结:2m 和3-m 在两个不等式的解中都不包含,所以2m 可以等于3-m ,即m ≤1.2.变式拓展 强化理解变式1:若不等式组⎩⎨⎧⋅⋅⋅⋅⋅>+⋅⋅⋅≤-②①302m x m x 无解,这时m 的取值会有变化吗?解不等式①得x ≤2m 解不等式②得x >3-m(学生分组探究)引导:虽然第一个不等式“<”改成“≤”通过数轴可以看到由于和第二个不等式的解集不包含3-m ,所以2m ≤3-m ,m 的取值范围仍然是m ≤1.变式2:如果不等式组变化为⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x ,这时m 的取值又会有改变吗?(学生分组探究)由于两个不等式都含有等号,这时2m 和3-m 可能是公共点,而要想使不等式组无解,2m 和3-m 不能重合,只能2m <3-m ,所以m 不能等于1,即m <1.3.问题反转[问题3]如果不等式组⎩⎨⎧⋅⋅⋅⋅⋅≥+⋅⋅⋅≤-②①302m x m x 有解,怎样确定 m 的取值范围?把两个不等式的解集在数轴上表示出,同学们观察数轴 ,不难得出要想使不等式组有解,只要2m ≥3-m ,即m ≥1这样两个不等式的解集有公共部分,不等式组有解,所以m 的取值范围m ≥14.方法小结 归纳步骤解含参一元一次不等式(组)有、无解问题时注意掌握四个步骤:一解 .解不等式组,用参数分别表示出两个不等式的解集;二画.借助数轴进行视觉观察,画出有无解的情况;三验:验证端点取舍判断等号是否可取;四:列出不等式,确定取值范围5,拓展演练 题型再变[问题4]下面这种类型的一元一次不等式组如何确定字母参数取值范围?例:已知不等式组⎩⎨⎧⋅⋅⋅-<⋅⋅⋅⋅⋅⋅⋅⋅≥-②①22-10x x a x 的解集是x >1,求a 的取值范围?学生分组解出每个不等式的解集:解①得:x ≥a 解②得:x >1因为不等式的解集是x >1,(学生分组探讨):a 的位置在数轴上应该在哪个位置? 分析得出:a 在数轴上的位置应该在1的左侧.把不等式组的解集在数轴上表示出来:即a <1,[思考3]a 可不可以等于1?因为a=1时不等式组的解集仍然是x >1.所以a 可以等于1,即a 的取值范围a ≤15.基础过关1.若不等式组⎩⎨⎧≤≥-m x x 062 无解,求m 的取值范围? 2.若不等式组⎩⎨⎧>+<--xx a x x 422)2(3有解,求a 的取值范围?3.若不等式组⎩⎨⎧+>+<+1137m x x x 的解集是x >3,求m 的取值范围?。

人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件

人教版数学七年级下册一元一次不等式第一课时一元一次不等式及其解法课件
不无为所穷 求分变则节无,所母不获为。、贱易_志。__去__括__号___、__移__项____、合并同类项、未知数系数化成1.
褴褛衣内可藏志。 志不真则心不热,心不热则功不贤。
第九章 不等式与不等式组
1.下列不等式中,是一元一次不等式的是
A.13(x+2)>4x-1
B.(1+x)(1-x)>5
C.x+2 1-4≤x
第九章 不等式与不等式组
(2)2x-74≥94.
解:去分母,得2x-7≥9, 移项,得2x≥9+7, 合并同类项,得2x≥16. 系数化为1,得x≥8,其解集在数轴上表示,如图2所示.
第九章 不等式与不等式组
4.解下列各题: (1)解不等式:2(5x+3)≤x-3(1-2x); (2)解不等式:2x+ 3 2-3x+ 2 1<1,并把解集表示在数轴上. 解:(1)去括号,得 10x+6≤x-3+6x, 移项、合并同类项,得 3x≤-9, 系数化为 1,得 x≤-3. 所以原不等式的解集是 x≤-3.
解:移项,得 2x-4x>-3,即-2x>-3. 去括号,得4x+4-9x-3<6,
但方程两边同乘(或除以)一个负数时,方程的解不变. 6.已知3m-5x3+m>4是关于x的一元一次不等式, 系数化为1,得x>-1.
3 移项、合并同类项,得7x≥-14, 系数化为 1,得 x<2,其解集在数轴上表示,如图 1 所示. 去括号,得3x+12+4x+2≥0,
志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。 去括号,得3x+12+4x+2≥0, 志之所趋,无远勿届,穷山复海不能限也;志之所向,无坚不摧。
(1)2x+3>4x; 解:(1)∵3m-5x3+m>4是关于x的一元一次不等式,
(2)求这个不等式的解集. 【第二关】 建议用时6分钟 ②不等式中,当两边同乘(或除以)一个负数时,不等号的方向改变;

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。一元一次不等式组 知识点专题复习讲义

人教版七年级数学下册第9章。

一元一次不等式组知识点专题复习讲义一元一次不等式组知识点专题复讲义一、知识梳理1.知识结构图概念基本性质不等式的解法不等式的定义不等式的解集一元一次不等式的解法实际应用一元一次不等式组的解法二、知识点回顾1.不等式不等式是由不等号连接起来的式子。

常见的不等号有五种:“≠”、“>”、“<”、“≥”、“≤”。

2.不等式的解与解集不等式的解是使不等式成立的未知数的值。

不等式的解集是一个含有未知数的不等式的解的全体。

解集可以在数轴上直观的表示出来,具体表示方法是先确定边界点。

解集包含边界点,是实心圆点;不包含边界点,则是空心圆圈;再确定方向:大向右,小向左。

3.不等式的基本性质1) 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变。

2) 不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

3) 不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

4.一元一次不等式一元一次不等式只含有一个未知数,且未知数的次数是1.系数不等于的不等式叫做一元一次不等式。

其标准形式为:ax+b<或ax+b≤,ax+b>或ax+b≥0(a≠0)。

5.解一元一次不等式的一般步骤1) 去分母;2) 去括号;3) 移项;4) 合并同类项;5) 化系数为1.删除格式错误的段落。

对于每段话,进行小幅度的改写,使其更加通顺易懂。

解一元一次不等式和解一元一次方程类似。

不同的是,一元一次不等式两边同乘以(或除以)同一个负数时,不等号的方向必须改变。

这是解不等式时最容易出错的地方。

例如,解不等式:-2/3x-1≤1/3解:去分母,得(3x-1)-2(3x-1)≤2(不要漏乘!每一项都得乘)去括号,得3x-3-6x+2≤2(注意符号,不要漏乘!)移项,得3x-6x≤2+3-1(移项要变号)合并同类项,得-3x≤4(计算要正确)系数化为1,得x≥-4/3(同除负,不等号方向要改变,分子分母别颠倒了)一元一次不等式组是含有相同未知数的几个一元一次不等式所组成的不等式组。

数学人教版七年级下册含参数的一元一次不等式组的解法

数学人教版七年级下册含参数的一元一次不等式组的解法
2m+5 (m-1)
无解
③当m—1>2m+5时
无解
2m+5 m-1 即m<—6 1 x 2 m 5 综上:当m>—6时,不等式组的解集是 m 当m —6时,无解
三、课堂小结
解含参数的一元一次不等式组的步骤:
解每个 不等式 数轴 找出公 共部分
分类讨论
综上所述
四、中考链接
x2m 解关于x的不等式组: 2x14m1
中 ab 其
a 0 b
x b 同 大 取 大
x a x b
a
0
b
x a 同 小 取 小
求一元一次不等式组的解集,可归纳为四种基本情况:
x a xb
a 0 b
中 ab 其
a x b 大 小 小 大 中 间 找
x a xb
a 0 b
无 解 大 大 小 小 解 集 无 处 找
例1.
10 ① x 解 不 等 式 组 ② x 2 0


分析:由 ① 得 : x 1
得 : x 2
在数轴上表示不等式①,②的解集
1 2 3 不 等 式 组 的 解 集 为 x 20Biblioteka 2 1二、学习新知
x m 1 例 2 :解关于 x 的不等式组 x 2 m 5
分析思考:m-1和2m+5谁大谁小?
m-1 < 2m+5 m-1 = 2m+5 m-1 > 2m+5
x m 1 例 2 :解关于 x 的不等式组 x 2 m 5
①当m—1<2m+5时 即m>—6
m-1

数学人教版七年级下册含参数的一元一次不等式组的解法及应用

数学人教版七年级下册含参数的一元一次不等式组的解法及应用

<<含参数的一元一次不等式组的解法及应用>>教学设计——————初一中 向利军学习目标:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 重点:1、会解含参数的一元一次不等式组;2、已知含参数的一元一次不等式组的解集或解的情况,会求参数的取值范围. 难点:已知含参数的一元一次不等式组的解集或解的情况,会构造含参数的方程或不等式.一、 情景导学设计2016年重庆中考题A 卷和B 卷选择题12题考的是含参数的一元一次不等式组和含参方程的一道综合型的题,同学们在上节课我们复习了含参方程的内容,今天这节课我们来探讨含参的一元一次不等式组的解法及应用.师:我来检查同学们课前做的学前准备,完成得怎么样?第1题由4个同学来回答,每人回答一道,第2题由一个同学到黑板上板演,第3题再由一个同学回答最后教师总结。

二、例题讲解 例1 : 解关于x 的一元一次不等式组:教师板书规范格式小结:(1)解每个不等式 ;(2)画数轴,分类讨论;(3)写出解集。

学生到黑板上板书练习1的答案练习1:解关于x 的一元一次不等式组:⎪⎩⎪⎨⎧->-≥-1x 2133--x )2(x x a师:我们会解含参不等式组中一个不等式含参数,那两个不等式都含参数又如何解呢?拓展: 解关于x 的不等式组:⎩⎨⎧+<>521-m x m x⎪⎩⎪⎨⎧>---≥-33124)(2x x x a提问:第一步还需解每个不等式吗?生:不解师:第一步做什么?生:画数轴表示解集师:先表示哪一个?生:都可以学生口答,教师用投影仪出示范灯片思考: (1)若练习1的不等式组有解,则a 的取值范围是 .(2)若练习1的不等式组无解,则a 的取值范围是 .三、能力提升例2 :已知关于x 的一元一次不等式组⎩⎨⎧->>3x a x 的解集为3->x ,则a 的取值范围 是 .由学生回答,投影仪展示。

人教版七年级数学下册《一元一次不等式的解法》PPT课件

人教版七年级数学下册《一元一次不等式的解法》PPT课件

解不等式 x 1 1≥x,得 x≤-1.
2 ∵只有不等式
3x
-
5<0
的解集与不等式
x 1 1≥x
有公共部分,
2
∴不等式 x 1 1≥x 的“云不等式”是不等式3x - 5<0. 2
故答案为:①.
(2) 若a≠-2,且关于 x 的不等式 x + 2≥a 与不等式 (a + 2)x<a + 2 互为“云不等式”,求 a 的取值范围. 解:不等式 x + 2≥a 的解集为 x≥a - 2, ① 当 a + 2>0,即 a>-2 时,可得 x<1,根据题意 a - 2<1,即 a<3,a 的取值范围为 a<3; ② 当 a + 2<0,即 a<-2 时,可得 x>1,此时不论 a 为小于 -2 的何值均符合题意. 综上可得,a<3 且 a≠-2.
总结 ●去分母:不等式的性质 2. ●去括号:去括号法则. ●移项:不等式的性质 1. ●合并同类项:合并同类项法则. ●系数化为 1:不等式的性质 2 或 3.
议一议
解一元一次不等式和解一元一次方程有哪些相同和
不同之处?
不同点
相同点
解法依据:解一元一次不
基本步骤:去分母,去括号, 等式的依据是不等式的性
方法总结
总结 求不等式的特殊解,先要正确求出不等
式的解集,然后确定特殊解.在确定特殊解 时,一定要注意是否包含端点的值,一般可 以结合数轴去看,形象直观,一目了然.


一 元 一 次
去去 移 并
分括

母号 项 类

数 化 为
1
一 元 一 次 不 等


等 式
不等 式的 性质

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)

人教版初中数学七年级下册9.3.1《一元一次不等式组》课件(共19张PPT)
3、不等式组的解法:
(1)求出不等式组中各个不等式的解集 (2) 利用数轴找出这几个不等式解集的公共部分 (3)根据几个不等式解集的公共部分,写出这个 不等式组的解集。
五、当堂检测
独立完成课本129页练习第1、2题.
2、学生分组完成后交流展示
要求:找出下列不等式组的公共部分
动手画一画, 一起找一找。
第一组
x 3, (1)x 7.
第二组
x 3, (3) x 7.
第三组
(5)
x x
3, 7.
第四组
(7)
x x
3, 7.
(2)
x x
1, 4.
x 1, (4) x 4.
x 1, (6) x 4.
x 1, (8) x 4.
让我们一起动手共同完成…
求下列不等式组的解集:(第一小组)
(1)xx
3, 7.
0 1 2 3 45 6 7 89
解:原不等式组的解集为
x7
x 1, (2) x 4 -3 -2 -1 0 1 2 3 4 5
解:原不等式组的解集为
x4
求下列不等式组的解集:(第二小组)
下列不等式中哪些是一元一次不等式?
2 y 7 6
x 1
(1)3x 3 1 (否) (2)x 2(是)
x 2 1
(3) 1 x
1
(否)
(4)32aa
7 3
(1是)
0
{3+x(1<)每4+个2不x等式必须为一元一次不等式;
(5) 5x-(32<)不4x等-1式必(须是是)只含有同一个未知数;
在同一个数轴上表示不等式①,②的解集为
0 —45 1
2

数学人教版七年级下册一元一次不等式(组)解题方法与技巧总结

数学人教版七年级下册一元一次不等式(组)解题方法与技巧总结

2,一元一次不等式性质解题模决:
同加同加减号(不等号方向)不变,同乘同除负要变 (不等号方向),系数未知讨论管,互逆做题记心间。 模例1(1)-2x-3<5 (2)-3x+4>x+3 解:-2x-3+3<5-3 解:-3x+4-x>x-x+3
-2x<2 -2x\-2<2\-2 x>-1
-5x+4>3 -5x+4-4>3-4 -5x>-1 x<1\5
5,一元一次方程及方程组特殊 万能解法模诀:
求解看条件,数轴来判断,或者断区间, 左右移一点,等号来判断,难题真简单。 模例6(1)已知x、y的方程{x+y=2m+7(1)
x-y=4m-3 (2) 的解 为正数,求m的取值范围, 解:由(1)+(2)得:2x=6m+4 x=3m+2
由(1)-(2)得:2y=-2m+10 y=-m+5 ∵x>0 y>0∴3m+2>0 m>-2|3 (求解看条件来做题) (2)已知:{x+2<5(1) {x-a>0 (2) 的非负整数解为3个,求a的取值 范围。解:由(1)得:x<3,由(2)得:x>a,所以原不等式组 的解集为:a<x<3,∵元不等式组解非负整数解为3个,∴ -1≤a<0 (魔决来做题)
七年级下 一元一次不等式解题方法总 结
课件制作:安徽阜南焦陂中心校Biblioteka 课件制作人: 熊伟
模型强化训练
模决展示
模型例题展示
1,一元一次不等式定义型解题模决:
• 题目一元和一次(不等式),次数为1系不零,多 余项系等于0,这种方法真轻松。 • 模例1 (a+1)x² +y/b/<5是关于x的一元一次不等式, 求a+b的值。 • 解:由题意知:a+1=0 • a=-1 • |b|=1 • b=+1或-1 • ∴a+b=0或-2 • 练习:(a-3)x² +(b+2)X/c/>7关于x的一元一次 不等式,则a,b,c应满足的条件是?
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《含参数的一元一次不等式组的解集》教学设计
万福中心学校余达恒
教材分析:本章内容是苏科版八年级数学(下)第七章,是在学习了《一元一次方程》和《一次函数》后的基础上安排的内容,是为今后学习高中的《集合》及《一元二次不等式》,《二元一次不等式》打下基础。

上节课学习了《一元一次不等式组》,知道了一元一次不等式组的有关概念及求一元一次不等式组的解集的方法,并会用数轴直观的得到一元一次不等式组的解集,它是解决本节课内容《含参数的一元一次不等式组的解集》的基础和关键,通过本节课知识的学习,学生能对初中数学中的分类讨论、数形结合的思想方法有进一步的认识,养成独立思考的习惯,也能加强与同学的合作交流意识与创新意识,为今后生活和学习中更好运用数学作准备。

教学目标:
(1)知识目标:使学生加深对一元一次不等式组和它的解集的概念的理解,掌握一元一次不等式组的解法,会应用数轴确定含参数的一元一次不等式组的参数范围。

(2)能力目标:培养探究、独立思考的学习习惯,感受数形结合的作用,逐步熟悉和掌握数形结合的思想方法,提高分析问题和解决问题的能力。

(3)德育目标:加强同学之间的合作交流与探讨,体验数学发现带来的乐趣。

学习重点:
(1)加深对一元一次不等式组的概念与解集的理解。

(2)通过含参数不等式的分析与讨论,让学生理解掌握分类讨论和数形结合的数学思想。

学习难点:
(1)一元一次不等式组中字母参数的讨论。

(2)运用数轴分析不等式组中参数的范围。

教学难教学难点突破办法:
(1)借助数轴,数型结合,让学生直观理解不等式组中几个不等式解集的公共部分。

(2)和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

教学准备(预习学案)
1、⑴不等式组⎩
⎨⎧-≥>12x x 的解集是 . ⑵不等式组⎩⎨⎧-<-<12x x 的解集是 . ⑶不等式组⎩⎨⎧≥≤14x x 的解集是 . ⑷不等式组⎩⎨⎧-≤>4
5x x 的解集是 .
2、关于x 的不等式组1
2x m x m >->+⎧⎨
⎩的解集是1x >-,则m = . 3、如图是表示某个不等式组的解集,则该不等式组的整数解的个数是( )
A. 4
B. 5
C. 6
D. 7
4、不等式组⎩
⎨⎧--≤-.32,281x >x x 的最小整数解是( ) A .-1 B .0 C .2 D .3
5、满足21≤<-x 的所有整数为___________ __.
6、满足21≤≤-x 的所有整数为________________ __.
7、请写出一个只含有三个整数1、2和3的解集为 。

预习要求:
1、复习上节课的知识,考察学生对一元一次不等式组的解集的四种情况的熟悉程度, 能直接根据下面口诀求出不等式组的解集:同大取大;同小取小;大小小大(大于较小的数,小于较大的数)在中间;大大小小(大于较大的数,小于较小的数)不存在.
2、根据不等式组的解集,结合数轴,能找出满足条件的解(如整数解),并能注意“a x <”与“a x ≤”的区别,为本节课的拓展应用打下基础。

教学步骤:
一、例题教学
例1、预习学案1、2
设计目的:展示预习成果,让学生说出结果,并说明根据,即复习确定一元一次不等式组的解集的口诀:同大取大;同小取小;大小小大在中间;大大小小不存在. 变式1:若一元一次不等式组的两个基数相同时,不等式组的解集如何呢?
(1)⎩⎨⎧≥>22x x (2)⎩⎨⎧<<22x x (3)⎩⎨⎧≥≤22x x (4)⎩
⎨⎧≤>22x x 变式2:若a<2, 请确定下列不等式组的解集
(1)⎩⎨⎧≥>a x x 2 (2)⎩⎨⎧<<a x x 2 (3)⎩
⎨⎧≥≤a x x 2 (4)⎩⎨⎧-<->a x x 2 变式3:若去掉变式2中条件“2<a ”,则上述不等式组的解集又如何呢?
(1)⎩⎨⎧≥>a x x 2 (3)⎩⎨⎧≥≤a
x x 2
变式4:(1)若不等式组⎩
⎨⎧≥>a x x 2的解集是2>x ,则a 的取值范围为 (2)若不等式组⎩⎨⎧≥≤a
x x 2的解集时2≤≤x a ,则a 的取值范围为
(3)若不等式组⎩
⎨⎧≥≤a x x 2无解,则a 的取值范围为 设计目的:
(1)变式1是让学生掌握基数相同时,确定不等式的解集中是否包含基数;变式2是掌握有参数条件的不等式组的解集的确定,可结合数轴,体现数形结合思想。

这两个变式是为下面变式3、4做准备;
(2)变式3是体现分类讨论的思想,要考虑“2<a ”、“2=a ”、“2>a ”三种情况;变式4是对变式3的深化,交换了结论和条件,和学生一起探讨解决问题的一般方法:先运用口诀定大小,再考虑特殊情况定等号。

例2、处理预习学案5、6、7
设计目的:主要展示学案中练习7的预习成果,学生一般会写成形如“b x a <<”或 “b x a ≤≤”的式子,这时可以让学生讨论常数a 与b 的范围,是否有最大或最小值,体现出不等号中是否含等号对解题的影响,为解决下列问题打下基础。

变式1:若不等式组⎩
⎨⎧≤>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式2:若不等式组⎩
⎨⎧<>a x x 0只含有三个整数1、2和3,则a 的取值范围为 ; 变式3:关于x 的不等式组010
x a x ->⎧⎨->⎩,只有3个整数解,则a 的取值范围是( )
A. -3≤a ≤-2
B. -3≤a <-2
C. -3<a ≤-2
D. -3<a <-2 设计目的:
(1)变式1、2是对上述讨论中学生获得的知识的检查和运用,解决问题时一定要结
合数轴来分析。

(2)变式3的设计思路是让学生先确定范围内的整数是0、-1、-2,再转化为上述问
题得到解决。

这时可以提问把010x a x ->⎧⎨->⎩,改为⎩⎨⎧≥->-010x a x 或⎩
⎨⎧≥-≥-010x a x 时,范围内的整数变化了吗?这时参数a 的取值范围有何变化?
例3、拓展应用
(1)若不等式组12x x m
<≤⎧⎨>⎩有解,则m 的取值范围是( ).
A .m<2
B .m≥2
C .m<1
D .1≤m<2
(2)不等式组⎩⎨⎧<->-1
0a x a x 的解集中的任一个x 值均不在2≤x ≤5范围内,则a 的范围
为 。

设计目的:考察两个不等式的解集之间的关系,(1)说明两个解集有公共部分,(2)
说明两个解集没有公共部分。

结合图形,运用数轴分析法,指出解决问题的一般方法:先在数轴上确定不等式的解集的大概位置,再确定不等式的两个基点是否能取到(等号问题)。

二、本节课小结:
1、学生谈本节收获:优等生谈重点学到什么知识,上进生谈体会。

2、教师小结:这节课主要学习了含参数的不等式组的解集问题,在解决问题中体现出数形结合、分类讨论的数学思想的重要应用,要好好体会。

三、当堂反馈:
1、不等式组2131
x x -<⎧⎨≥-⎩ 的解集是( )
A.2x <
B.1-≥x
C.12x -≤< D .无解
2、已知a b <<0,那么下列不等式组中有解的是 ( )
A .⎩⎨⎧<>b x a x
B .⎩⎨⎧-<->b x a x
C .⎩
⎨⎧-<>b x a x D .⎩⎨⎧>-<b x a x 3、已知不等式组⎩⎨⎧<>a
x x 1无解,则a 的取值范围是( )
A .a ≤1
B .a ≥1
C . a <1
D .a >1
4、不等式a ≤x ≤3只有5个整数解,则a 的范围是
5、若不等式组⎩⎨
⎧<->-3212m x m x 的解集中的任何一个x 值均不在1≤x<3范围内,则m 的取值范围为 .
四、布置作业:见作业本
设计要求:为了让不同的人有不同的收获,我把作业分为选做题和必做题。

优等生做基础和提高题,上进生做基础题,达到分层教学的目的。

相关文档
最新文档