第62届罗马尼亚数学奥林匹克(2011)

合集下载

imo数学竞赛

imo数学竞赛

2011年数学奥林匹克希望联盟讲座镇海中学沈虎跃一、2011IMO试题选讲二、多项式问题选讲【问题1】设整系数1n >次多项式()f x 在区间(0,1)上有n 个不全相等的实根.若()f x 的首项系数是a ,求证:2 1.n a ≥+证明设12,,,n x x x L 是所给多项式的根,我们有因为所有的根均在(0,1)上,可得(0)0,(1)0.f f ≠≠并且,当x 取整数值时,()f x 也是整数,所以(0),(1)f f 均为非零整数.从而不等式01(1,2,,)k x k n <<=L 能够保证每个因子均为正.对任意x ,都有1(1)4x x -≤,当且仅当12x =时等号成立(这并不是对所有的k x 都成立),我们得到 这说明2.n a >考虑到a 是一个整数,我们得到2 1.n a ≥+【问题2】设非负实系数多项式111()1n n n f x x a x a x --=++++L 有n 个实根.求证:(1)(2)3;n f ≥(2)对所有0,x ≥有()(1);n f x x ≥+(3)对所有1,2,,1,k n =-L 有.k k n a C ≥证明显然当0x ≥时,()f x 取正值,所以它的所有实根都是负数.为方便起见,设其为12,,,,n ααα---L 其中12,,,n αααL 为正.我们得到根据多项式的根与系数的关系得我们将看到,三个命题的证明都依赖于这个等式.(1)由AM -GM 不等式,我们得到对于1,2,,k n =L 均成立.因此(2)这部分我们基本可以用相同的方法证明,这里要用到加权AM -GM 不等式.对于所有的非负数x 和所有的1,2,,k n =L ,我们有如果0,x ≥那么(3)这是AM -GM 不等式的又一个结论.系数k α是12,,,n αααL 中所有可能的k 项乘积之和.有n k ⎛⎫ ⎪⎝⎭个这样的乘积,并且每个k α都包含在其中的11n k -⎛⎫ ⎪-⎝⎭个乘积中.因此【问题3】已知,,a b c R ∈,求证:,,a b c 都是正数的充要条件是0,0,0a b c ab bc ca abc ++>++>>.【证明】必要性显然成立.下面证明充分性.由题设条件容易联想到韦达定理的逆定理,设0,0,0p a b c q ab bc ca r abc =++>=++>=>,则由韦达定理得逆定理知,,,a b c 是多项式()32P x x px qx r =-+-的三个根.又因为当0x ≤时,()320P x x px qx r =-+-<,所以()P x 的根都是正的,即,,a b c 都是正数.【点评】(1)这里我们利用韦达定理的逆定理,构造以,,a b c 为根的辅助多项式()32P x x px qx r =-+-,从而将问题转化为证明多项式()32P x x px qx r =-+-的根全为正.这种构造的技巧在解多项式问题时经常用到.(2)由本题的证明启发我们将此题推广为:已知,1,2,,i x R i n ∈=L ,则i x 为正数的充要条件是证法与上例类似.【问题4】试确定形如()10111,0n n n n n a x a x a x a a i n --++++=±≤≤L 的全体多项式,使多项式的根都是实数.【解】不妨先考虑01a =,设其n 个根为12,,,n x x x L ,则121n x x x a +++=-L , (1)121312n n x x x x x x a -+++=L , (2)()121nn n x x x a =-L (3) 由(1)、(2)得 ()2222121222120n x x x a a a +++=--=-≥L , 于是212a ≤,故21a =-. 从而222123n x x x +++=L ,又由(3)得()2121n x x x =L ,再利用平均不等式得3,3n n ≥=∴≤,即1,2,3n =. 当1n =时所求多项式成为()()1,1x x ±-±+;当2n =时所求多项式成为()()221,1x x x x ±+-±--;当3n =时所求多项式成为()()32321,1,x x x x x x ±+--±--+()321x x x ±+-+(有虚根舍去),()321x x x ±+--(有虚根舍去).综上所求多项式共12个.【点评】此题中我们应用韦达定理和不等关系,求出n 的取值范围,进而求出n 的值,确定出符合题设条件的全体多项式.【问题5】设,x y 是实数,求证:存在实系数多项式(),0P x y ≥,(),P x y 不能写成实系数多项式的平方和.证明:()()22221,127P x y x y x y =+-+是满足条件的多项式.证明如下:首先证明(),0P x y ≥.若2210x y +-≥,显然(),0P x y >.若2210x y +-<,则()322222222111327x y x y x y x y ⎛⎫--++--≤= ⎪⎝⎭, 即()22221127x y x y +-≥-,所以(),0P x y ≥. 下证(),P x y 不能写成实系数多项式的平方和.反设()()21,,n i i P x y Q x y ==∑,其中()()deg 6,deg 3i P x Q x =≤.可设()322322,i i i i i i i i i i i Q x y A x B x y C xy D y E x F xy G y H x I y J =+++++++++,比较(),P x y 和()21,n i i Q x y =∑中66,x y 的系数,得22110n ni i i i AD ====∑∑, 即0,1,2,,i i A D i n ===L .比较44,x y 对应的系数,得22110n ni i i i EG ====∑∑, 即0,1,2,,i i E G i n ===L .比较22,x y 对应的系数,得22110n ni i i i HI ====∑∑, 即0,1,2,,i i H I i n ===L .因此()22,i i i i i Q x y B x y C xy F xy J =+++.最后,比较22x y 的系数,得211n i i F==-∑,这与i F 是实数矛盾.证毕.【问题6】2011个实数122007,,,x x x L 满足方程组201111,1,2,,201121k k x n n kn ===++∑L , 试计算2011121k k x k =+∑的值. 解:构造多项式:()()()()()201112122011211122011x x x f x x x x x x x x ⎡⎤⎛⎫=++++++- ⎪⎢⎥+++⎝⎭⎣⎦L L , 据所给的条件可知:当1,2,,2011x =L 时,皆有()0f x =.则有常数c ,使()()()()122011f x c x x x =---L , 先取12x =-,得14023c =-. 再取12x =,可得 2011211112144023k k x k =⎛⎫=- ⎪+⎝⎭∑.【练习】已知122010,,,a a a L 满足:对任意的R x ∈均有求证:122010..........2010a a a +++≤. 证明:由于2011sin1005.cos2cos cos 2..........cos 2010sin2αααααα+++==A 取22011k απ=(k=1;2;……..;2010)则A =-1 所以,令122010244020,,...,201120112011x x x πππ===,代入f (x )得: …累加得:所以,122010..........2010a a a +++≤.【问题7】设n 是一个正整数,考虑S =}0210,,:),,{(>++⋯⋯=z y x n z y x z y x ,,,这样一个三维空间中具有1)1(3-+n 个点的集合。

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案

高中数学奥林匹克竞赛试题及答案1 求一个四位数,它的前两位数字及后两位数字分别相同,而该数本身等于一个整数的平方.1956年波兰.x=1000a+100a+10b+b=11(100a+b)其中0<a?9,0?b?9.可见平方数x被11整除,从而x被112整除.因此,数100a+b=99a+(a+b)能被11整除,于是a+b能被11整除.但0<a+b?18,以a+b=11.于是x=112(9a+1),由此可知9a+1是某个自然数的平方.对a=1,2,…,9逐一检验,易知仅a=7时,9a+1为平方数,故所求的四位数是7744=882.2 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.1953年匈牙利.【证设2n2=kd,k是正整数,如果n2+d是整数x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k +1)2得出k2+2k不是平方数.3 试证四个连续自然数的乘积加上1的算术平方根仍为自然数.1962年上海高三决赛题.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.4 已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.1963年俄【证】设此算术级数公差是d,且其中一项a=m2(m∈N).于是a+(2km +dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.5 求一个最大的完全平方数,在划掉它的最后两位数后,仍得一个完全平方数(假定划掉的两个数字中的一个非零).1964年俄.【解】设n2满足条件,令n2=100a2+b,其中0<b<100.于是n>10a,即n?10a+1.因此b=n2100a2?20a+1由此得 20a+1<100,所以a?4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402?422-402>100.因此,满足本题条件的最大的完全平方数为412=1681.6 求所有的素数p,使4p2+1和6p2+1也是素数.1964年波兰【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.7 证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a 都不是素数.1969德国.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2?m2>1故n4+4m4不是素数.取a=4224,4234,…就得到无限多个符合要求的a.8 将某个17位数的数字的顺序颠倒,再将得到的数与原来的数相加.证明:得到的和中至少有一个数字是偶数.1970年苏【证】假设和的数字都是奇数.在加法算式中,末一列数字的和d+a 为奇数,从而第一列也是如此,因此第二列数字的和b+c?9.于是将已知数的前两位数字a、b与末两位数字c、d去掉,所得的13位数仍具有性质:将它的数字颠倒,得到的数与它相加,和的数字都是奇数.照此进行,每次去掉首末各两位数字.最后得到一位数,它与自身相加显然是偶数.矛盾!9 证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.1973年加拿大【证】因p是奇数,2是p+1的因数.因为p、p+1、p+2除以3余数不同,p、p+2都不被3整除,所以p+1被3整除.10 证明:三个不同素数的立方根不可能是一个等差数列中的三项(不一定是连续的).美国1973年【证】设p、q、r是不同素数.假如有自然数l、m、n和实数a、d,消去a,d,得化简得(m-n)3p=(l-n)3q+(m-l)3r+3(l-n)(m11 设n为大于2的已知整数,并设V n为整数1+kn的集合,k=1,2,….数m∈V n称为在V n中不可分解,如果不存在数p,q∈V n使得pq=m.证明:存在一个数r∈V n可用多于一种方法表达成V n中不可分解的元素的乘积.1977年荷兰【证】设a=n-1,b=2n-1,则a2、b2、a2b2都属于V n.因为a2<(n+1)2,所以a2在V n中不可分解.式中不会出现a2.r=a2b2有两种不同的分解方式:r=a22b2=a2…(直至b2分成不可分解的元素之积)与r=ab2ab=…(直至ab分成不可分解的元素之积),前者有因数a2,后者没有.12 证明在无限整数序列10001,100010001,1000100010001,…中没有素数.注意第一数(一万零一)后每一整数是由前一整数的数字连接0001而成.1979年英国【证】序列1,10001,100010001,…,可写成1,1+104,1+104+108,…一个合数.即对n>2,a n均可分解为两个大于1的整数的乘积,而a2=10001=137273.故对一切n?2,a n均为合数.13 如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.1984年苏【证】若不同数字多于3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,1043M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.14正整数d不等于2、5、13.证在集合{2,5,13,d}中可找到两个不同元素a、b,使得ab-1不是完全平方数.1986年德【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 5d-1=y2 13d -1=z2 其中x、y、z是正整数.x是奇数,设x=2n-1.代入有2d-1=(2n-1)2即d=2n2-2n+1 说明d也是奇数.y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.15 .求出五个不同的正整数,使得它们两两互素,而任意n(n?5)个数的和为合数.1987年全苏【解】由n个数a i=i2n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m2n!+k(m∈N,2?k ?n)由于n!=1222…2n是k的倍数,所以m2n!+k是k的倍数,因而为合数.对任意两个数a i与a j(i>j),如果它们有公共的质因数p,则p也是a i-a j=(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但a i与n!互质,所以a i与a j不可能有公共质因数p,即a i、a j(i≠j)互素.令n=5,便得满足条件的一组数:121,241,361,481,601.16 n?2,证:如果k2+k+n对于整数k素数.1987苏联(1)若m?p,则p|(m-p)2+(m-p)+n.又(m-p)2+(m-p)+n?n>P,这与m是使k2+k+n为合数的最小正整数矛盾.(2)若m?p-1,则(p-1-m)2+(p-1-m)+n=(p-1-m)(p-m)+n被p整除,且(p-1-m)2+(p-1-m)+n?n>p因为(p-1-m)2+(p-1-m)+n为合数,所以p-1-m?m,p?2m+1由得4m2+4m+1?m2+m+n即3m2+3m+1-n?0由此得17 正整数a与b使得ab+1整除a2+b2.求证:(a2+b2)/(ab+1)是某个正整数的平方.1988德国a2-kab+b2=k (1)显然(1)的解(a,b)满足ab?0(否则ab?-1,a2+b2=k(ab+1)?0).又由于k不是完全平方,故ab>0.设(a,b)是(1)的解中适合a>0(从而b>0)并且使a+b最小的那个解.不妨设a?b.固定k与b,把(1)看成a的二次方程,它有一根为a.设另一根为a′,则由韦达定理a′为整数,因而(a′,b)也是(1)的解.由于b>0,所以a′>0.但由(3)从而a′+b<a+b,这与a+b的最小性矛盾,所以k必为完全平方. 18 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.1989年瑞典提供.【证】设a=(n+1)!,则a2+k(2?k?n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂p l,则k=p j(l、j都是正整数),但a2被p2j整除因而被p j+1整除,所以a2+k被p j整除而不被p j+1整除,于是a2+k=p j=k,矛盾.因此a2+k(2?k?n+1)这n个连续正整数都不是素数的整数幂. 19 n为怎样的自然数时,数32n+1-22n+1-6n是合数?1990年全苏解32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当n>l时,3n -2n>1,3n+1+2n+1>1,原数是合数.当n=1时,原数是13 20 设n是大于6的整数,且a1、a2、…、a k是所有小于n且与n互素的自然数,如果a2-a1=a3-a2=…=a k-a k-1>0求证:n或是素数或是2的某个正整数次方.1991年罗马尼亚.证由(n-1,n)=1,得a k=n-1.令d=a2-a1>0.当a2=2时,d=1,从而k=n-1,n与所有小于n的自然数互素.由此可知n是素数.当a2=3时,d=2,从而n与所有小于n的奇数互素.故n是2的某个正整数次方.设a2>3.a2是不能整除n的最小素数,所以2|n,3|n.由于n-1=a k=1+(k-1)d,所以3d.又1+d=a2,于是31+d.由此可知3|1+2d.若1+2d<n,则a3=1+2d,这时3|(a3,n).矛盾.若1+2d?n,则小于n且与n互素自然数的个数为2.设n=2m(>6).若m为偶数,则m+1与n互质,若m为奇数,则m+2与m互质.即除去n-1与1外、还有小于n且与n互质的数.矛盾.综上所述,可知n或是素数或是2的某个正整数次方.21 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.1992年台北数学奥林匹克【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和?15005,所以A?15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 18001201 1700 1301 1600 14011999 1002 1899 1102 17991202 1699 1302 1599 1402 ………………1901 1100 1801 1200 17011300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1?i?20,1?j?10)令S i=a i+a i+1+…+a i+9(i=1,2,…,1901)则S1=15005,S2=15004.易知若i为奇数,则S i=15005;若i为偶数,则S i=15004.综上所述A=15005.22 相继10个整数的平方和能否成为完全平方数?1992年友谊杯国际数学竞赛七年级【解】(n+1)2+(n+2)2+…+(n+10)2=10n2+110n+385=5(2n2+22n+77)不难验证n≡0,1,-1,2,-2(mod 5)时,均有2n2+22n+77≡2(n2+n+1)0(mod 5)所以(n+1)2+(n+2)2+…+(n+10)2不是平方数,23 是否存在完全平方数,其数字和为1993?1993年澳门数学奥林匹克第二轮【解】存在,取n=221即可.24 能表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?1993年美国数学邀请赛【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+5025 如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?1993年全俄数学奥林匹克【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k +m)(2k-m)是合数.26 设n是正整数.证明:2n+1和3n+1都是平方数的充要条件是n+1为两个相邻的平方数之和,并且为一平方数与相邻平方数2倍之和.1994年澳大利亚数学奥林匹克【证】若2n+1及3n+1是平方数,因为2(2n+1),3(3n+1),可设2n+1=(2k+1)2,3n+1=(3t±1)2,由此可得n+1=k2+(k+1)2,n+1=(t±1)2+2t2反之,若n+1=k2+(k+1)2=(t±1)2+2t2,则2n+1=(2k+1)2,3n+1=(3t±1)2从而命题得证.27 设a、b、c、d为自然数,并且ab=cd.试问a+b+c+d能否为素数.1995年莫斯科数学奥林匹克九年级题【解】由题意知正整数,将它们分别记作k与l.由。

3金1铜!中国队“远程”参加第12届罗马尼亚数学大师赛

3金1铜!中国队“远程”参加第12届罗马尼亚数学大师赛

3金1铜!中国队“远程”参加第12届罗马尼亚数学大师赛作者:来源:《作文通讯·高中版》2020年第06期2020年2月26日至3月1日,第12届罗马尼亚数学大师赛在罗马尼亚的首都布加勒斯特举行。

本次共有19个国家的107名选手现场参加了比赛,由于受到新冠肺炎疫情影响,征得主办方同意和授权,包括中国在内,韩国、意大利和伊朗以同步远程的形式参加了比赛。

罗马尼亚数学大师赛(Romanian Master of Mathematics Competition,简称RMM)是面向中学生的数学竞赛,试题质量非常高,被称为中学生数学奥林匹克竞赛中难度最高的一项赛事,也是我国以国家队名义组队参赛的3项中学生数学国际赛事(国际数学奥林匹克竞赛IMO、俄罗斯奥林匹克数学竞赛RMO、罗马尼亚数学大师赛RMM)之一。

本次大赛,我国代表队的4名队员获得了3枚金牌1枚铜牌的优秀成绩:严彬玮32分,金牌;韩新淼31分,金牌;梁敬勋29分,金牌;梅文九19分,铜牌。

团体成绩为每个正式参赛国家指定4名选手中最好的3名选手得分总和,前三名为俄罗斯:91分;乌克兰:85分;美国:78分。

遗憾的是,中国作为远程参赛国家,不能参加团体排名,否则按照最好的3名选手成绩计算,中国队将会排名团体成绩第一。

今年夺回荣耀的4位学霸,来自浙江、江苏两个省。

让我们一起看看学霸的学习秘诀和他们闪闪发光的“战绩”吧!人物名片:严彬玮学校:南京师范大学附属中学年级:高三兴趣爱好:羽毛球、跑步、拼图高中获奖情况:2020年第12届罗马尼亚数学大师赛金牌,全球第三名2019年第35届全国数学冬令营满分第一名2019年中国女子数学奥林匹克竞赛第一名(并列)2019年北大数学夏令营一等奖2019年第16届中国东南地区数学奥林匹克竞赛高二组第一名(并列) 2018年第34届全国数学冬令营银牌2018年中国女子数学奥林匹克竞赛金牌2018年江苏省高中数学联赛第二名,入选省队2017年全国高中数学联赛江苏赛区一等奖2017年南京市中考第十一名学习秘诀:1.准备一个经典试题笔记本。

国际数学奥林匹克试题分类解析―A数论_A3数字问题汇总

国际数学奥林匹克试题分类解析―A数论_A3数字问题汇总

A 整数 A3 数字问题A3-001 在数3000003中,应把它的百位数字和万位数字0换成什么数字,才能使所得的数能被13整除?【题说】 1950年~1951年波兰数学奥林匹克三试题2.【解】设所求数字为x和y,则有因为106、104、102除以13时,分别得余数1、3、9,所以n≡3+3x+9y+3=3(2+x+3y)(mod 13)当且仅当x+3y+2被13整除,即x+3y+2=13m(m为自然数)(1)时,n被13整除.由于x+3y+2≤9+3·9+2=38所以m只能取1或2.当m=1时,由方程(1)及0≤x,y≤9,解得x=8,y=1;x=5,y=2;x=2,y=3当m=2时,解得x=9,y=5;x=6,y=6;x=3,y=7;x=0,y=8.故本题共有7个解:3080103,3050203,3020303,3090503,3060603,3030703,3000803.A3-002 求出所有这样的三位数,使其被11整除后的商数等于该三位数各位数字的平方和.【题说】第二届(1960年)国际数学奥林匹克题1.本题由保加利亚提供.【解】设这个三位数除以11以后的商为10a+b,其中 a是商的十位数,b是商的个位数.若a+b≥10,则原数为100(a+1)+10(a+b-10)+b若a+b<10,则原数为100a+10(a+b)+b以下对这两种情形分别讨论.先考虑第一种情形.由题设有(a+1)2+(a+b-10)2+b2=10a+b (1)若a+b>10,则有(a+1)2+(a+b-10)2+b2≥(a+1)2+1+(11-a)2故若(1)式成立,只能有a+b=10.将b=10-a代入(1)解得唯一的一组正整数解a=7,b=3再考虑第二种情形.此时由题设有a2+(a+b)2+b2=10a+b (2)若a+b>5,则有a2+(a+b)2+b2=2(a+b)·a+2b2>10a+b故若(2)成立,只能有a+b≤5.注意在(2)式中左边和10a都是偶数;因此b 也是偶数.若a+b<5,则b只能为2,将b=2代入(2)得不到整数解,因此只能有a+b=5.将b=5-a代入(2)得唯一的一组正整数解a=5,b=0综上所述,合乎要求的三位数只有550,803.A3-003 下面是一个八位数除以一个三位数的算式,试求商,并说明理由.【题说】 1958年上海市赛高三题1.【解】原式可写成:其中所有未知数都表示数字,且下标为1的未知数都不等于零.x1x2x3等表示x1·102+x2·10+x3等.(1)因为得到商的第一个数字7后,同时移下两个数字a5、a6,所以y2=0,同理y4=0.(2)四位数a1a2a3a4与三位数b1b2b3之差为两位数c1c2,所以a1=1,a2=0,b1=9,同理,c1=1,c2=0,d1=9,于是a4=b3,b2=9,a3=0.(3)由7×x1x2x3=99b3,所以x1=1,x2=4.990-7×140=10,所以x3=2,b3=4,从而a4=b3=4.(4)由c1=1,c2=0可知y3=7.(5)y5×142是四位数,所以x5≥8.又因y5×142的末位数字是8,所以y5=9.于是商为70709,除数142,从而被除数为10040678.A3-004 证明:在任意39个连续的自然数中,总能找到一个数,它的数字之和被11整除.【题说】 1961年全俄数学奥林匹克八年级题 3.【证】在任意39个连续自然数中,一定有三个数末位数字为0,而前两个数中一定有一个十位数字不为9,设它为N,N的数字之和为n,则N,N+1,N+2,…,N+9,N+19这11个数的数字之和依次为n,n+1,n+2,…,n+9,n +10,其中必有一个是11的倍数.【注】 39不能改为38.例如999981至1000018这38个连续自然数中,每个数的数字和都不被11整除.本题曾被改编为匈牙利1986年竞赛题、北京市1988年竞赛题.A3-005 求有下列性质的最小自然数n:其十进制表示法以6结尾;当去掉最后一位6并把它写在剩下数字之前,则成为n的四倍数.【题说】第四届(1962年)国际数学奥林匹克题1.本题由波兰提供.【解】设n=10m+6,则6×10p+m=4(10m+6),其中p为m的位数.于是m =2(10p-4)/13,要使m为整数,p至少为5,此时,n=153846.A3-006 公共汽车票的号码由六个数字组成.若一张票的号码前三个数字之和等于后三个数字之和,则称它是幸运的.证明:所有幸运车票号码的和能被13整除.【题说】 1965年全俄数学奥林匹克八年级题 4.【证】设幸运车票的号码是A,则A′=999999-A也是幸运的,且A≠A′.因为A +A′=999999=999×1001含因数13.而所有幸运号码都能如此两两配对.所以所有幸运号码之和能被13 整除.A3-007 自然数k有如下性质:若n能被k整除,那末把n的数字次序颠倒后得到的数仍能被k整除.证明:k是99的因子.【题说】第一届(1967年)全苏数学奥林匹克十年级题5.【证】 k与10互质.事实上,存在首位为1且能被k整除的数,把它的数字倒过来也能被k整除,而此数的末位数字为1.取以500开头的且被k整除的数:500abc…z,(a,b,c,…,z是这个数的数字),则以下的数均被k整除:(1)z…cba005.(2)和(3)把(2)中的和倒过来z…cba00010abc…z(4)差由此看出,99能被k整除.A3-008 计算由1到109的每一个数的数字之和,得到109个新数,再求每一个新数的数字之和;这样一直进行下去,直到都是一位数为止.那么,最后得到的数中是1多,还是2多?【题说】 1964年全俄数学奥林匹克八年级题3.考虑整数被9除的余数.【解】一个正整数与其数字之和关于9是同余的,故最后所得的一位数为1者,是原数被9除余1的数,即1,10,19,…,999999991及109.同理,最后所得一位数为2者,原数被9除余2,即2,11,20, (999999992)二者相比,余1者多一个数,因此,最后得到的一位数中以1为多.A3-009 求出具有下列性质的所有三位数A:将数A的数字重新排列,得出的所有数的算术平均值等于A.【题说】第八届(1974年)全苏数学奥林匹克九年级题 5.由此可得222(a+b+c)=6(100a+10b+c),即7a=3b+4c,将这方程改写成7(a-b)=4(c-b)当0≤b≤2时,a=b=c,或a-b=4且c-b=7.当7≤b≤9时,b-a=4,b-c=7,从而A∈{111,222,…,999,407,518,629,370,481,592}显然这15个三位数都合乎要求.A3-010 当44444444写成十进制数时,它的各位数字之和是A,而B是A的各位数字之和,求B的各位数字之和(所有的数都是十进制数).【题说】第十七届(1975年)国际数学奥林匹克题4.本题由原苏联提供.【解】因为44444444的位数不超过4×4444=17776,所以A≤177760B≤1+5×9=46,B的数字和C≤4+9=13由于一个数与它的数字和mod 9同余,所以C≡B≡A≡44444444≡74444=(73)1481×7≡11781×7≡7(mod 9)故C=7,即数B的各位数字之和是7.A3-011 设n是整数,如果n2的十位数字是7,那么n2的个位数字是什么?【题说】第十届(1978年)加拿大数学奥林匹克题1.【解】设n=10x+y,x、y为整数,且0≤y≤9,则n2=100x2+20xy+y2=20A+y2(A为正整数)因20A的十位数字是偶数,所以要想使n2十位数字是7,必须要y2的十位数字是奇数,这只有y2=16或36.从而y2的个位数字,即n2的个位数字都是6.A3-013 下列整数的末位数字是否组成周期数列?其中[a]表示数a的整数部分.【题说】第十七届(1983年)全苏数学奥林匹克九年级题 4.由于不循环小数,所以{a2k+1}从而{a n}不是周期数列.在二进制中的末位数字.显然,b n为偶数时,r n=0,b n为奇数时,r n=1.仿(a)可证{r n}不是周期的,从而{b n}也不是周期数列.A3-014 设a n是12+22+…+n2的个位数字,n=1,2,3,…,试证:0.a1a2…a n…是有理数.【题说】 1984年全国联赛二试题 4.【证】将(n+1)2,(n+2)2,…,(n+100)2这100个数排成下表:(n+1)2 (n+2)2 … (n+10)2(n+11)2 (n+12)2 … (n+20)2… … … …(n+91)2 (n+92)2 … (n+100)2因k2与(k+10)2的个位数字相同,故表中每一列的10个数的个位数字皆相同.因此,将这100个数相加,和的个位数字是0.所以,a n+100=a n对任何n成立.A3-015 是否存在具有如下性质的自然数n:(十进制)数n的数字和等于1000,而数n2的数字和等于10002?【题说】第十九届(1985年)全苏数学奥林匹克八年级题 2.【解】可用归纳法证明更一般的结论:对于任意自然数m,存在由1和0组成的自然数n,它的数字和S(n)=m,而n2的数字和S(n2)=m2?当m=1,n=1时,显然满足要求.设对自然数m,存在由1和0组成的自然数n,使得S(n)=m,S(n2)=m2设n为k位数,取n1=n×10k+1+1,则n1由0,1组成并且S(n1)=S(n)+1=m+1=S(n2×102k+2)+S(2n×10k+1)+S(1)=S(n2)+2S(n)+1=m2+2m+1=(m+1)2因此命题对一切自然数m均成立.这说明0.a1a2a3…是循环小数,因而是有理数.A3-017 设自然数n是一个三位数.由它的三个非零数字任意排列成的所有三位数的和减去 n等于1990.求 n.【题说】 1989年芜湖市赛题 3.2090<222(a+b+c)=1990+n<2989而2090>222×9=1998,222×10=2220=1990+230222×11=2442×1990+452,222×12=2664=1990+674222×13=2886=1990+896,222×14=3108>2989经验证:a+b+c=11时,n=452符合题意.A3-018 定义数列{a n}如下:a1=19891989,a n等于a n-1的各位数字之和,a5等于什么?【题说】第二十一届(1989年)加拿大数学奥林匹克题 3.【解】由a1<100001989=b1,而b1的位数是4×1989+1=7957,知a2<10×8000=80000,所以a2最多是5位数,从而a3≤5×9=45,a4≤4+9=13,因此a5一定是一位数.另一方面,由9|1989,知9|a1,因而9可整除a1的数字和,即9|a2,又因此有9|a3,9|a4,9|a5.所以a5=9.A3-019 某州颁发由6个数字组成的车牌证号(由0—9的数字组成),且规定任何两个牌号至少有两个数字不同(因此,证号“027592”与“020592”不能同时使用),试确定车牌证号最多有多少个?【题说】第十九届(1990年)美国数学奥林匹克题1.【解】至多可造出不同的五位证号a1a2a3a4a5105个.令a6是a1+a1+a3+a4+a5的个位数字,所成的六位数便满足要求.因为如果两个数的前五位中只有一个数字不同,那么第6位数字必然不同.另一方面,任何105+1个6位数中,总有两个前五位数字完全相同.因此,符合题目要求的车牌证号最多有105个.A3-020 设 A=99…99(81位全为9),求A2的各位数字之和.【题说】 1991年日本数学奥林匹克预选赛题1.【解】由A=1081-1知A2=10162-2·1081+1=99...980 (01)↑ ↑162位 82位故A2各位数字之和=9×(162-82)+8+1=729.4A3-021 如果一个正整数的十进制表示中至少有两个数字,并且每个数字都比它右边的数字小,那么称它为“上升”的.这种“上升”的正整数共有多少个?【题说】第十届(1992年)美国数学邀请赛题2.【解】符合条件的正整数中的数字,都是不同的非零数码,即集合S={1,2,3,…,9}的二元或二元以上的子集.反过来,S的每个二元或二元以上的子集,将它的数码从小到大排列,也得到一个符合条件的正整数.S的子集共有29=512个,其中只含一个元素的子集有9个,一个空集.故符合条件的正整数共有512-10=502个.A3-023 求方程的各个正根的乘积的最后三位数字.【题说】第十三届(1995年)美国数学邀请赛题2.【解】令y=1og1995x.由原方程取对数得其最后三位数字为025.A3-024 一个六位数的首位数字是5,是否总能够在它的后面再添加6个数字,使得所得的十二位数恰是一个完全平方数?【题说】1995年城市数学联赛高年级普通水平题3.【解】不.若不然,105个以5为首位数字的六位数可以衍生出105个十二位的完全平方数.即有105个自然数n满足.5×1011≤n2<6×1011亦即7×105<n<8×105由于7×105与8×105之间不存在105个整数,故上式不可能成立.。

第62届imo第3题

第62届imo第3题

第62届imo第3题第62届国际数学奥林匹克(IMO)的第3题是一个数论问题。

问题是这样的,证明对于任意正整数 n,存在一个长度为 n 的等差数列,其元素均为正整数且互质。

首先,让我们理解一下题目的要求。

题目要求我们证明对于任意正整数 n,都能找到一个长度为 n 的等差数列,数列中的元素均为正整数,并且这些正整数两两互质,也就是它们的最大公约数为1。

为了证明这个命题,我们可以采用数学归纳法。

首先,当 n=1 时,我们可以选择数列的第一个元素为1,显然满足题目要求。

接下来,假设对于任意正整数 k,都存在一个长度为 k 的等差数列,数列中的元素均为正整数且两两互质。

现在我们来考虑长度为 k+1的情况。

我们可以利用中国剩余定理来构造长度为 k+1 的等差数列。

具体地,我们可以选择一个足够大的正整数 M,使得 M 和 M+2 互质,M 和 M+3 互质,M 和 M+4 互质,依此类推,直到 M+k 与 M+k+1互质为止。

根据中国剩余定理,我们可以找到一个数 x,使得x ≡-i (mod M+i) 对于 1 ≤ i ≤ k+1 成立。

这样构造出的数列 {x, x+1, x+2, ..., x+k} 中的任意两个数都是互质的,因为它们与M+i (1 ≤ i ≤ k+1)的差都能被 M+i 整除,而 M+i 与 M+j 互质(1 ≤ i < j ≤ k+1)。

因此,我们成功构造出了长度为 k+1 的等差数列,数列中的元素均为正整数且两两互质。

综上所述,我们利用数学归纳法证明了对于任意正整数 n,都存在一个长度为 n 的等差数列,数列中的元素均为正整数且两两互质。

因此,第62届IMO的第3题得证。

以上是我对第62届IMO第3题的全面回答,希望能够对你有所帮助。

奥林匹克数学竞赛知识

奥林匹克数学竞赛知识

奥林匹克数学竞赛知识国际数学奥林匹克作为一项国际性赛事,由国际数学教育专家命题,出题范围超出了所有国家的义务教育水平,难度大大超过大学入学考试。

以下是由店铺整理关于奥林匹克数学竞赛知识的内容,希望大家喜欢!奥林匹克数学竞赛奖项介绍国际奥林匹克数学竞赛是国际青少年数学大赛,在世界上影响非常之大。

国际奥林匹克竞赛的目的是:发现鼓励世界上具有数学天份的青少年,为各国进行科学教育交流创造条件,增进各国师生间的友好关系。

这一竞赛1959年由东欧国家发起,得到联合国教科文组织的资助;第一届竞赛由罗马尼亚主办,1959年7月22日至30日在布加勒斯特举行,保加利亚、捷克斯洛伐克,匈牙利、波兰、罗马尼亚和苏联共7个国家参加竞赛。

以后国际奥林匹克数学竞赛都是每年7月举行(中间只在1980年断过一次),参赛国从1967年开始逐渐从东欧扩展到西欧、亚洲、美洲,最后扩大到全世界。

2013年参加这项赛事的代表队有80余支。

美国1974年参加竞赛,中国1985年参加竞赛。

经过40多年的发展,国际数学奥林匹克的运转逐步制度化、规范化,有了一整套约定俗成的常规,并为历届东道主所遵循。

国际奥林匹克数学竞赛由参赛国轮流主办,经费由东道国提供;但旅费由参赛国自理。

参赛选手必须是不超过20岁的中学生,每支代表队有学生6人;另派2名数学家为领队。

试题由各参赛国提供,然后由东道国精选后提交给主试委员会表决,产生6道试题。

东道国不提供试题。

试题确定之后,写成英、法、德、俄文等工作语言,由领队译成本国文字。

主试委员会由各国的领队及主办国指定的主席组成。

这个主席通常是该国的数学权威。

奥林匹克数学竞赛委会职责1)、选定试题;2)、确定评分标准;3)、用工作语言准确表达试题,并翻译、核准译成各参加国文字的试题;4)、比赛期间,确定如何回答学生用书面提出的关于试题的疑问;5)、解决个别领队与协调员之间在评分上的不同意见;6)、决定奖牌的个数与分数线。

2011年国际数学奥林匹克中国国家集训队协作体旁听生成绩

2011年国际数学奥林匹克中国国家集训队协作体旁听生成绩
第 2 页,共 7 页
总分 名次 47 47 46 46 45 44 44 44 44 43 42 42 42 42 42 42 41 41 41 40 40 40 39 39 38 38 38 38 37 30 30 32 32 34 35 35 35 35 39 40 40 40 40 40 40 46 46 46 49 49 49 52 52 54 54 54 54 58
性别 学校 年级 1 2 3 4 5 6 1 2 3 4 5 6 1 2 1 0 0 0 0 1 3 0 7 0 5 6 男 清华大学附属中学 0 0 0 7 0 1 1 0 0 7 0 1 14 男 河北省衡水中学 6 1 0 7 0 1 2 2 0 1 1 1 0 男 东北师范大学附属中学 6 0 0 7 0 1 4 0 0 5 7 0 0 女 武汉二中 6 0 0 7 0 1 2 1 0 7 0 7 0 男 武钢三中 男 华中师范大学第一附属中学 高一 7 0 0 7 0 0 1 1 1 0 0 1 0 2 0 0 1 0 1 1 1 0 3 0 1 0 男 长沙市长郡中学 男 清华大学附属中学 0 0 1 7 0 0 2 0 0 7 0 1 0 7 0 0 6 0 1 2 1 0 7 0 1 6 男 河北省衡水中学 7 0 0 7 0 1 2 0 0 7 0 1 0 男 郑州市外国语学校 男 辽宁省实验中学 高二 0 0 0 7 0 0 1 0 0 6 0 1 0 7 0 0 7 0 1 0 1 0 7 1 0 6 男 哈尔滨师范大学附属中学 1 0 0 7 0 0 0 2 0 7 0 1 0 男 成都七中 男 深圳中学 高一 7 0 0 4 0 0 2 1 0 7 4 1 0 0 0 0 6 0 0 2 2 1 1 2 1 0 男 江西师范大学附属中学 7 0 0 7 2 1 5 2 0 0 0 3 0 男 湖南长沙市雅礼中学 1 2 0 0 0 1 4 1 0 1 0 1 2 男 湖南长沙市雅礼中学 7 0 0 7 0 0 0 0 0 7 2 0 6 男 湖南师范大学附属中学 7 0 0 1 0 0 2 0 1 1 0 0 0 男 湖南师范大学附属中学 0 0 0 7 2 1 1 2 1 1 0 1 0 男 东北师范大学附属中学 7 1 0 7 1 1 2 1 0 0 7 1 0 男 长沙市长郡中学 0 0 0 7 0 1 2 0 0 0 0 1 0 男 唐山一中 男 江西南昌二中 高二 0 0 0 7 0 0 6 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 0 1 6 女 长沙市长郡中学 男 重庆南开中学 高二 0 1 0 1 0 0 3 0 1 7 0 0 6 0 0 0 7 0 0 2 1 0 1 0 0 14 男 湖南师范大学附属中学 男 深圳耀华实验学校 0 0 0 7 0 1 2 0 0 7 7 1 0 5 1 0 7 0 1 0 男 江苏启东中学 0 0 1 0 4 1 0 1 1 2 6 1 0 男 青岛二中

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO

历年中国参加国际数学奥林匹克竞赛选手详细去向第26届IMO(1985年,芬兰赫尔辛基)吴思皓(男)上海向明中学确规定铜牌上海交通大学王锋(男)北京大学(根据yongcheng先生提供的信息修订)目前作企业软件第27届IMO(1986年,波兰华沙)李平立(男)天津南开中学金牌北京大学方为民(男)河南实验中学金牌北京大学张浩(男)上海大同中学金牌复旦大学荆秦(女)陕西西安八十五中银牌北京大学,现在美国哈佛大学任教林强(男)湖北黄冈中学铜牌中国科技大学第28届IMO(1987年,古巴哈瓦那)刘雄(男)湖南湘阴中学金牌南开大学滕峻(女)北京大学附中金牌北京大学林强(男)湖北黄冈中学银牌中国科技大学潘于刚(男)上海向明中学银牌北京大学何建勋(男)广东华南师范大学附中铜牌中国科技大学高峡(男)北京大学附中铜牌北京大学,现在北大任教第29届IMO(1988年,澳大利亚堪培拉)团体总分第二陈晞(男)上海复旦大学附中金牌复旦大学,美国密苏里大学,美国哈佛大学,现在加拿大Alberta大学数学系任教授韦国恒(男)湖北武汉武钢三中银牌北京大学查宇涵(男)南京十中银牌北京大学,在中科院数学所任副研究员邹钢(男)江苏镇江中学银牌北京大学王健梅(女)天津南开中学银牌北京大学何宏宇(男)以满分成绩获第29届国际数学奥林匹金牌,1993年破格列入美国数学家协会会员,1994年获博士学位,现任亚特兰大乔治大学教授、博士生导师,从事现代数学研究前沿的《李群》《微分几何》等方向的研究,在《李群》的研究上已有重大突破。

第30届IMO(1989年,原德意志联邦共和国布伦瑞克)团体总分第一罗华章(男)重庆水川中学金牌北京大学俞扬(男)吉林东北师范大学附中金牌吉林大学霍晓明(男)江西景德镇景光中学金牌中国科技大学唐若曦(男)四川成都九中银牌中国科技大学颜华菲(女)北京中国人民大学附中银牌北京大学本科,1997年获美国麻省理工博士,现任Texax A&M Uneversity 数学系教授,美国数学会常务理事会成员,Mathematical Reviews评论员。

国际数学奥林匹克竞赛2021

国际数学奥林匹克竞赛2021

国际数学奥林匹克竞赛20212021年,将是国际数学奥林匹克竞赛(IMO)的第62届赛季。

这次的竞赛将于2021年7月4日至16日于土耳其的安塔利亚举行。

比赛由土耳其数学家阿布希拉齐拉克所举办,其目的是培养,激发年轻学生对数学的兴趣,丰富学生的学习经历,并有助于推动参加学生的学习发展和成长。

国际数学奥林匹克竞赛(IMO)是全球范围内最重要的数学竞赛之一,旨在培养数学家、增强世界数学素质,建立起国际间的技术交流和合作。

比赛每年举办一次,全球近百个国家的学生参加,每年的参赛人数大约5万人,更多的学生由各国参加数学奥林匹克竞赛(IMO)的组织者及成员培训和支持。

IMO竞赛是一项完全自愿参加的竞赛,竞赛共有六项赛事,分别是数学一、数学二、数学三、数学四、数学五和数学六,要求参赛者解决给定的数学问题。

参加IMO最多的成员国是波兰、俄罗斯和中国,它们分别拥有最多的参赛者,并常年强劲地把IMO推向新的高度。

IMO竞赛鼓励参赛者发掘数学的深度,有效探索复杂的数学问题,积极参与竞赛活动,通过实践训练自己,增强知识体系和技能,同时在个人认识中取得一定的提升。

IMO竞赛的参赛者都是来自各个国家的年轻数学高手,他们有着各自不同的背景和个性,这些参赛者在竞赛中共同探索知识,并不断提升自己的数学水平。

比赛之前,全球各国组织者为参赛者提供了丰富的培训,让他们更加深入地理解数学知识,发掘潜在的潜力,提升自身的数学水平,以及解决复杂的问题和谜题。

在2021安塔利亚站竞赛开始前,每位参赛者可以使用视频教学、网络课堂、数学专家讲座和多种其他培训项目,完善自身数学知识,争取更高的分数。

2021安塔利亚站的竞赛形式不同于以往,这一次竞赛将采用无人机和人工智能技术,实现远程参赛,让全球各地的参赛者可以参加竞赛,比赛过程中将由分布在世界各地的专家们共同组成的评审委员会来审查参赛作品,并最终授予获胜者相应的奖项。

随着2021安塔利亚站国际数学奥林匹克竞赛的临近,全球各地的国际数学奥林匹克竞赛组织者和参赛者都在紧锣密鼓地筹备,积极进行数学解决的广泛思考,为获得奖牌而努力。

《中等数学》2020年总目次

《中等数学》2020年总目次

2020年第12期49《中等数学》2020年总目次I M O快讯(10.封底)数学活动课程讲座.初中.初中数学竞赛中的组合最值问题解法举例(钟志强6-2)完全平方数的性质及其应用(李昌勇刘应成6-7)•高中•一些关于无穷多个素因子的问题(吴宇培丨*2) “线性化”在多元不等式证明与最值求解中的应用(唐智逸茹双林2-2)数学竞赛中两种不等式基本思想的应用(缠祥瑞3*2)数学竞赛中的复数问题(唐立华 4.27-2)数学竞赛中组合几何问题的常见解法(程振峰李宝毅5-2)递归计数的六种方式(冯跃峰8-2)圆锥曲线几个结论的证明与应用(金荣生9-2)数学竞赛中数列不等式的常见解法举例(王逸凡王彬瑶10-2)数论中的升幂引理及其应用(王永喜丨卜2)对应思想在组合问题中的应用(缠祥瑞12-2)命题与解题数学命题中的“抱残守缺”(陶平生I*7)例谈不等式题的命制方法(张端阳卜1丨)两道赛题的创作思路、答题情况及启示(林天齐何忆捷熊斌2-8)开世定理的推广与应用(李庆圣2,12)老题新芽别样趣味(肖恩利陈博文3-6) 2019年全国高中数学联赛加试第三题的改进(晏兵川赵凌燕3*13)一道罗马尼亚竞赛题的分析与推广(朱华伟邱际春4‘7)一道高中数学竞赛题的探讨(邱慎海沈家书4’11)一道集训队选拔考试题的推广(李伟健4*14)一道不等式赛题的演变与推广(邱际春朱华伟郑焕5-9)利用抽屉原理证明三道竞赛题(隋婷婷5*11)一道数学竞赛题的推广(林根 5 •13)一道中国北方数学奥林匹克试题的引申(赵凌燕隋世友6‘11)判别式在不定方程中的应用(雷勇7-9)三道国外竞赛题的简解(姚先伟于娟7 •12)两道数学竞赛题的分析与推广(邱际春朱华伟8‘12)与三角形的内切圆有关的一个性质及相关性质和命题(李庆圣一道印度赛题的解题思考(李明谈谈数学竞赛中的数学期望(吴宇培关于一道数论题的思考(李彬解题小品—投石问路(陶平生利用复数证明竞赛题(刘东华华洁一道东南赛题与2020年高中联赛数论题的渊源(陶平生一道高中联赛题的推广与变形(王若飞9.9)9.16)10.11)10-13)11.7)11-11)12.7)12.9)赛题另解(1-154-155-157-1310-15)2020年全年高中数学联赛加试题另解(李庆圣杨续亮刘晓理等12-13)专题写作一类麦比乌斯反演问题及其应用(刘志乐2•15)多项式根的倒数和问题求解(梅述恩 3 •17)一个与多项式相关的不等式(刘亮赵斌5*18)高斯整数在数学竞赛中的应用(古德麟 7_15)一道北方希望之星数学夏令营试题的拓展第29届南美洲数学奥林匹克(8.36) (贾秀平段敏敏11-14)2020年全国高中数学联赛浙江赛区预赛(9-20)学生习作2020年全国高中数学联赛重庆赛区预赛(9-25)2018中国香港代表队选拔考试(9-28)论局部调整法的妙用(阮书镐4-17)2018中美洲及加勒比地区数学奥林匹克(9-32)构造表格探究一类数的分布(徐博润6-18)第61届I M O试题(10-16)一种证明三元齐次不等式的方法(王一鹏8.16)2020年全国高中数学联合竞赛(10-17)两道罗马尼亚大师杯赛题的另解(严彬玮9-18)第17届中国东南地区数学奥林匹克(10-25)竞赛之窗第61届I M O试题解答(11-18)第16届中国东南地区数学奥林匹克2019中国数学奥林匹克希望联盟夏令营(1.29 2.30第30届亚太地区数学奥林匹克第35届中国数学奥林匹克2019年全国高中数学联赛四川赛区预赛第三届中国北方希望之星数学夏令营2019青少年数学国际城市邀请赛2019年全国高中数学联赛江苏赛区预赛2019美国数学竞赛(八年级)2019年北京市中学生数学竞赛复赛(高一)2019年全国高中数学联赛吉林赛区预赛第六届伊朗几何奥林匹克2019年全国高中数学联赛甘肃赛区预赛第12届罗马尼亚大师杯数学邀请赛2020美国数学竞赛(十、十二年级)2018爱沙尼亚国家队选拔考试(初中)2018荷兰数学奥林匹克(初中)2019马其顿数学奥林匹克(初中)2019巴尔干地区数学奥林匹克(初中)2〇19希腊数学奥林匹克(初中)2019希腊国家队选拔考试(初中)2019年全国高中数学联赛贵州赛区预赛2019年全国高中数学联赛重庆赛区预赛第83届莫斯科数学奥林匹克(7,29 2020欧洲女子数学奥林匹克2019年全国高中数学联赛广西赛区预赛2019美国国家队选拔考试第60届I M O预选题(11-2212-20) 0-17)2019亚太地区数学奥林匹克(11-32) 3-33)第19届中国女子数学奥林匹克(11-36)首届百年老校数学竞赛(12-30) (1*35)(2.18)2019瑞士数学奥林匹克(初赛)(12-37) (2.25)再品佳题(2-36)(3.20)第二届国际大都市竞赛(数学)(1-38) (3-27)第32届北欧数学竞赛(2-39) (4.21)2018瑞士数学奥林匹克(预赛)(3-39)(4.26)课外训练(4-29)(4.34).初中.(5.20)(186罗家亮 6.34187 李铁汉汪波 6 •(5.27)39 188 谢文晓9.34189 陈迁赵手志(5-32)王祥10.38)(6.20).高中■(6.23)(247 巢中俊 1.41 248王永中2•41 249 (6.28)于现峰 3.41250王永喜4■41251 刘(6-30)小杰宛昭勋5‘42252杨运新6•42 253 (6.31)李潜7 41254徐节槟龙崎钢8-40(6.33)255何忆捷9.39256李培臣谭祖春郝(7.20)泽来10.42 257 胡满11.42258褚小光(7-26)田开斌12.39)8.29)(7.36)(8.20)(8.24)数学奥林匹克问题(1-48 2-47 3.474-475-48 6.477.488.469-4610-48 11-48 12-46)。

2011罗马尼亚大师杯数学竞赛

2011罗马尼亚大师杯数学竞赛
且 AUBU { = 0} R.
r , ∈ ຫໍສະໝຸດ , 对于 n的情形 , 令
h )= ( ( g x+1 g ) )一 ( .
An ( ):A +1 ( )=一1 .
g ) 在 R 上是严 格递 增 的. ( ) 2 求所 有 的正 整 数 / 使 得 存 在 一 个 实 . 7 , , 系 数多项 式 . ) 满足 下 面的两个 条 件 : 厂 , ( ( ) 任 意整数 k数 . k 为整数 的充 要 1对 , 厂 ) ( 条 件是 k不能 被 整 除 ;
第 二 天
S S
甜圈” 的表 面) 求最 大的正整数 , . 使得对 任意标数方式都存在两个相邻 的小方格 ( 有
公共 边 的 小 方 格 ) 它 们 中所 填 写 的 数 之 差 ,
( 的减 小 的 ) 少为 大 至
4对 数n Ⅱp , () ∑ O . 正整 = 设 n = l
2 1 年第 l 期 01 1
3 3
( 相邻是指 : 戈, ) Y
= , Y—Y 兰 ±l m d20 1 ( o 1 )
∑(1‘gx n £=. 一 ) ' + 一) 0 C( o
引理 2的证 明 这是 关 于多项 式差 分 中 的一个 熟 知结论 , 常规证 明是对 n归纳.
的轨迹 .
6 一 个 20 l l . l ×20 1的方格 表 的每个 小
方格都被标上整数 12 …, 0 1中的某个 ,, 2 1 数, 使得其中的每个数都恰好用了一次. 现将
表格 的左 右 边界 、 上下 边界 均视 为相 同 , 通 依 常 的方 式 得 到 一 个 圆环 面 ( 视 为一 个 “ 可 甜
{ , , n 的一个排 列 , 12 …, } 使得 对所有 的 k

历届数学奥林匹克参赛名单

历届数学奥林匹克参赛名单

1985-2012年国际数学奥林匹克中国参赛人数按地区、学校统计国际数学奥林匹克(International Mathematical Olympiad,简称IMO)是世界上规模和影响最大的中学生数学学科竞赛活动。

由罗马尼亚罗曼(Roman)教授发起。

1959年7月在罗马尼亚古都布拉索举行第一届竞赛。

我国第一次派学生参加国际数学奥林匹克是1985年,当时仅派两名学生,并且成绩一般。

我国第一次正式派出6人代表队参加国际数学奥林匹克是1986年。

2012年第53届国际数学奥林匹克竞赛将于今年7月4日至16日在阿根廷马德普拉塔(Mar del Plata , Argentina)举行。

入选国家队的六名学生是:(按选拔成绩排名)陈景文(中国人民大学附属中学)、吴昊(辽宁师范大学附属中学)、左浩(华中师范大学第一附属中学)、佘毅阳(上海中学)、刘宇韬(上海中学)、王昊宇(武钢三中)---------------------------------------------------------历届IMO的主办国,总分冠军及参赛国(地区)数为:年份届次东道主总分冠军参赛国家(地区)数1959 1 罗马尼亚罗马尼亚71960 2 罗马尼亚前捷克斯洛伐克51961 3 匈牙利匈牙利 61962 4 前捷克斯洛伐克匈牙利71963 5 波兰前苏联81964 6 前苏联前苏联91965 7 前东德前苏联81966 8 保加利亚前苏联91967 9 前南斯拉夫前苏联131968 10 前苏联前东德121969 11 罗马尼亚匈牙利141970 12 匈牙利匈牙利141971 13 前捷克斯洛伐克匈牙利151972 14 波兰前苏联141973 15 前苏联前苏联161974 16 前东德前苏联181975 17 保加利亚匈牙利171976 18 澳大利亚前苏联191977 19 南斯拉夫美国211978 20 罗马尼亚罗马尼亚171979 21 美国前苏联231981 22 美国美国271982 23 匈牙利前西德301983 24 法国前西德321984 25 前捷克斯洛伐克前苏联341985 26 芬兰罗马尼亚421986 27 波兰美国、前苏联371987 28 古巴罗马尼亚421988 29 澳大利亚前苏联491989 30 前西德中国501990 31 中国中国541991 32 瑞典前苏联561992 33 俄罗斯中国621993 34 土耳其中国651994 35 中国香港美国691995 36 加拿大中国731996 37 印度罗马尼亚751997 38 阿根廷中国821998 39 中华台北伊朗841999 40 罗马尼亚中国、俄罗斯812000 41 韩国中国822001 42 美国中国832002 43 英国中国842003 44 日本保加利亚822004 45 希腊中国852005 46 墨西哥中国982006 47 斯洛文尼亚中国1042007 48 越南俄罗斯932008 49 西班牙中国1032009 50 德国中国1042010 51 哈萨克斯坦中国1052011 52 荷兰中国101------------------------------------------------------------------历届国际数学奥林匹克中国参赛学生分省市、分学校统计按学校排名(TOP16)1 武汉钢铁三中 152 湖南师大附中 113 华南师范大学附中 104 北大附中 94 人大附中 96 湖北黄冈中学 86 上海中学 88 上海华东师大二附中 5 8 东北育才学校 510 华中师大一附中 410 复旦大学附中 410 深圳中学 410 东北师范大学附中 4 14 上海向明中学 314 长沙市一中 314 哈尔滨师范大学附中 3 以下略。

李耀文——2021捷克-斯洛伐克数学奥林匹克第2题解答

李耀文——2021捷克-斯洛伐克数学奥林匹克第2题解答

李耀文——2021捷克-斯洛伐克数学奥林匹克第2题解答
李耀文老师近期文章
2021-06-13 2021波兰奥林匹克(第二轮)第2题解答2021-06-11 2021年比荷卢数学竞赛第3题解2021-06-05 2021土耳其IMO代表队选拔考试第7题解答2021-06-03 2021土耳其IMO代表队选拔考试第5题解答2021-05-26 2021年全国高中数学联赛(福建赛区)预赛第13题另解2021-05-25 2021罗马尼亚IMO(代表队选拔考试第3题解答2021-05-22 2021保加利亚数学奥林匹克(第二天)第6题解答
2021-05-20 2021年全国高中数学联赛新疆赛区初赛第9题解答2021-05-19 2021西班牙数学奥林匹克(第二天)第6题再解2021-05-18 2021年全国高中数学联赛广西赛区预赛第2题解答2021-05-18 2021年全国高中数学联赛广西赛区预赛第11题解答2021-05-16 2021西班牙数学奥林匹克(第二天)第6题解答2021-05-15 万喜人高联班几何测试题(77-1、2)解答2021-05-13 2021年拉脱维亚国家队选拔考试(第一轮)第1题解答2021-05-02 2021哈佛-麻省数学竞春季赛(团体赛)第7题解2021-05-01 第61届国际时讯奥林匹克平几题(第一天)另证。

历届国际数学奥赛结果

历届国际数学奥赛结果

历届国际数学奥赛结果历届国际数学奥赛是世界上最具权威性和影响力的数学竞赛之一。

从1959年开始,国际数学奥林匹克委员会每年举办一次数学奥赛,参赛国家和地区不断增加,竞争水平也越来越高。

以下是历届国际数学奥赛的获奖结果:第一届国际数学奥赛,1959年在罗马尼亚布加勒斯特举行,共有7个国家和地区参赛,获得前三名的分别是苏联、匈牙利和罗马尼亚。

第二届国际数学奥赛,1960年在苏联莫斯科举行,共有12个国家和地区参赛,获得前三名的分别是苏联、匈牙利和保加利亚。

第三届国际数学奥赛,1961年在捷克斯洛伐克布拉格举行,共有16个国家和地区参赛,获得前三名的分别是苏联、匈牙利和捷克斯洛伐克。

第四届国际数学奥赛,1962年在波兰华沙举行,共有22个国家和地区参赛,获得前三名的分别是苏联、波兰和捷克斯洛伐克。

第五届国际数学奥赛,1963年在东柏林举行,共有26个国家和地区参赛,获得前三名的分别是苏联、匈牙利和保加利亚。

第六届国际数学奥赛,1964年在日本东京举行,共有29个国家和地区参赛,获得前三名的分别是苏联、捷克斯洛伐克和罗马尼亚。

第七届国际数学奥赛,1965年在保加利亚索非亚举行,共有21个国家和地区参赛,获得前三名的分别是苏联、匈牙利和捷克斯洛伐克。

第八届国际数学奥赛,1966年在苏联莫斯科举行,共有30个国家和地区参赛,获得前三名的分别是苏联、匈牙利和保加利亚。

第九届国际数学奥赛,1967年在古巴哈瓦那举行,共有27个国家和地区参赛,获得前三名的分别是苏联、匈牙利和保加利亚。

第十届国际数学奥赛,1968年在罗马尼亚布加勒斯特举行,共有34个国家和地区参赛,获得前三名的分别是苏联、匈牙利和波兰。

…………从历史上看,苏联是国际数学奥赛的绝对霸主,曾经连续获得了第一名,直到1990年苏联解体后,俄罗斯继承了苏联的优秀传统,成为了国际数学奥赛的又一强势国家。

此外,中国自1985年参赛以来,也成为了国际数学奥赛的重要参赛国之一,多次获得金牌和荣誉。

国际奥林匹克数学竞赛

国际奥林匹克数学竞赛
• 选手在竞赛中需要坚持不懈,勇往直前
奥林匹克数学竞赛对选手未来发展的影响
奥林匹克数学竞赛为选手提供了展示自己才能的平台
• 竞赛成绩优秀的选手可以获得名校的青睐和奖学金
• 选手在竞赛中的表现可以为自己的职业发展增加筹码
奥林匹克数学竞赛培养了选手的团队合作精神
• 竞赛过程中,选手需要与队友保持良好的沟通和协作
• 选手在培训过程中需要不断挑战自己,提高解题水平
奥林匹克数学竞赛对选手心理素质的提升
奥林匹克数学竞赛锻炼了选手的心理承受能力
• 竞赛过程中,选手需要面对压力和挑战,调整好自己的心态
• 选手在竞赛中需要保持冷静和自信,发挥出自己的最佳水平
奥林匹克数学竞赛培养了选手的意志力
• 选手在培训过程中需要克服各种困难,不断提高自己的水平
• 竞赛为数学教育改革提供了有益的借鉴和经验
奥林匹克数学竞赛对人才培养模式的探索
奥林匹克数学竞赛培养了具有创新能力的人才
• 竞赛鼓励选手寻求新的解题方法,培养创新思维
• 选手在培训过程中需要不断挑战自己,提高解题水平
奥林匹克数学竞赛培养了具有团队协作能力的人才
• 竞赛过程中,选手需要与队友保持良好的沟通和协作
• 选手在培训过程中可以学习到团队合作和领导力
05
国际奥林匹克数学竞赛的教育意义与价值
奥林匹克数学竞赛对数学教育的推动作用
奥林匹克数学竞赛提高了数学教育的地位
奥林匹克数学竞赛推动了数学教育的发展
• 竞赛吸引了全球范围内优秀的数学教师和选手
• 竞赛促使各国加大对数学教育的投入和支持
• 竞赛为数学教育提供了一个交流和学习的平台
• 选手在培训过程中可以学习到团队合作和领导力
奥林匹克数学竞赛对社会公平与进步的意义

历届奥数数论竞赛题讲解精选

历届奥数数论竞赛题讲解精选

历届奥数竞赛题讲解精选1. 假设n是自然数,d是2n2的正约数.证明:n2+d不是完全平方.【题说】 1953年匈牙利数学奥林匹克题2.【证】设2n2=kd,k是正整数,如果 n2+d是整数 x的平方,那么k2x2=k2(n2+d)=n2(k2+2k)但这是不可能的,因为k2x2与n2都是完全平方,而由k2<k2+2k<(k+1)2得出k2+2k不是平方数.试证四个连续自然数的乘积加上1的算术平方根仍为自然数.【题说】 1962年上海市赛高三决赛题 1.【证】四个连续自然数的乘积可以表示成n(n+1)(n+2)(n+3)=(n2+3n)(n2+8n+2)=(n2+3n+1)2-1因此,四个连续自然数乘积加上1,是一完全平方数,故知本题结论成立.---------------------------------------------------------------------------1.已知各项均为正整数的算术级数,其中一项是完全平方数,证明:此级数一定含有无穷多个完全平方数.【题说】 1963年全俄数学奥林匹克十年级题2.算术级数有无穷多项.【证】设此算术级数公差是 d,且其中一项 a=m2(m∈N).于是a+(2km+dk2)d=(m+kd)2对于任何k∈N,都是该算术级数中的项,且又是完全平方数.2.求一个最大的完全平方数,在划掉它的最后两位数后,仍得到一个完全平方数(假定划掉的两个数字中的一个非零).【题说】 1964年全俄数学奥林匹克十一年级题 1.【解】设 n2满足条件,令n2=100a2+b,其中 0<b<100.于是 n>10a,即n≥10a+1.因此b=n2100a2≥20a+1由此得 20a+1<100,所以a≤4.经验算,仅当a=4时,n=41满足条件.若n>41则n2-402≥422-402>100.因此,满足本题条件的最大的完全平方数为412---------------------------------------------------------------------------1.求所有的素数p,使4p2+1和6p2+1也是素数.【题说】 1964年~1965年波兰数学奥林匹克二试题 1.【解】当p≡±1(mod 5)时,5|4p2+1.当p≡±2(mod 5)时,5|6p2+1.所以本题只有一个解p=5.2.证明存在无限多个自然数a有下列性质:对任何自然数n,z=n4+a都不是素数.【题说】第十一届(1969年)国际数学奥林匹克题1,本题由原民主德国提供.【证】对任意整数m>1及自然数n,有n4+4m4=(n2+2m2)2-4m2n2=(n2+2mn+2m2)(n2-2mn+2m2)而 n2+2mn+2m2>n2-2mn+2m2=(n-m)2+m2≥m2>1故 n4+4m4不是素数.取 a=4·24,4·34,…就得到无限多个符合要求的 a.---------------------------------------------------------------------------1.如果自然数n使得2n+1和3n+1都恰好是平方数,试问5n+3能否是一个素数?【题说】第十九届(1993年)全俄数学奥林匹克九年级一试题1.【解】如果2n+1=k2,3n+1=m2,则5n+3=4(2n+1)-(3n+1)=4k2-m2=(2k+m)(2k-m).因为5n+3>(3n+1)+2=m2+2>2m+1,所以2k-m≠1(否则5n+3=2k+m=2m+1).从而5n+3=(2k+m)(2k-m)是合数.2.能够表示成连续9个自然数之和,连续10个自然数之和,连续11个自然数之和的最小自然数是多少?【题说】第十一届(1993年)美国数学邀请赛题6.【解】答495.连续9个整数的和是第5个数的9倍;连续10个整数的和是第5项与第6项之和的5倍;连续11个整数的和是第6项的11倍,所以满足题目要求的自然数必能被9、5、11整除,这数至少是495.又495=51+52+…+59=45+46+…+54=40+41+…+503.021 试确定具有下述性质的最大正整数A:把从1001至2000所有正整数任作一个排列,都可从其中找出连续的10项,使这10项之和大于或等于A.【题说】第一届(1992年)中国台北数学奥林匹克题6.【解】设任一排列,总和都是1001+1002+…+2000=1500500,将它分为100段,每段10项,至少有一段的和≥15005,所以A≥15005另一方面,将1001~2000排列如下:2000 1001 1900 1101 1800 1201 1700 1301 1600 14011999 1002 1899 1102 1799 1202 1699 1302 1599 1402 … … … … … …1901 1100 1801 1200 1701 1300 1601 1400 1501 1300并记上述排列为a1,a2,…,a2000(表中第i行第j列的数是这个数列的第10(i-1)+j项,1≤i≤20,1≤j≤10)令 Si=ai+ai+1+...+ai+9(i=1,2, (1901)则S1=15005,S2=15004.易知若i为奇数,则Si=15005;若i为偶数,则Si=15004.综上所述A=15005.---------------------------------------------------------------------------1. n为怎样的自然数时,数32n+1-22n+1-6n是合数?【题说】第二十四届(1990年)全苏数学奥林匹克十一年级题5【解】 32n+1-22n+1-6n=(3n-2n)(3n+1+2n+1)当 n>l时,3n-2n>1,3n+1+2n+1>1,所以原数是合数.当 n=1时,原数是素数13.2. 求证:对任何正整数n,存在n个相继的正整数,它们都不是素数的整数幂.【题说】第三十届(1989年)国际数学奥林匹克题5.本题由瑞典提供.【证】设a=(n+1)!,则a2+k(2≤k≤n+1),被k整除而不被k2整除(因为a2被k2整除而k不被k2整除).如果a2+k是质数的整数幂pl,则k =pj(l、j都是正整数),但a2被p2j整除因而被pj+1整除,所以a2+k被pj整除而不被pj+1整除,于是a2+k=pj=k,矛盾.因此a2+k(2≤k≤n+1)这n个连续正整数都不是素数的整数幂.---------------------------------------------------------------------------1. 求出五个不同的正整数,使得它们两两互素,而任意n(n≤5)个数的和为合数.【题说】第二十一届(1987年)全苏数学奥林匹克十年级题 1.【解】由n个数ai=i·n!+1,i=1,2,…,n组成的集合满足要求.因为其中任意k个数之和为m·n!+k(m∈N,2≤k≤n)由于n!=1·2·…· n是 k的倍数,所以m·n!+k是 k的倍数,因而为合数.对任意两个数ai与 aj(i>j),如果它们有公共的质因数p,则p也是ai-aj =(i-j)n!的质因数,因为0<i-j<n,所以p也是n!的质因数.但ai与n!互质,所以ai与aj不可能有公共质因数p,即ai、aj(i≠j)互素.令n =5,便得满足条件的一组数:121,241,361,481,601.设正整数 d不等于 2、5、13.证明在集合{2,5,13,d}中可以找到两个不同元素a、b,使得ab-1不是完全平方数.【题说】第二十七届(1986年)国际数学奥林匹克题1.本题由原联邦德国提供.【证】证明2d-1、5d-1、13d-1这三个数中至少有一个不是完全平方数即可.用反证法,设5d-1=x2 (1)5d-1=y2 (2)13d-1=z2 (3)其中x、y、z是正整数.由(1)式知,x是奇数,不妨设x=2n-1.代入有 2d-1=(2n-1)2即d=2n2-2n+1 (4)(4)式说明d也是奇数.于是由(2)、(3)知y、Z是偶数,设y=2p,z=2q,代入(2)、(3)相减后除以4有2d=q2-p2=(q+p)(q-p)因2d是偶数,即q2-p2是偶数,所以p、q同为偶数或同为奇数,从而q+p和q-p都是偶数,即2d是4的倍数,因此d是偶数.这与d是奇数相矛盾,故命题正确.---------------------------------------------------------------------------1.如果一个自然数是素数,并且任意地交换它的数字,所得的数仍然是素数,那么这样的数叫绝对素数.求证:绝对素数的不同数字不能多于3个.【题说】第十八届(1984年)全苏数学奥林匹克八年级题 8.【证】若不同数字多于 3个,则这些数字只能是1、3、7、9.不难验证1379、3179、9137、7913、1397、3197、7139除以7,余数分别为0、1、2、3、4、5、6.因此对任意自然数M,104×M与上述7个四位数分别相加,所得的和中至少有一个被7整除,从而含数字1、3、7、9的数不是绝对素数.2.证明:如果p和p+2都是大于3的素数,那么6是p+1的因数.【题说】第五届(1973年)加拿大数学奥林匹克题 3.【证】因为p是奇数,所以2是p+1的因数.因为p、p+1、p+2除以 3余数不同,p、p+2都不被 3整除,所以p+1被 3整除.于是6是p+1的因数.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档