2020年九年级数学上册人教版全品作业本(含答案)
全品试卷数学九年级上册【含答案】
![全品试卷数学九年级上册【含答案】](https://img.taocdn.com/s3/m/141151ae760bf78a6529647d27284b73f24236db.png)
全品试卷数学九年级上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. 2C. 3D. 42. 下列函数中,奇函数是:A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 已知三角形ABC,若sinA = 3/5,则cosB的值为:A. 4/5B. 3/5C. 4/3D. 5/34. 若一组数据为2, 4, 6, 8, 10,则这组数据的中位数是:A. 4B. 6C. 8D. 105. 已知等差数列的前三项分别为2, 5, 8,则第10项的值为:A. 23B. 24C. 25D. 26二、判断题(每题1分,共5分)1. 若两个角互为补角,则它们的正切值相等。
()2. 一元二次方程ax² + bx + c = 0的解为x = (-b ± √(b² 4ac)) / 2a。
()3. 对角线互相垂直的四边形一定是矩形。
()4. 函数y = ax² + bx + c的图像是一个抛物线。
()5. 若一组数据的方差为0,则这组数据中所有数据相等。
()三、填空题(每题1分,共5分)1. 若等差数列的前三项分别为1, 3, 5,则第10项的值为______。
2. 若函数f(x) = x² 4x + 4,则f(x)的最小值为______。
3. 若一个圆的半径为5cm,则这个圆的周长为______cm。
4. 若一组数据为1, 2, 3, 4, 5,则这组数据的平均数为______。
5. 若一个正方形的边长为10cm,则这个正方形的面积为______cm²。
四、简答题(每题2分,共10分)1. 请简述一元二次方程的求解公式及其适用条件。
2. 请简述等差数列和等比数列的定义及其通项公式。
3. 请简述直角坐标系中,点(x, y)的坐标表示及其意义。
九年级上人教版数学练习册答案.pdf
![九年级上人教版数学练习册答案.pdf](https://img.taocdn.com/s3/m/882e427a6294dd88d1d26b8a.png)
1 数学·九年级上·人教版第二十一章 二次根式第1节 二次根式1.C 2.B 3.A 4.D 5.A 6.<槡7.7 犪2+犫槡28.(1)狓≥-1;(2)任何实数;(3)犿≤0;(4)犿=2;(5)犪>0;(6)犪>39.(1)80;(2)74;(3)910.4 11.1或-1 12.2犫+犮-犪第2节 二次根式的乘除1.D 2.C 3.C 4.狓≥25.48 32 306.8狓槡狔狔 --槡犪 -槡犫犪7.-1-槡犪 8.< <9.(1)槡-11;(2)(1-犪)1-槡犪;(3)-2犪犫10.(1)-2;(2)2槡11.306cm212.(1)槡117;(2)槡82;(3)槡5513.014.提示:平方后比较,槡槡2+6<槡槡3+5.第3节 二次根式的加减练习一(加减运算)1.B 2.03.(1)槡-142;(2)285槡10;(3)169槡34.(1)0;(2)105.(1)槡246;(2)槡槡6-56.(1)2;(2)槡-657.1槡8.-29.114练习二(混合运算)1.D 2.B 3.A 4.3 45 槡5.326.(狓2+3)(狓+槡3)(狓-槡3)槡7.1-468.(1)狓=-1;(2)狓≤0槡9.1+310.甲的对,被开方数根要大于零11.200112.∵犪槡-4+3犪-槡犫=0而犪槡-4≥0,3犪-槡犫≥0∴犪槡-4=0,且3犪-槡犫=0解之得 犪=4,犫=12∴犪2+犫2=42+122=160.13.提示:作一个腰为1的等腰直角三角形犃犅犆,以其斜边犃犆为直角边作直角三角形犃犆犈,其中犈犆=1.则以点犃为圆心,以直角三角形犃犆犈的斜边长为半径画弧,它与数轴正半轴的交点即为表示槡3的点,即可找到槡3+1的点.图12 人教版·数学·九年级(上)第二十二章 一元二次方程第1节 一元二次方程1.4狓2-5狓+3=0 4 -5 32.D 3.C 4.C 5.B6.狓2+2狓-1=0.7.设最小的整数为狀,则狀2+狀-272=0.8.设这个人行道的宽度为狓m,则(24-2狓)(20-2狓)=32.9.设中粳“6427”稻谷的出米率的增长率为狓,则稻谷产量的增长率为2狓.根据题意,得500(1+2狓)·70%(1+狓)=462,化简可得:50狓2+75狓-8=0.10.(1)设11、12月的平均月增长率为狓,则100(1+狓)+100(1+狓)2=231;(2)1100吨.11.设最短的直角边长为狓,则长直角边为狓+14,可得狓(狓+14)=120.12.设兔舍平行于旧墙的长为狓m,则宽为12(35-狓)m.根据题意,得狓·12(35-狓)=150,化简得:狓2-35狓+300=0,解得狓1=15,狓2=20.第2节 降次———解一元二次方程练习一1.B 2.C3.(1)狓1=2,狓2=4;(2)狓1=2,狓2=10.4.(1)狓1,2=1±槡63;(2)狓1=8,狓2=-193.5.(1)狓1=0,狓2=2;(2)狓=56.狓1=-2,狓2=1 7.1s8.13±槡347≈32分9.4或1.0 10.8,911.若一元二次方程犪狓2+犫狓+犮=0的两个根是狓1、狓2,则二次三项式犪狓2+犫狓+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都运用的是配方法.(2)第一种方法出现分式犫2犪,配方比较繁;两边开方时分子、分母都出现“±”,相除后为何只有分子上有“±”,不好理解;还易误认为4犪槡2=2犪.所以,第二种方法好.13.(1)狓2+7狓+6=(狓+1)(狓+6);(2)狓2-7狓-60=(狓-12)(狓+5);(3)狆2+7狆-18=(狆+9)(狆-2);(4)犫2+11犫+28=(犫+4)(犫+7).14.(1)犿1=-1,犿2=-2;(2)狓1=1,狓2=6;(3)犿1=3,犿2=4;(4)狓1=4,狓2=2.练习二1.B 2.0或-2 3.0 -1 14.145.13 6.2.5m7.设三、四月份平均每月增长的百分率为狓,依题意得60×(1-10%)(1+狓)2=96.解得狓=13≈33.3%.8.设2007年年获利率为狓,则2008年的年获利率为(狓+0.1),100(1+狓)(1+狓+0.1)=156,解得狓=20%,0.1+狓=30%.9.因为8<狓<14,通过估算可知狓=10.10.设应挖狓m,则(64-4狓)(162-2狓)=9600,解得狓=1m.11.A 12.C 13.C 14.D 15.C16.2 17.10 18.犽>119.(1)方程无实数根;(2)方程有两个不相等的实数根;20.(1)答案不唯一.根据一元二次方程根的判别式,只要满足犿<5的实数即可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;(2)答案不唯一.要依赖(1)中的犿的值,由根与系数的关系可得答案.α=0,β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)=9犿2-6犿+1=(3犿-1)2 3 参考答案与提示要使狓1≠狓2,∴Δ>0,得犿≠13.另解:由狓2+(犿-1)狓-2犿2+犿=0得狓1=犿,狓2=1-2犿,由狓1≠狓2解得.(2)∵狓1=犿,狓2=1-2犿,狓12+狓22=2∴犿2+(1-2犿)2=2解得犿1=-15,犿2=1.另解:也可用韦达定理来解.22.(1)狓1=-1,狓2=-1,狓1+狓2=-2,狓1·狓2=1(2)狓1=槡3+132,狓2=槡3-132,狓1+狓2=3,狓1·狓2=-1(3)狓1=1,狓2=-73,狓1+狓2=-43,狓1·狓2=-73猜想:犪狓2+犫狓+犮=0的两根为狓1与狓2,则狓1+狓2=-犫犪,狓1·狓2=犮犪,应用:另一根为槡2-3,犮=123.依题意有:狓1+狓2=-2(犿+2) ①狓1狓2=犿2-5②狓12+狓22=狓1狓2+16③Δ=4(犿+2)2-4(犿2-5)≥0烅烄烆④由①②③解得:犿=-1或犿=-15,又由④可知犿≥-94,∴犿=-15(舍去),故犿=-1.24.由一元二次方程根与系数关系可知:狓1+狓2=2犽-3,狓1·狓2=2犽-4.(1)狓1+狓2>0,狓1·狓2>0即2犽-3>0,2犽-4>0所以犽>2;(2)狓1+狓2>0,狓1·狓2<0即2犽-3>0,2犽-4<0所以32<犽<2;(3)不妨设狓1>3,狓2<3,则狓1-3>0,狓2-3<0,即(狓1-3)(狓2-3)<0所以犽>72.第3节 实际问题与一元二次方程练习一1.C 2.A3.设这两年平均增长的百分率为狓,则8(1+狓)2=9,解得狓≈6%.4.设三、四月份的平均增长率为狓,则1000(1-10%)(1+狓)2=1296,解得狓=20%.5.由题意得10-狓()102=25%,解得狓=5.6.提示:设金边宽为狓cm,则(60+2狓)(40+2狓)-60×40=1375×60×40.7.设垂直墙面的边长为狓m,则另一边长为(33-2狓)m,列方程得狓(33-2狓)=130,解得狓1=6.5,狓2=10.当狓=6.5时,33-2狓=20>18不符合要求,舍去;当狓=10时,33-2狓=13<18符合要求.故花坛的长为13m,宽为10m.8.(1)∵四月份用电180度,交电费,恰好为每度0.2元,∴四月份用电没超过犪度,五月份用电250度,交电费56元,每度超过0.2元.∴五月份用电超过了犪度.(2)由题意得,(250-犪)·犪625+0.2犪=56整理得,犪2-375犪+56×625=0即(犪-200)(犪-175)=0,∴犪1=200,犪2=175又∵犪≥180,∴犪=200.9.(1)18000千克;(2)在果园出售,毛收入为18000×1.1=19800元;在市场出售,毛收入为18000×1.3-18×8×25=19800元;虽然,两个收入相同,但市场出售还要费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)[1+(1+狓)+(1+狓)2]=57000,解得狓=0.5=50%.4 人教版·数学·九年级(上)10.(1)狔=(30-2狓)狓;(2)10,8;(3)不是;狓=7.5时,最大为112.5m2.练习二1.设甬路宽度为狓m,根据题意得(40-2狓)(26-狓)=144×6,解得狓1=2,狓2=44(不合题意,舍去),所以甬路宽为2m.2.根据题意可得方程(50-2-狓)×(30-2狓)=50×302,化简可得 狓2-63狓+345=0,解得: 狓1≈6.06,狓2=56.94,经检验,狓2不合题意舍去,所以狓的值约取6.06m.图23.设狓s后两只蚂蚁与犗点组成的三角形面积等于450cm2.(1)若这只蚂蚁在犗犃上,根据题意得12(50-2狓)·3狓=450,解得狋1=10,狋2=15.(2)若这只蚂蚁在犗犅上,根据题意得12(2狓-50)·3狓=450,解得狋1=30,狋2=-5(不合题意,舍去).所以分别在10s,15s,30s时两只蚂蚁与犗点组成的三角形面积等于450cm2.4.设有狀个人参加聚会,则在这狀个人中任何1个人,他(她)都要与除自己以外的(狀-1)个人握手;又因为甲与乙握手与乙与甲握手是同一次握手,所以握手总次数为12狀(狀-1).所以,狀(狀-1)=56.和这个问题所列方程相同的实际问题很多,如:(1)狀个村庄,每两个之间都有一条公路,若有人统计共有28条公路,问共有多少个村庄?(2)在某两地的铁路线上,共有28个不同的火车站,问这条铁路共有多少个不同的票价?(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表队参加?(4)空间狀个点,任意三点不共线,可以连28条不同的直线,求空间共有多少个点?(5)平面上有28条直线,若任意两条不平行,任意三条不共点,则有多少个交点?和这个问题列方程的思想一样的实际问题很多,如:(1)春节前后,几个人互打电话问候,若共打了20次电话,问共有几人?(2)元旦前后,几个同学互相赠送贺年卡,若共赠送了20张贺年卡,问共有几人?(3)在某两地的铁路线上,共有20个不同的火车站,问这条铁路共需设计多少个不同的火车票?5.(1)由题意设2月,3月每月增长的百分率为狓,则25[1+(1+狓)+(1+狓)2]=91,解得狓=0.2=20%.即2月、3月份每月平均增长的百分率为20%.(2)显然,3月份的生产收入为25×(1+0.2)2=25×1.44=36(万元)设治理狀个月后所投资金开始见效,则有91+36(狀-3)-111≥20狀,狀≥8.即治理8个月后所投资金开始见效.6.设商品降低了狓个100元,则优惠价是(3500-100狓)元,每个商品的利润是[(3500-100狓)-2500]元,销售量为(8+2狓)个,由题意得[(3500-100狓)-2500](8+2狓)=8×(3500-2500)(1+12.5%),解得狓1=1,狓2=5.所以,优惠价应定为3000元或3400元.到底定为多钱,要视具体情况而定.7.(1)70,4,2007.(2)设2009年和2010年两年绿地面积的年平均增长率为狓,根据题意,得70(1+狓)2=84.7.整理后,得(1+狓)2=1.21.解这个方程,得狓1=0.1,狓2=-2.1(不合题意,舍去).故所求平均增长率为10%.第二十三章 旋 转第1节 图形的旋转1.C 2.B 3.D 4.A 5 参考答案与提示5.相同 相等 旋转中心6.45° 90° 7.犅犆犇 犆 60°8.底角是60°,腰与底相等的等腰梯形9.图略 10.五角星图311.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆槡=3m.(2)画出犃点经过的路径,如图4所示.图4∵∠犃犅犃1=180°-60°=120°,犃1犃2=犃犆槡=3m,∴犃点所经过的路径长=120180×π×槡2+3=43π槡+3≈5.9(m).第2节 中心对称1.B 2.C 3.C 4.C5.关于原点对称6.3 7.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)(2)将得到的这组图形以一条边的中点为旋转中心旋转.(图6)(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的图形.图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋转90°后或绕点犆逆时针旋转90°后能与正方形犃犅犆犇重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)图8(2)把△犃犅犆绕犃犆的中点犗旋转180°即可(如图9).6 人教版·数学·九年级(上)图9四边形是菱形,平行四边形.13.答案不唯一,下面举出三例,如图10所示.图10第3节 课题学习 图案设计1.左右,上下2.圆心 逆时针 90°3.45°(答案不唯一)4.3 犗 90° 矩形犃犅犉犎 犉犎5.旋转变换,平移变换(答案不唯一)6.平移变换,旋转变换(答案不唯一)7.提示:(1)犃犉=犆犈;(2)两次旋转变换(答案不唯一)8.图案如图11所示,四边形犈犗犆犎的面积是4cm2.图119.(1)平移后的小船如图12所示.图12(2)如图12所示,点犃′与点犃关于直线犔成轴对称,连接犃′犅交直线犔于点犘,则点犘为所求.10.答案不唯一,下面举出两例(如图13所示).图1311.略第二十四章 圆第1节 圆练习一1.A 2.B 3.A槡4.63 5.306.50° 7.8 8.200°9.50° 10.15°11.64° 12.30° 13.︵犅犇的中点14.以犕为圆心,以大于犕到⊙犗的最小距离且小于犕到⊙犗的最大距离为半径画圆,与⊙犗的交点即分别为犃、犅.15.1cm或7cm 16.258cm槡17.35cm18.75°练习二1.B 2.C 3.B 4.A 5.96.2.5m7.50° 8.130° 槡9.53cm图1410.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆=。
全品试卷数学九年级上册【含答案】
![全品试卷数学九年级上册【含答案】](https://img.taocdn.com/s3/m/bbafaa787275a417866fb84ae45c3b3567ecddbf.png)
全品试卷数学九年级上册【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. 1B. -1C. 2D. 32. 下列函数中,奇函数是:A. f(x) = x³B. f(x) = x²C. f(x) = |x|D. f(x) = sin(x)3. 方程x² 5x + 6 = 0的解为:A. x = 2, x = 3B. x = 1, x = 6C. x = -2, x = -3D. x = 3, x = 24. 若等差数列{an}中,a1 = 3,公差d = 2,则a5的值为:A. 11B. 13C. 15D. 175. 下列级数中,收敛的是:A. 1 + 1/2 + 1/3 + 1/4 +B. 1 1/2 + 1/3 1/4 +C. 1 + 1/2² + 1/3² + 1/4² +D. 1 1/2² + 1/3² 1/4² +二、判断题(每题1分,共5分)1. 若函数f(x)在区间[a, b]上单调递增,则f'(x) ≥ 0,在[a, b]上恒成立。
()2. 若矩阵A为对称矩阵,则A的转置矩阵与A相等。
()3. 若多项式f(x)能被x² 1整除,则f(1) = f(-1) = 0。
()4. 若函数f(x)在点x = a处可导,则f(x)在点x = a处连续。
()5. 若等比数列{an}中,a1 = 1,公比q = 2,则数列{an}是递增数列。
()三、填空题(每题1分,共5分)1. 若函数f(x) = x³ 3x² + 2x,则f'(x) = _______。
2. 若矩阵A = \(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\),则A的行列式值|A| = _______。
2020年人教版九年级数学上册全册精品导学案(含答案)
![2020年人教版九年级数学上册全册精品导学案(含答案)](https://img.taocdn.com/s3/m/24d645bc0c22590103029d53.png)
第二十一章一元二次方程21.1一元二次方程1. 了解一元二次方程的概念,应用一元二次方程概念解决一些简单问题.2.掌握一元二次方程的一般形式ax2+bx+c=0(a≠0)及有关概念.3.会进行简单的一元二次方程的试解;理解方程解的概念.重点:一元二次方程的概念及其一般形式;一元二次方程解的探索.难点:由实际问题列出一元二次方程;准确认识一元二次方程的二次项和系数以及一次项和系数及常数项.一、自学指导.(10分钟)问题1:如图,有一块矩形铁皮,长100 cm,宽50 cm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,就能制作一个无盖方盒.如果要制作的无盖方盒的底面积为3600 cm2,那么铁皮各角应切去多大的正方形?分析:设切去的正方形的边长为x cm,则盒底的长为__(100-2x)cm__,宽为__(50-2x)cm__.列方程__(100-2x)·(50-2x)=3600__,化简整理,得__x2-75x+350=0__.①问题2:要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,比赛组织者应邀请多少个队参赛?分析:全部比赛的场数为__4×7=28__.设应邀请x个队参赛,每个队要与其他__(x-1)__个队各赛1场,所以全部比赛共x(x-1)2__场.列方程__x(x-1)2=28__,化简整理,得__x2-x-56=0__.②探究:(1)方程①②中未知数的个数各是多少?__1个__.(2)它们最高次数分别是几次?__2次__.归纳:方程①②的共同特点是:这些方程的两边都是__整式__,只含有__一个__未知数(一元),并且未知数的最高次数是__2__的方程.1.一元二次方程的定义等号两边都是__整式__ ,只含有__一__个未知数(一元),并且未知数的最高次数是__2__(二次)的方程,叫做一元二次方程.2.一元二次方程的一般形式一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式:ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.其中__ax2__是二次项,__a__是二次项系数,__bx__是一次项,__b__是一次项系数,__c__是常数项.点拨精讲:二次项系数、一次项系数、常数项都要包含它前面的符号.二次项系数a≠0是一个重要条件,不能漏掉.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)1.判断下列方程,哪些是一元二次方程?(1)x3-2x2+5=0;(2)x2=1;(3)5x2-2x-14=x2-2x+35;(4)2(x+1)2=3(x+1);(5)x2-2x=x2+1; (6)ax2+bx+c=0.解:(2)(3)(4).点拨精讲:有些含字母系数的方程,尽管分母中含有字母,但只要分母中不含有未知数,这样的方程仍然是整式方程.2.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.解:去括号,得3x2-3x=5x+10.移项,合并同类项,得3x2-8x-10=0.其中二次项系数是3,一次项系数是-8,常数项是-10.点拨精讲:将一元二次方程化成一般形式时,通常要将首项化负为正,化分为整.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,无论m取何值,该方程都是一元二次方程.证明:m2-8m+17=(m-4)2+1,∵(m-4)2≥0,∴(m-4)2+1>0,即(m-4)2+1≠0.∴无论m取何值,该方程都是一元二次方程.点拨精讲:要证明无论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.2.下面哪些数是方程2x2+10x+12=0的根?-4,-3,-2,-1,0,1,2,3,4.解:将上面的这些数代入后,只有-2和-3满足等式,所以x=-2或x =-3是一元二次方程2x2+10x+12=0的两根.点拨精讲:要判定一个数是否是方程的根,只要把这个数代入等式,看等式两边是否相等即可.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)1.判断下列方程是否为一元二次方程.(1)1-x2=0; (2)2(x2-1)=3y;(3)2x2-3x-1=0; (4)1x2-2x=0;(5)(x+3)2=(x-3)2; (6)9x2=5-4x.解:(1)是;(2)不是;(3)是;(4)不是;(5)不是;(6)是.2.若x=2是方程ax2+4x-5=0的一个根,求a的值.解:∵x=2是方程ax2+4x-5=0的一个根,∴4a+8-5=0,解得a=-3 4.3.根据下列问题,列出关于x的方程,并将其化成一元二次方程的一般形式:(1)4个完全相同的正方形的面积之和是25,求正方形的边长x;(2)一个长方形的长比宽多2,面积是100,求长方形的长x.解:(1)4x2=25,4x2-25=0;(2)x(x-2)=100,x2-2x-100=0.学生总结本堂课的收获与困惑.(2分钟)1.一元二次方程的概念以及怎样利用概念判断一元二次方程.2.一元二次方程的一般形式ax2+bx+c=0(a≠0),特别强调a≠0.3.要会判断一个数是否是一元二次方程的根.学习至此,请使用本课时对应训练部分.(10分钟)21.2解一元二次方程21.2.1配方法(1)1. 使学生会用直接开平方法解一元二次方程.2. 渗透转化思想,掌握一些转化的技能.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次——转化的数学思想.难点:通过根据平方根的意义解形如x2=n(n≥0)的方程,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.一、自学指导.(10分钟)问题1:一桶某种油漆可刷的面积为1500 dm2,小李用这桶油漆恰好刷完10个同样的正方体形状的盒子的全部外表面,你能算出盒子的棱长吗?设正方体的棱长为x dm,则一个正方体的表面积为__6x2__dm2,根据一桶油漆可刷的面积列出方程:__10×6x2=1500__,由此可得__x2=25__,根据平方根的意义,得x=__±5__,即x1=__5__,x2=__-5__.可以验证__5__和-5都是方程的根,但棱长不能为负值,所以正方体的棱长为__5__dm.探究:对照问题1解方程的过程,你认为应该怎样解方程(2x-1)2=5及方程x2+6x+9=4?方程(2x-1)2=5左边是一个整式的平方,右边是一个非负数,根据平方根的意义,可将方程变形为,即将方程变为__2x两个一元一次方程,从而得到方程(2x-1)2=5的两个解为x1=2x2=2.在解上述方程的过程中,实质上是把一个一元二次方程“降次”,转化为两个一元一次方程,这样问题就容易解决了.方程x2+6x+9=4的左边是完全平方式,这个方程可以化成(x+__3__)2=4,进行降次,得到__x+3=±2__ ,方程的根为x1=__-1__,x2=__-5__.归纳:在解一元二次方程时通常通过“降次”把它转化为两个一元一次方程.如果方程能化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,那么可得x=±p 或mx+n=±p.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)解下列方程:(1)2y2=8;(2)2(x-8)2=50;(3)(2x-1)2+4=0; (4)4x2-4x+1=0.解:(1)2y2=8,(2)2(x-8)2=50,y2=4,(x-8)2=25,y=±2,x-8=±5,∴y1=2,y2=-2;x-8=5或x-8=-5,∴x1=13,x2=3;(3)(2x-1)2+4=0,(4)4x2-4x+1=0,(2x-1)2=-4<0,(2x-1)2=0,∴原方程无解;2x-1=0,∴x1=x2=1 2.点拨精讲:观察以上各个方程能否化成x2=p(p≥0)或(mx+n)2=p(p≥0)的形式,若能,则可运用直接开平方法解.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用直接开平方法解下列方程:(1)(3x +1)2=7; (2)y 2+2y +1=24;(3)9n 2-24n +16=11.解:(1)-1±73;(2)-1±26;(3)4±113. 点拨精讲:运用开平方法解形如(mx +n)2=p(p ≥0)的方程时,最容易出错的是漏掉负根.2.已知关于x 的方程x 2+(a 2+1)x -3=0的一个根是1,求a 的值. 解:±1.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(9分钟)用直接开平方法解下列方程:(1)3(x -1)2-6=0 ; (2)x 2-4x +4=5;(3)9x 2+6x +1=4; (4)36x 2-1=0;(5)4x 2=81; (6)(x +5)2=25;(7)x 2+2x +1=4.解:(1)x1=1+2,x2=1-2;(2)x1=2+5,x2=2-5;(3)x1=-1,x2=1 3;(4)x1=16,x2=-16;(5)x1=92,x2=-92;(6)x1=0,x2=-10;(7)x1=1,x2=-3.学生总结本堂课的收获与困惑.(2分钟)1.用直接开平方法解一元二次方程.2.理解“降次”思想.3.理解x2=p(p≥0)或(mx+n)2=p(p≥0)中,为什么p≥0?学习至此,请使用本课时对应训练部分.(10分钟)21.2.1配方法(2)1.会用配方法解数字系数的一元二次方程.2.掌握配方法和推导过程,能使用配方法解一元二次方程.重点:掌握配方法解一元二次方程.难点:把一元二次方程转化为形如(x -a)2=b 的过程.(2分钟)1.填空:(1)x 2-8x +__16__=(x -__4__)2; (2)9x 2+12x +__4__=(3x +__2__)2; (3)x 2+px +__(p 2)2__=(x +__p2__)2.2.若4x 2-mx +9是一个完全平方式,那么m 的值是__±12__.一、自学指导.(10分钟)问题1:要使一块矩形场地的长比宽多6 m ,并且面积为16 m 2,场地的长和宽分别是多少米?设场地的宽为x m ,则长为__(x +6)__m ,根据矩形面积为16 m 2,得到方程__x(x +6)=16__,整理得到__x 2+6x -16=0__.探究:怎样解方程x 2+6x -16=0?对比这个方程与前面讨论过的方程x 2+6x +9=4,可以发现方程x 2+6x +9=4的左边是含有x 的完全平方形式,右边是非负数,可以直接降次解方程;而方程x 2+6x -16=0不具有上述形式,直接降次有困难,能设法把这个方程化为具有上述形式的方程吗?解:移项,得x 2+6x =16,两边都加上__9__即__(62)2__,使左边配成x 2+bx +(b2)2的形式,得__x 2__+6__x__+9=16+__9__,左边写成平方形式,得__(x +3)2=25__,开平方,得__x +3=±5__, (降次)即 __x +3=5__或__x +3=-5__, 解一次方程,得x 1=__2__,x 2=__-8__.归纳:通过配成完全平方式的形式解一元二次方程的方法,叫做配方法;配方的目的是为了降次,把一元二次方程转化为两个一元一次方程.问题2:解下列方程:(1)3x 2-1=5; (2)4(x -1)2-9=0; (3)4x 2+16x +16=9.解:(1)x =±2;(2)x 1=-12,x 2=52;(3)x 1=-72,x 2=-12.归纳:利用配方法解方程时应该遵循的步骤: (1)把方程化为一般形式ax 2+bx +c =0; (2)把方程的常数项通过移项移到方程的右边; (3)方程两边同时除以二次项系数a ;(4)方程两边同时加上一次项系数一半的平方;(5)此时方程的左边是一个完全平方式,然后利用平方根的定义把一元二次方程化为两个一元一次方程来解.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟) 1.填空:(1)x 2+6x +__9__=(x +__3__)2; (2)x 2-x +__14__=(x -__12__)2;(3)4x 2+4x +__1__=(2x +__1__)2. 2.解下列方程:(1)x 2+6x +5=0; (2)2x 2+6x +2=0; (3)(1+x)2+2(1+x)-4=0.解:(1)移项,得x 2+6x =-5,配方得x 2+6x +32=-5+32,(x +3)2=4, 由此可得x +3=±2,即x 1=-1,x 2=-5. (2)移项,得2x 2+6x =-2,二次项系数化为1,得x 2+3x =-1, 配方得x 2+3x +(32)2=(x +32)2=54,由此可得x +32=±52,即x 1=52-32,x 2=-52-32.(3)去括号,整理得x 2+4x -1=0, 移项得x 2+4x =1, 配方得(x +2)2=5,x +2=±5,即x 1=5-2,x 2=-5-2.点拨精讲:解这些方程可以用配方法来完成,即配一个含有x 的完全平方式.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(5分钟)如图,在Rt△ABC中,∠C=90°,AC=8 m,CB=6 m,点P,Q同时由A,B两点出发分别沿AC,BC方向向点C匀速移动,它们的速度都是1 m/s,几秒后△PCQ的面积为Rt△ABC面积的一半?解:设x秒后△PCQ的面积为Rt△ABC面积的一半.根据题意可列方程:12(8-x)(6-x)=12×12×8×6,即x2-14x+24=0,(x-7)2=25,x-7=±5,∴x1=12,x2=2,x1=12,x2=2都是原方程的根,但x1=12不合题意,舍去.答:2秒后△PCQ的面积为Rt△ABC面积的一半.点拨精讲:设x秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.根据已知条件列出等式.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.用配方法解下列关于x的方程:(1)2x2-4x-8=0;(2)x2-4x+2=0;(3)x2-12x-1=0 ; (4)2x2+2=5.解:(1)x1=1+5,x2=1-5;(2)x1=2+2,x2=2-2;(3)x1=14+174,x2=14-174;(4)x1=62,x2=-62.2.如果x2-4x+y2+6y+z+2+13=0,求(xy)z的值.解:由已知方程得x2-4x+4+y2+6y+9+z+2=0,即(x-2)2+(y+3)2+z+2=0,∴x=2,y=-3,z=-2.∴(xy)z=[2×(-3)]-2=136.学生总结本堂课的收获与困惑.(2分钟)1.用配方法解一元二次方程的步骤.2.用配方法解一元二次方程的注意事项.学习至此,请使用本课时对应训练部分.(10分钟)21.2.2公式法1. 理解一元二次方程求根公式的推导过程,了解公式法的概念.2. 会熟练应用公式法解一元二次方程.重点:求根公式的推导和公式法的应用.难点:一元二次方程求根公式的推导.(2分钟) 用配方法解方程:(1)x2+3x+2=0;(2)2x2-3x+5=0. 解:(1)x1=-2,x2=-1;(2)无解.一、自学指导.(8分钟)问题:如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根?问题:已知ax2+bx+c=0(a≠0),试推导它的两个根x1=-b+b2-4ac2a,x2=-b-b2-4ac2a.分析:因为前面具体数字已做得很多,现在不妨把a,b,c也当成一个具体数字,根据上面的解题步骤就可以一直推下去.探究:一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a,b,c而定,因此:(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a,b,c代入式子x=-b±b2-4ac2a就得到方程的根,当b2-4ac<0时,方程没有实数根.(2)x=-b±b2-4ac2a叫做一元二次方程ax2+bx+c=0(a≠0)的求根公式.(3)利用求根公式解一元二次方程的方法叫做公式法.(4)由求根公式可知,一元二次方程最多有__2个实数根,也可能有__1__个实根或者__没有__实根.(5)一般地,式子b2-4ac叫做方程ax2+bx+c=0(a≠0)的根的判别式,通常用希腊字母Δ表示,即Δ=b2-4ac.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)用公式法解下列方程,根据方程根的情况你有什么结论?(1)2x2-3x=0;(2)3x2-23x+1=0;(3)4x2+x+1=0.解:(1)x1=0,x2=32;有两个不相等的实数根;(2)x1=x2=33;有两个相等的实数根;(3)无实数根.点拨精讲:Δ>0时,有两个不相等的实数根;Δ=0时,有两个相等的实数根;Δ<0时,没有实数根.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.方程x2-4x+4=0的根的情况是(B)A.有两个不相等的实数根B.有两个相等的实数根C.有一个实数根D.没有实数根2.当m为何值时,方程(m+1)x2-(2m-3)x+m+1=0,(1)有两个不相等的实数根?(2)有两个相等的实数根?(3)没有实数根?解:(1)m<14;(2)m=14;(3)m >14.3. 已知x2+2x=m-1没有实数根,求证:x2+mx=1-2m必有两个不相等的实数根.证明:∵x2+2x-m+1=0没有实数根,∴4-4(1-m)<0,∴m<0.对于方程x2+mx=1-2m,即x2+mx+2m-1=0,Δ=m2-8m+4,∵m<0,∴Δ>0,∴x2+mx=1-2m必有两个不相等的实数根.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.利用判别式判定下列方程的根的情况:(1)2x2-3x-32=0; (2)16x2-24x+9=0;(3)x2-42x+9=0 ; (4)3x2+10x=2x2+8x. 解:(1)有两个不相等的实数根;(2)有两个相等的实数根;(3)无实数根;(4)有两个不相等的实数根. 2.用公式法解下列方程:(1)x 2+x -12=0 ; (2)x 2-2x -14=0;(3)x 2+4x +8=2x +11; (4)x(x -4)=2-8x ; (5)x 2+2x =0 ; (6)x 2+25x +10=0. 解:(1)x 1=3,x 2=-4; (2)x 1=2+32,x 2=2-32; (3)x 1=1,x 2=-3;(4)x 1=-2+6,x 2=-2-6; (5)x 1=0,x 2=-2; (6)无实数根.点拨精讲:(1)一元二次方程ax 2+bx +c =0(a ≠0)的根是由一元二次方程的系数a ,b ,c 确定的;(2)在解一元二次方程时,可先把方程化为一般形式,然后在b 2-4ac ≥0的前提下,把a ,b ,c 的值代入x =-b±b 2-4ac 2a (b 2-4ac ≥0)中,可求得方程的两个根;(3)由求根公式可以知道一元二次方程最多有两个实数根.学生总结本堂课的收获与困惑.(2分钟)1.求根公式的推导过程.2.用公式法解一元二次方程的一般步骤:先确定.a,b,c的值,再算.出b2-4ac的值、最后代.入求根公式求解.3.用判别式判定一元二次方程根的情况.学习至此,请使用本课时对应训练部分.(10分钟)21.2.3因式分解法1. 会用因式分解法(提公因式法、公式法)解某些简单的数字系数的一元二次方程.2. 能根据具体的一元二次方程的特征,灵活选择方程的解法,体会解决问题方法的多样性.重点:用因式分解法解一元二次方程.难点:理解因式分解法解一元二次方程的基本思想.(2分钟)将下列各题因式分解:(1)am+bm+cm=(__a+b+c__)m;(2)a2-b2=__(a+b)(a-b)__;(3)a2±2ab+b2=__(a±b)2__.一、自学指导.(8分钟)问题:根据物理学规律,如果把一个物体从地面以10 m/s的速度竖直上抛,那么经过x s物体离地的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)设物体经过x s落回地面,这时它离地面的高度为0,即10x-4.9x2=0,①思考:除配方法或公式法以外,能否找到更简单的方法解方程①? 分析:方程①的右边为0,左边可以因式分解得: x(10-4.9x)=0,于是得x =0或10-4.9x =0, ② ∴x 1=__0__,x 2≈2.04.上述解中,x 2≈2.04表示物体约在2.04 s 时落回地面,而x 1=0表示物体被上抛离开地面的时刻,即0 s 时物体被抛出,此刻物体的高度是0 m .点拨精讲: (1)对于一元二次方程,先将方程右边化为0,然后对方程左边进行因式分解,使方程化为两个一次式的乘积的形式,再使这两个一次因式分别等于零,从而实现降次,这种解法叫做因式分解法.(2)如果a·b =0,那么a =0或b =0,这是因式分解法的根据.如:如果(x +1)(x -1)=0,那么__x +1=0或__x -1=0__,即__x =-1__或__x =1.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 1.说出下列方程的根:(1)x(x -8)=0; (2)(3x +1)(2x -5)=0. 解:(1)x 1=0,x 2=8; (2)x 1=-13,x 2=52.2.用因式分解法解下列方程: (1)x 2-4x =0; (2)4x 2-49=0; (3)5x 2-20x +20=0.解:(1)x 1=0,x 2=4; (2)x 1=72,x 2=-72;(3)x 1=x 2=2.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.用因式分解法解下列方程:(1)5x2-4x=0;(2)3x(2x+1)=4x+2;(3)(x+5)2=3x+15.解:(1)x1=0,x2=4 5;(2)x1=23,x2=-12;(3)x1=-5,x2=-2.点拨精讲:用因式分解法解一元二次方程的要点是方程的一边是0,另一边可以分解因式.2.用因式分解法解下列方程:(1)4x2-144=0;(2)(2x-1)2=(3-x)2;(3)5x2-2x-14=x2-2x+34;(4)3x2-12x=-12.解:(1)x1=6,x2=-6;(2)x1=43,x2=-2;(3)x1=12,x2=-12;(4)x1=x2=2.点拨精讲:注意本例中的方程可以试用多种方法.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)1.用因式分解法解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)(x-4)2=(5-2x)2.解:(1)x1=0,x2=-1;(2)x1=0,x2=23;(3)x1=x2=1;(4)x1=112,x2=-112;(5)x1=3,x2=1.点拨精讲:因式分解法解一元二次方程的一般步骤:(1)将方程右边化为__0__;(2)将方程左边分解成两个一次式的__乘积__;(3)令每个因式分别为__0__,得到两个一元一次方程;(4)解这两个一元一次方程,它们的解就是原方程的解.2.把小圆形场地的半径增加5 m得到大圆形场地,场地面积增加了一倍,求小圆形场地的半径.解:设小圆形场地的半径为x m.则可列方程2πx2=π(x+5)2.解得x1=5+52,x2=5-52(舍去).答:小圆形场地的半径为(5+52) m.学生总结本堂课的收获与困惑.(2分钟)1.用因式分解法解方程的根据由ab=0得a=0或b=0,即“二次降为一次”.2.正确的因式分解是解题的关键.学习至此,请使用本课时对应训练部分.(10分钟)21.2.4一元二次方程的根与系数的关系1. 理解并掌握根与系数的关系:x1+x2=-ba,x1x2=ca.2. 会用根的判别式及根与系数的关系解题.重点:一元二次方程的根与系数的关系及运用.难点:一元二次方程的根与系数的关系及运用.一、自学指导.(10分钟)自学1:完成下表:问题:你发现什么规律?①用语言叙述你发现的规律;答:两根之和为一次项系数的相反数;两根之积为常数项.②x2+px+q=0的两根x1,x2用式子表示你发现的规律. 答:x1+x2=-p,x1x2=q.自学2:完成下表:问题:上面发现的结论在这里成立吗?(不成立)请完善规律:①用语言叙述发现的规律;答:两根之和为一次项系数与二次项系数之比的相反数,两根之积为常数项与二次项系数之比.②ax 2+bx +c =0的两根x 1,x 2用式子表示你发现的规律. 答:x 1+x 2=-b a ,x 1x 2=ca.自学3:利用求根公式推导根与系数的关系.(韦达定理)ax 2+bx +c =0的两根x 1=2a ,x 2=2a.x 1+x 2=-b a ,x 1x 2=ca.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟) 根据一元二次方程的根与系数的关系,求下列方程的两根之和与两根之积.(1)x 2-3x -1=0 ; (2)2x 2+3x -5=0; (3)13x 2-2x =0. 解:(1)x 1+x 2=3,x 1x 2=-1; (2)x 1+x 2=-32,x 1x 2=-52;(3)x 1+x 2=6,x 1x 2=0.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)1.不解方程,求下列方程的两根之和与两根之积.(1)x2-6x-15=0; (2)3x2+7x-9=0;(3)5x-1=4x2.解:(1)x1+x2=6,x1x2=-15;(2)x1+x2=-73,x1x2=-3;(3)x1+x2=54,x1x2=14.点拨精讲:先将方程化为一般形式,找对a,b,c.2.已知方程2x2+kx-9=0的一个根是-3,求另一根及k的值.解:另一根为32,k=3.点拨精讲:本题有两种解法,一种是根据根的定义,将x=-3代入方程先求k,再求另一个根;一种是利用根与系数的关系解答.3.已知α,β是方程x2-3x-5=0的两根,不解方程,求下列代数式的值.(1)1α+1β;(2)α2+β2;(3)α-β.解:(1)-35;(2)19;(3)29或-29.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.不解方程,求下列方程的两根和与两根积:(1)x2-3x=15; (2)5x2-1=4x2;(3)x2-3x+2=10; (4)4x2-144=0.解:(1)x1+x2=3,x1x2=-15;(2)x1+x2=0,x1x2=-1;(3)x1+x2=3,x1x2=-8;(4)x 1+x 2=0,x 1x 2=-36.2.两根均为负数的一元二次方程是( C ) A .7x 2-12x +5=0 B .6x 2-13x -5=0 C .4x 2+21x +5=0 D .x 2+15x -8=0点拨精讲:两根均为负数的一元二次方程根与系数的关系满足两根之和为负数,两根之积为正数.学生总结本堂课的收获与困惑.(2分钟)不解方程,根据一元二次方程根与系数的关系和已知条件结合,可求得一些代数式的值;求得方程的另一根和方程中的待定系数的值.1.先化成一般形式,再确定a ,b ,c.2.当且仅当b 2-4ac ≥0时,才能应用根与系数的关系.3.要注意比的符号:x 1+x 2=-b a (比前面有负号),x 1x 2=ca(比前面没有负号).学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(1)1.会根据具体问题(按一定传播速度传播的问题、数字问题等)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:列一元二次方程解决实际问题.难点:找出实际问题中的等量关系.一、自学指导.(12分钟)问题1:有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人?分析:①设每轮传染中平均一个人传染了x个人,那么患流感的这一个人在第一轮中传染了__x__人,第一轮后共有__(x+1)__人患了流感;②第二轮传染中,这些人中的每个人又传染了__x__人,第二轮后共有__(x+1)(x+1)__人患了流感.则列方程:__(x+1)2=121__,解得__x=10或x=-12(舍)__,即平均一个人传染了__10__个人.再思考:如果按照这样的传染速度,三轮后有多少人患流感?问题2:一个两位数,它的两个数字之和为6,把这两个数字交换位置后所得的两位数与原两位数的积是1008,求原来的两位数.分析:设原来的两位数的个位数字为__x__,则十位数字为__(6-x)__,则原两位数为__10(6-x)+x,新两位数为__10x+(6-x)__.依题意可列方程:[10(6-x)+x][10x+(6-x)]=1008__,解得x1=__2__,x2=__4__,∴原来的两位数为24或42.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(5分钟)某初中毕业班的每一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张相片,如果全班有x名学生,根据题意,列出方程为()A.x(x+1)=2550B.x(x-1)=2550C.2x(x+1)=2550D.x(x-1)=2550×2分析:由题意,每一个同学都将向全班其他同学各送一张相片,则每人送出(x-1)张相片,全班共送出x(x-1)张相片,可列方程为x(x-1)=2550. 故选B.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,求每个支干长出多少小分支?解:设每个支干长出x个小分支,则有1+x+x2=91,即x2+x-90=0,解得x1=9,x2=-10(舍去),故每个支干长出9个小分支.点拨精讲:本例与传染问题的区别.2.一个两位数,个位上的数字比十位上的数字小4,且个位数字与十位数字的平方和比这个两位数小4,设个位数字为x,则列方程为:__x2+(x+4)2=10(x+4)+x-4__.二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(7分钟)1.两个正数的差是2,它们的平方和是52,则这两个数是(C)A.2和4B.6和8C.4和6D.8和102.教材P21第2题、第3题学生总结本堂课的收获与困惑.(3分钟)1.列一元二次方程解应用题的一般步骤:(1)“审”:即审题,读懂题意弄清题中的已知量和未知量;(2)“设”:即设__未知数__,设未知数的方法有直接设和间接设未知数两种;(3)“列”:即根据题中__等量__关系列方程;(4)“解”:即求出所列方程的__根__;(5)“检验”:即验证根是否符合题意;(6)“答”:即回答题目中要解决的问题.2. 对于数字问题应注意数字的位置.学习至此,请使用本课时对应训练部分.(10分钟)21.3实际问题与一元二次方程(2)1. 会根据具体问题(增长率、降低率问题和利润率问题)中的数量关系列一元二次方程并求解.2.能根据问题的实际意义,检验所得结果是否合理.3.进一步掌握列方程解应用题的步骤和关键.重点:如何解决增长率与降低率问题.难点:理解增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x为增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量.一、自学指导.(10分钟)自学:两年前生产1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大?(精确到0.01)绝对量:甲种药品成本的年平均下降额为(5000-3000)÷2=1000(元),乙种药品成本的年平均下降额为(6000-3600)÷2=1200(元),显然,乙种药品成本的年平均下降额较大.相对量:从上面的绝对量的大小能否说明相对量的大小呢?也就是能否说明乙种药品成本的年平均下降率大呢?下面我们通过计算来说明这个问题.分析:①设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为__5000(1-x)__元,两年后甲种药品成本为__5000(1-x)2__元.依题意,得__5000(1-x)2=3000__.解得__x1≈0.23,x2≈1.77__.根据实际意义,甲种药品成本的年平均下降率约为__0.23__.②设乙种药品成本的年平均下降率为y.则,列方程:__6000(1-y)2=3600__.解得__y1≈0.23,y2≈1.77(舍)__.答:两种药品成本的年平均下降率__相同__.点拨精讲:经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(8分钟)某商店10月份的营业额为5000元,12月份上升到7200元,平均每月增长百分率是多少?【分析】如果设平均每月增长的百分率为x,则11月份的营业额为__5000(1+x)__元,12月份的营业额为__5000(1+x)(1+x)__元,即__5000(1+x)2__元.由此就可列方程:__5000(1+x)2=7200__.点拨精讲:此例是增长率问题,如题目无特别说明,一般都指平均增长率,增长率是增长数与基准数的比.增长率=增长数∶基准数设基准数为a,增长率为x,则一月(或一年)后产量为a(1+x);二月(或二年)后产量为a(1+x)2;n月(或n年)后产量为a(1+x)n;如果已知n月(n年)后产量为M,则有下面等式:M=a(1+x)n.解这类问题一般多采用上面的等量关系列方程.一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(8分钟)某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.(利息税20%) 分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其他依此类推.解:设这种存款方式的年利率为x,。
人教版数学2020-2021学年九年级上册精选同步练习及答案:22-2-降次解一元二次方程(1)
![人教版数学2020-2021学年九年级上册精选同步练习及答案:22-2-降次解一元二次方程(1)](https://img.taocdn.com/s3/m/20b51734b9d528ea80c779aa.png)
2020-2021学年人教版九年级上册精选同步练习及答案22.2 降次——解一元二次方程同步练习第1课时1.完成下面的解题过程:(1)解方程:2x2-8=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)解方程:3(x-1)2-6=0.解:原方程化成 .开平方,得,x1= ,x2= .2.完成下面的解题过程:解方程:9x2+6x+1=4;解:原方程化成 .开平方,得,x1= ,x2= .3.填空:(1)x2+2·x·2+ =(x+ )2;(2)x2-2·x·6+ =(x- )2;(3)x2+10x+ =(x+ )2;(4)x2-8x+ =(x- )2.4.完成下面的解题过程:解方程:x2-8x+1=0;解:移项,得 .配方,得,.开平方,得,x1= ,x2= .5.用配方法解方程:x2+10x+9=0.6.填空:(1)x2-2·x·3+ =(x- )2;(2)x2+2·x·4+ =(x+ )2;(3)x2-4x+ =(x- )2;(4)x2+14x+ =(x+ )2.7.完成下面的解题过程:解方程:x2+4x-12=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .8.用配方法解方程:x2-6x+7=0.第2课时1.完成下面的解题过程:用配方法解方程:x2-12x+35=0.解:移项,得 .配方,得, .开平方,得,x1= ,x2= .2.填空:(1)x2-2·x·13+ =(x- )2;(2)x2+5x+ =(x+ )2;(3)x2-32x+ =(x- )2;(4)x2+x+ =(x+ )2.3.完成下面的解题过程:用配方法解方程:x2-x-74=0.解:移项,得 .配方,.开平方,得,x1= ,x2= .4.完成下面的解题过程:用配方法解方程:3x2+6x+2=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .5.用配方法解方程:9x2-6x-8=0.第3课时1.完成下面的解题过程:用配方法解方程:3x2+6x-4=0.解:移项,得 .二次项系数化为1,得 .配方,.开平方,得 ,x 1= ,x 2= .2.完成下面的解题过程:用配方法解方程:(2x-1)2=4x+9.解:整理,得 .移项,得 .二次项系数化为1,得 .配方 , .开平方,得 ,x 1= ,x 2= .3.用配方法解方程:(2x+1)(x-3)=x-9.第4课时1.完成下面的解题过程:用公式法解下列方程:(1)2x 2-3x-2=0.解:a= ,b= ,c= .b 2-4ac= = >0.,1x =_________,1x =__________.(2)x解:整理,得 .a= ,b= ,c= .b 2-4ac= = ., 12x =x =_________.(3)(x-2)2=x-3.解:整理,得 .a= ,b= ,c= .b 2-4ac= = <0.方程 实数根.2.利用判别式判断下列方程的根的情况:(1)x 2-5x=-7;(2)(x-1)(2x+3)=x ;(3)x 2x.第5课时1.完成下面的解题过程:用公式法解方程:2x(x-1)+6=2(0.5x+3)解:整理,得 .a= ,b= ,c= .b 2-4ac= = >0.x=__________________=______,1x =_________,2x =__________.2.完成下面的解题过程:用因式分解法解方程:x 2x.解:移项,得 .因式分解,得 .于是得 或 ,x 1= ,x 2= .3.用因式分解法解下列方程:(1)x2+x=0;(2)4x2-121=0;(3)3x(2x+1)=4x+2;(4)(x-4)2=(5-2x)2.第6课时1.填空:解一元二次方程的方法有四种,它们是直接开平方法、、、 .2.完成下面的解题过程:(1)用直接开平方法解方程:2(x-3)2-6=0;解:原方程化成 .开平方,得,x1= ,x2= .(2)用配方法解方程:3x2-x-4=0;解:移项,得 .二次项系数化为1,得 .配方,.开平方,得,x1= ,x2= .(3)用公式法解方程:x(2x-4)=2.5-8x.解:整理,得 .a= ,b= ,c= .b2-4ac= = >0.,x1= ,x2= .(4)用因式分解法解方程:x(x+2)=3x+6.解:移项,得 .因式分解,得 .于是得或,x1= ,x2= .2.指出下列方程用哪种方法来解比较适当:(1)(2x+3)2=-2x;(2)(2x+3)2=4(2x+3);(3)(2x+3)2=6.3.先指出下列方程用哪种方法来解比较合适,然后再按这种方法解:(1)(2x-3)2=25;(2)(2x-3)2=5(2x-3);(3)(2x-3)=x(3x-2).4.用配方法解方程:x2+2x-1=0.小结1.注重备课。
2020年人教版初中数学九年级上册课堂同步练习(含答案)
![2020年人教版初中数学九年级上册课堂同步练习(含答案)](https://img.taocdn.com/s3/m/ed1f5a5104a1b0717ed5dda7.png)
2020年人教版初中数学九年级上册课堂同步练习《第21章 一元二次方程》同步练习测试1 一元二次方程的有关概念及直接开平方法 学习要求1.掌握一元二次方程的有关概念,并应用概念解决相关问题. 2.掌握一元二次方程的基本解法——直接开平方法. 课堂学习检测 一、填空题1.一元二次方程中,只含有______个未知数,并且未知数的______次数是2.它的一般形式为__________________.2.把2x 2-1=6x 化成一般形式为__________,二次项系数为______,一次项系数为______,常数项为______.3.若(k +4)x 2-3x -2=0是关于x 的一元二次方程,则k 的取值范围是______. 4.把(x +3)(2x +5)-x (3x -1)=15化成一般形式为______,a =______,b =______,c =______.5.若-3=0是关于x 的一元二次方程,则m 的值是______. 6.方程y 2-12=0的根是______. 二、选择题7.下列方程中,一元二次方程的个数为( ). (1)2x 2-3=0 (2)x 2+y 2=5 (3) (4) A .1个B .2个C .3个D .4个8.在方程:3x 2-5x =0,7x 2-6xy +y 2=0,=0, 3x 2-3x =3x 2-1中必是一元二次方程的有( ).A .2个B .3个C .4个D .5个9.x 2-16=0的根是( ).x x m -m+-222)(542=-x 2122=+x x ,5312+=+x x 322,052222--=+++xx x x axA .只有4B .只有-4C .±4D .±810.3x 2+27=0的根是( ). A .x 1=3,x 2=-3 B .x =3C .无实数根D .以上均不正确三、解答题(用直接开平方法解一元二次方程) 11.2y 2=8. 12.2(x +3)2-4=0.13. 14.(2x +1)2=(x -1)2.综合、运用、诊断 一、填空题15.把方程化为一元二次方程的一般形式(二次项系数为正)是__________,一次项系数是______.16.把关于x 的一元二次方程(2-n )x 2-n (3-x )+1=0化为一般形式为_______________,二次项系数为______,一次项系数为______,常数项为______.17.若方程2kx 2+x -k =0有一个根是-1,则k 的值为______. 二、选择题18.下列方程:(x +1)(x -2)=3,x 2+y +4=0,(x -1)2-x (x +1)=x ,其中是一元二次方程的有( ).A .2个B .3个C .4个D .5个19.形如ax 2+bx +c =0的方程是否是一元二次方程的一般形式,下列说法正确的是( ).A .a 是任意实数B .与b ,c 的值有关.25)1(412=+x x x x +=-2232,01=+xx ,5)3(21,42122=+=-+x x xC .与a 的值有关D .与a 的符号有关20.如果是关于x 的方程2x 2+3ax -2a =0的根,那么关于y 的方程y 2-3=a 的解是( ).A .B .±1C .±2D .21.关于x 的一元二次方程(x -k )2+k =0,当k >0时的解为( ). A .B .C .D .无实数解三、解答题(用直接开平方法解下列方程) 22.(3x -2)(3x +2)=8. 23.(5-2x )2=9(x +3)2.24.25.(x -m )2=n .(n 为正数)拓广、探究、思考26.若关于x 的方程(k +1)x 2-(k -2)x -5+k =0只有唯一的一个解,则k =______,此方程的解为______.27.如果(m -2)x |m |+mx -1=0是关于x 的一元二次方程,那么m 的值为( ).A .2或-2B .2C .-2D .以上都不正确28.已知关于x 的一元二次方程(m -1)x 2+2x +m 2-1=0有一个根是0,求m 的值.29.三角形的三边长分别是整数值2cm ,5cm ,k cm ,且k 满足一元二次方程2k 2-9k -5=0,求此三角形的周长.21=x 5±2±k k +k k -k k -±.063)4(22=--x测试2 配方法与公式法解一元二次方程 学习要求掌握配方法的概念,并能熟练运用配方法与公式法解一元二次方程. 课堂学习检测 一、填空题1._________=(x -__________)2. 2.+_________=(x -_________)2. 3._________=(x -_________)2. 4.+_________=(x -_________)2.5.关于x 的一元二次方程ax 2+bx +c =0(a ≠0)的根是______.6.一元二次方程(2x +1)2-(x -4)(2x -1)=3x 中的二次项系数是______,一次项系数是______,常数项是______.二、选择题7.用配方法解方程应该先变形为( ).A .B .C .D .8.用配方法解方程x 2+2x =8的解为( ). A .x 1=4,x 2=-2B .x 1=-10,x 2=8C .x 1=10,x 2=-8D .x 1=-4,x 2=29.用公式法解一元二次方程,正确的应是( ). A . B . C .D . 10.方程mx 2-4x +1=0(m <0)的根是( ). A .B .+-x x 82x x 232-+-px x 2x ab x -201322=--x x 98)31(2=-x 98)31(2-=-x 910)31(2=-x 0)32(2=-x x x 2412=-252±-=x 252±=x 251±=x 231±=x 41mm-±42C .D .三、解答题(用配方法解一元二次方程) 11.x 2-2x -1=0. 12.y 2-6y +6=0.四、解答题(用公式法解一元二次方程) 13.x 2+4x -3=0. 14.五、解方程(自选方法解一元二次方程) 15.x 2+4x =-3. 16.5x 2+4x =1.综合、运用、诊断 一、填空题17.将方程化为标准形式是______________________,其中a =______,b =______,c =______.18.关于x 的方程x 2+mx -8=0的一个根是2,则m =______,另一根是______. 二、选择题19.若关于x 的二次三项式x 2-ax +2a -3是一个完全平方式,则a 的值为( ).A .-2B .-4C .-6D .2或620.4x 2+49y 2配成完全平方式应加上( ). A .14xyB .-14xymm-±422mmm -±42.03232=--x x x x x 32332-=++C .±28xyD .021.关于x 的一元二次方程的两根应为( ). A . B ., C .D .三、解答题(用配方法解一元二次方程) 22.3x 2-4x =2. 23.x 2+2mx =n .(n +m 2≥0).四、解答题(用公式法解一元二次方程) 24.2x -1=-2x 2. 25.26.2(x -1)2-(x +1)(1-x )=(x +2)2.拓广、探究、思考27.解关于x 的方程:x 2+mx +2=mx 2+3x .(其中m ≠1)28.用配方法说明:无论x 取何值,代数式x 2-4x +5的值总大于0,再求出当x 取何值时,代数式x 2-4x +5的值最小?最小值是多少?ax a x 32222=+22a±-a 2a 22422a±a 2±x x 32132=+测试3 一元二次方程根的判别式 学习要求掌握一元二次方程根的判别式的有关概念,并能灵活地应用有关概念解决实际问题.课堂学习检测 一、填空题1.一元二次方程ax 2+bx +c =0(a ≠0)根的判别式为=b 2-4ac ,(1)当b 2-4ac ______0时,方程有两个不相等的实数根; (2)当b 2-4ac ______0时,方程有两个相等的实数根; (3)当b 2-4ac ______0时,方程没有实数根.2.若关于x 的方程x 2-2x -m =0有两个相等的实数根,则m =______. 3.若关于x 的方程x 2-2x -k +1=0有两个实数根,则k ______. 4.若方程(x -m )2=m +m 2的根的判别式的值为0,则m =______. 二、选择题5.方程x 2-3x =4根的判别式的值是( ). A .-7B .25C .±5D .56.一元二次方程ax 2+bx +c =0有两个实数根,则根的判别式的值应是( ). A .正数B .负数C .非负数D .零7.下列方程中有两个相等实数根的是( ). A .7x 2-x -1=0B .9x 2=4(3x -1)C .x 2+7x +15=0D .8.方程有( ). A .有两个不等实根 B .有两个相等的有理根 C .无实根D .有两个相等的无理根三、解答题9.k 为何值时,方程kx 2-6x +9=0有:(1)不等的两实根;(2)相等的两实根;(3)没有实根.02322=--x x 03322=++x x10.若方程(a -1)x 2+2(a +1)x +a +5=0有两个实根,求正整数a 的值.11.求证:不论m 取任何实数,方程都有两个不相等的实根.综合、运用、诊断 一、选择题12.方程ax 2+bx +c =0(a ≠0)根的判别式是( ).A .B .C .b 2-4acD .abc13.若关于x 的方程(x +1)2=1-k 没有实根,则k 的取值范围是( ). A .k <1B .k <-1C .k ≥1D .k >114.若关于x 的方程3kx 2+12x +k +1=0有两个相等的实根,则k 的值为( ).A .-4B .3C .-4或3D .或15.若关于x 的一元二次方程(m -1)x 2+2mx +m +3=0有两个不等的实根,则m 的取值范围是( ).A .B .且m ≠1C .且m ≠1D . 16.如果关于x 的二次方程a (1+x 2)+2bx =c (1-x 2)有两个相等的实根,那么以正数a ,b ,c 为边长的三角形是( ).A .锐角三角形B .钝角三角形C .直角三角形D .任意三角形02)1(2=++-mx m x 242ac b b -±-ac b 42-2132-23<m 23<m 23≤m 23>m二、解答题17.已知方程mx2+mx+5=m有相等的两实根,求方程的解.18.求证:不论k取任何值,方程(k2+1)x2-2kx+(k2+4)=0都没有实根.19.如果关于x的一元二次方程2x(ax-4)-x2+6=0没有实数根,求a的最小整数值.20.已知方程x2+2x-m+1=0没有实根,求证:方程x2+mx=1-2m一定有两个不相等的实根.拓广、探究、思考21.若a,b,c,d都是实数,且ab=2(c+d),求证:关于x的方程x2+ax +c=0,x2+bx+d=0中至少有一个方程有实数根.测试4 因式分解法解一元二次方程学习要求掌握一元二次方程的重要解法——因式分解法.课堂学习检测一、填空题(填出下列一元二次方程的根) 1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______ 4.x 2+6x +9=0.______ 5.______6.______ 7.(x -1)2-2(x -1)=0.______. 8.(x -1)2-2(x -1)=-1.______ 二、选择题9.方程(x -a )(x +b )=0的两根是( ). A .x 1=a ,x 2=b B .x 1=a ,x 2=-b C .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ). A .x 2=x .两边同除以x ,得x =1. B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0,三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程) 11.3x (x -2)=2(x -2). 12.*13.x 2-3x -28=0. 14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3. *16.2x 2-x -15=0..03222=-x x .)21()21(2x x -=+.1,3221==∴x x .32x x =四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值.综合、运用、诊断一、写出下列一元二次方程的根18..______________________. 19.(x -2)2=(2x +5)2.______________________. 二、选择题20.方程x (x -2)=2(2-x )的根为( ). A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ). A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程 23. 24.4(x +3)2-(x -2)2=0.25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0. (1)求证:当m 取非零实数时,此方程有两个实数根; (2)若此方程有两个整数根,求m 的值.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-.04222=-+-b a ax x测试5 一元二次方程解法综合训练 学习要求会用适当的方法解一元二次方程,培养分析问题和解决问题的能力. 课堂学习检测一、填空题(写出下列一元二次方程的根) 1.3(x -1)2-1=0.__________________ 2.(2x +1)2-2(2x +1)=3.__________________ 3.3x 2-5x +2=0.__________________ 4.x 2-4x -6=0.__________________ 二、选择题5.方程x 2-4x +4=0的根是( ). A .x =2B .x 1=x 2=2C .x =4D .x 1=x 2=46.的根是( ). A .x =3B .x =±3C .x =±9D .7.的根是( ). A .B .C .x 1=0,D .8.(x -1)2=x -1的根是( ). A .x =2 B .x =0或x =1 C .x =1D .x =1或x =2三、用适当方法解下列方程 9.6x 2-x -2=0. 10.(x +3)(x -3)=3.11.x 2-2mx +m 2-n 2=0.12.2a 2x 2-5ax +2=0.(a ≠0)5.27.0512=+x 3±=x 072=-x x 77=x 77,021==x x 72=x 7=x四、解下列方程(先将你选择的最佳解法写在括号中) 13.5x 2=x .(最佳方法:______)14.x 2-2x =224.(最佳方法:______)15.6x 2-2x -3=0.(最佳方法:______)16.6-2x 2=0.(最佳方法:______)17.x 2-15x -16=0.(最佳方法:______)18.4x 2+1=4x .(最佳方法:______)19.(x -1)(x +1)-5x +2=0.(最佳方法:______)综合、运用、诊断 一、填空题20.若分式的值是0,则x =______.1872+--x x x21.关于x 的方程x 2+2ax +a 2-b 2=0的根是____________. 二、选择题22.方程3x 2=0和方程5x 2=6x 的根( ). A .都是x =0 B .有一个相同,x =0 C .都不相同D .以上都不正确23.关于x 的方程abx 2-(a 2+b 2)x +ab =0(ab ≠0)的根是( ). A . B . C .D .以上都不正确三、解下列方程24.(x +1)2+(x +2)2=(x +3)2. 25.(y -5)(y +3)+(y -2)(y +4)=26.26. 27.kx 2-(k +1)x +1=0.四、解答题28.已知:x 2+3xy -4y 2=0(y ≠0),求的值.29.已知:关于x 的方程2x 2+2(a -c )x +(a -b )2+(b -c )2=0有两相等实数根.求证:a +c =2b .(a ,b ,c 是实数)bax a b x 2,221==ba x a bx ==21,0,2221=+=x abb a x .02322=+-x x yx yx +-拓广、探究、思考30.若方程3x 2+bx +c =0的解为x 1=1,x 2=-3,则整式3x 2+bx +c 可分解因式为______________________.31.在实数范围内把x 2-2x -1分解因式为____________________. 32.已知一元二次方程ax 2+bx +c =0(a ≠0)中的两根为请你计算x 1+x 2=____________,x 1·x 2=____________.并由此结论解决下面的问题:(1)方程2x 2+3x -5=0的两根之和为______,两根之积为______. (2)方程2x 2+mx +n =0的两根之和为4,两根之积为-3,则m =______,n =______.(3)若方程x 2-4x +3k =0的一个根为2,则另一根为______,k 为______. (4)已知x 1,x 2是方程3x 2-2x -2=0的两根,不解方程,用根与系数的关系求下列各式的值:①② ③|x 1-x 2|;④ ⑤(x 1-2)(x 2-2).测试6 实际问题与一元二次方程 学习要求会灵活地应用一元二次方程处理各类实际问题. 课堂学习检测 一、填空题1.实际问题中常见的基本等量关系。
人教版数学九上全品作业本答案及解析:二次函数复习3(共53张PPT)
![人教版数学九上全品作业本答案及解析:二次函数复习3(共53张PPT)](https://img.taocdn.com/s3/m/b76ad956af1ffc4ffe47ac95.png)
三、开口方向、对称轴、顶点坐标
1.开口方向看a的值
a0开口向上 a0开口向下
2.求对称轴
顶点 ya式 (xm)2k 直线x=-m
一般 ya式 2xb xc 直线x= b
2a
3.求顶点坐标
2、 已知二次函数y=x2+bx+c的顶点坐标(1, -2),求b,c的值
3、 已知二次函数y=x2+4x+c的顶点坐标在x轴 上,求c的值
4、 已知二次函数y=x2+4x+c的顶点坐标在直 线y=2x+1上,求c的值
四、如何求二次函数的最值
顶点 ya式 (xm)2k 当x=-m时y最小(大)=k 一般 ya式 2xb x当 cx2 b a时y最 , (大 小 )4a4a cb2
(x1,0) (x2,0)
O
x2
x 与Y轴的交点坐标及它 关于对称轴的对称点
( b ,4ac b 2 ) (0, c) ( b , c)
2a
4a
a
二、平移,配方 1、 ya2x 向 左 ( 向 右 )平 移 y a(x m)2
二次函数复习
一、概念
形如y=ax2+bx+c (a,b,c是常数,a≠0) 的函 数叫做二次函数
其中二次项为ax2,一次项为bx, 常数项c
二次项的系数为a,一次项的系数为b, 常数项c
二次函数图象及画法
y
顶点坐标( b ,4ac b 2 )
2a
4a
( b , c) a
x1
c
与X轴的交点坐标
2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)
![2020年人教版九年级数学上册 课后练习本 一元二次方程 实际问题-面积问题(含答案)](https://img.taocdn.com/s3/m/625fdaa3763231126fdb1139.png)
2020年人教版九年级数学上册课后练习本一元二次方程实际问题-面积问题一、选择题1.某学校准备修建一个面积为200平方米的矩形花圃,它的长比宽多10米,设花圃的宽为x 米,则可列方程为( )A.x(x-10)=200B.2x+2(x-10)=200C.x(x+10)=200D.2x+2(x+10)=2002.在一幅长为80 cm.宽为50 cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5 400 cm2,设金色纸边的宽为x cm,那么x满足的方程是( )A.x2+130x-1400=0B.x2+65x-350=0C.x2-130x-1400=0D.x2-65x-350=03.在一幅长80cm,宽50cm的矩形风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,那么x满足的方程(化为一般形式)是( )A. B.C. D.4.厦门市某广场准备修建一个面积为200平方米的矩形草坪,它的长比宽多10米,设草坪的宽为x米,则可列方程为( )A.x(x-10)=200B.2x-2(x-10)=200C.2x+2(x+10)=200D.x(x+10)=2005.某中学准备建一个面积为375 m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为x m,则可列方程( )A.x(x-10)=375B.x(x+10)=375C.2x(2x-10)=375D.2x(2x+10)=3756.用10米长的铝材制成一个矩形窗框,使它的面积为6平方米.若设它的一条边长为x米,则根据题意可列出关于x的方程为()A.x(5+x)=6B.x(5-x)=6C.x(10-x)=6D.x(10-2x)=67.如图,某小区有一块长为18米,宽为6米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为60米2,两块绿地之间及周边留有宽度相等的人行通道.若设人行道的宽度为x米,则可以列出关于x的方程是()A.x2+9x﹣8=0B.x2﹣9x﹣8=0C.x2﹣9x+8=0D.2x2﹣9x+8=08.将一块正方形铁皮的四角各剪去一个边长为3cm的小正方形,做成一个无盖的盒子,已知盒子的容积为300cm3,则原铁皮的边长为()A.10cm B.13cm C.14cm D.16cm二、填空题9.如图,在宽为30m,长为40m的矩形地面上修建两条宽都是1m的道路,余下部分种植花草.那么,种植花草的面积为 .10.如图,邻边不等的矩形花圃ABCD,它的一边AD利用已有的围墙,另外三边所围的栅栏的总长度是6m.若矩形的面积为4m2,则AB的长度是 m(可利用的围墙长度超过6m).11.如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为 .12.如图是我市将要开发的一块长方形的土地,长为xkm,宽为3km,建筑开发商将这块土地分为甲、乙、丙三部分,其中甲和乙均为正方形,现计划甲地建住宅区,乙地建商业区,丙地开辟成小区公园,若已知丙地的面积为2km2,则x的值为 .13.在一幅长50cm,宽30cm的风景画的四周镶一条金色纸边,制成一幅矩形挂图,如图所示,如果要使整个规划土地的面积是1800cm2,设金色纸边的宽为xcm,那么x满足的方程为.14.如图是一张长9cm、宽5cm的矩形纸板,将纸板四个角各剪去一个同样的正方形,可制成底面积是12cm2的一个无盖长方体纸盒,设剪去的正方形边长为xcm,则可列出关于x的方程为.15.学校课外生物小组的试验园地是长35米、宽20米的矩形,为便于管理,现要在中间开辟一横两纵三条等宽的小道(如图),要使种植面积为600平方米,求小道的宽.若设小道的宽为x米,则可列方程为 .16.《算学宝鉴》全称《新集通证古今算学宝鉴》,王文素著,完成于明嘉靖三年,全书12本42卷,近50万字,代表了我国明代数学的最高水平.《算学宝鉴》中记载的用导数解高次方程的方法堪与牛顿媲美,且早于牛顿140年.《算学宝鉴》中记载了我国南宋数学家杨辉提出的一个问题:“直田积八百六十四步,之云阔不及长十二步,问长阔共几何?”译文:一个矩形田地的面积等于864平方步,且它的宽比长少12步,问长与宽的和是多少步?如果设矩形田地的长为x步,可列方程为.三、解答题17.如图,利用一面墙(墙的长度不超过45m),用80m长的篱笆围一个矩形场地.⑴怎样围才能使矩形场地的面积为750m2?⑵能否使所围矩形场地的面积为810m2,为什么?18.学校的课外生物小组的实验园地是一块长35米,宽26米的长方形,为了便于行走和管理,现要在中间修同样宽的到路,路宽均为a米,余下的作为种植面积,求种植面积是多少?19.如图,已知墙的长度是20米,利用墙的一边,用篱笆围成一个面积为96平方米的长方形ABCD,中间用篱笆分隔出两个小长方形,总共用去36米长的篱笆,求AB的长度?20.要在一块长52m,宽48m的矩形绿地上,修建同样宽的两条互相垂直的甬路.下面分别是小亮和小颖的设计方案.(1)求小亮设计方案中甬路的宽度x(2)求小颖设计方案中四块绿地的总面积(友情提示:小颖设计方案中的x与小亮设计方案中x的取值相同)参考答案1.C2.B3.B4.D5.A6.B7.C8.D9.答案为:113110.答案为:111.答案为:1米.12.答案为:4km或5km13.答案为:x2+40x﹣75=0.14.答案为:(9﹣2x)(5﹣2x)=12.15.答案为:(35﹣2x)(20﹣x)=600(或2x2﹣75x+100=0).16.答案为:x(x﹣12)=864.17.解:⑴设所围矩形ABCD的长AB为x米,则宽AD为米.依题意,得 即, 解此方程,得∵墙的长度不超过45m,∴不合题意,应舍去. 当时,所以,当所围矩形的长为30m、宽为25m时,能使矩形的面积为750m2.⑵不能.因为由得又∵=(-80)2-4×1×1620=-80<0,∴上述方程没有实数根.因此,不能使所围矩形场地的面积为810m2。
全品试卷数学九年级上册
![全品试卷数学九年级上册](https://img.taocdn.com/s3/m/76cd3f52eef9aef8941ea76e58fafab068dc441f.png)
全品试卷数学九年级上册专业课原理概述部分一、选择题(每题1分,共5分)1. 若函数f(x) = x² 4x + 3,则f(2)的值为:A. -1B. 0C. 1D. 22. 在直角坐标系中,点P(3, -2)关于x轴的对称点坐标是:A. (3, 2)B. (-3, -2)C. (3, 2)D. (-3, 2)3. 若一个三角形的两边长分别为5和12,第三边的长度可能是:A. 7B. 17C. 8D. 104. 下列函数中,哪一个不是增函数?A. y = 2x + 3B. y = x²C. y = 3x 4D. y = |x|5. 若一组数据的方差为4,则这组数据的标准差为:A. 2B. 4C. 8D. 16二、判断题(每题1分,共5分)6. 两条平行线上的任意一对对应角相等。
()7. 任何一个实数的平方都是非负数。
()8. 若两个角的和为180度,则这两个角互补。
()9. 在一次函数y = kx + b中,当k > 0时,函数图像是从左下到右上的。
()10. 若一个数的算术平方根为4,则这个数是16。
()三、填空题(每题1分,共5分)11. 若等差数列的前三项为2, 5, 8,则第10项为______。
12. 若函数f(x) = x³ 3x + 2,则f'(x) = ______。
13. 在直角三角形中,若一个锐角的正弦值为1/2,则这个角的度数为______度。
14. 若一组数据的平均数为10,且数据个数为5,则这组数据的总和为______。
15. 若一个圆的半径为5cm,则这个圆的面积为______cm²。
四、简答题(每题2分,共10分)16. 简述等差数列和等比数列的定义。
17. 解释一次函数图像的斜率代表什么。
18. 什么是算术平方根?如何计算一个数的算术平方根?19. 简述三角形的内角和定理。
20. 什么是直角坐标系?如何表示一个点在直角坐标系中的位置?五、应用题(每题2分,共10分)21. 已知一个等差数列的前三项分别为2, 5, 8,求这个数列的第10项。
2020九年级上学期数学配套作业本答案
![2020九年级上学期数学配套作业本答案](https://img.taocdn.com/s3/m/d69e78e5a26925c52cc5bfbf.png)
2020九年级上学期数学配套作业本答案解答题 (本大题2个小题,每小题7分,共14分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.19.计算:20.今年四月份将举行体考,重庆一中为了解初三学生当前体育训练成果,于1月16日举行了体育模拟考试,现从参加了考试的同学中随机抽取了50名了解他们的跳绳成绩,并根据成绩等级(优:20分;良:18-19分;中:小于18分)绘制出如下两幅不完整的统计图.(1)请补全条形统计图;(2)在此次考试中,被抽取的获优秀成绩的有3人来自同一班级,这3人中有2男1女,该班班主任为让班上其他同学在练习跳绳的过程中效果更好,现打算从这3人中随机抽取2人到前排示范,请用画树状图或列表的方法求出所选同学是一男一女的概率. X Kb1 .Co m四、解答题 (本大题4个小题,每小题10分,共40分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答书写在答题卡中对应的位置上.21.先化简,再求值:,其中是方程的解.22.如图,在笔直的公路上有一检查站A,在观测点B的南偏西53° 方向,且与观测点B的距离为7.5千米.一辆自行车从位于点B南偏西76°方向的点C 处,沿公路自西向东行驶,2小时后到达检查站A.(1)求观测点B与公路的距离;(2)求自行车行驶的平均速度.(参考数据:,,,,, )23.重庆一中后勤部门每年都要更新一定数量的书桌和椅子.已知2020年采购的书桌价格为120元/张,椅子价格为40元/张,总支出费用34000元;2020年采购的书桌价格上涨为130 元/张,椅子价格保持不变,且采购的书桌和椅子的数量与2020年分别相同,总支出费用比2020年多2000元.(1)求2020年采购的书桌和椅子分别是多少张?(2)与2020年相比,2020年书桌的价格上涨了 (其中 ),椅子的价格上涨了,但采购的书桌的数量减少了,椅子的数量减少了50张,且2020年学校桌子和椅子的总支出费用为34720 元,求的值.24. 如图,在□ABCD中,CE AD于点E,且CB=CE,点F为CD边上的一点,CB=CF,连接BF交CE于点G.(1)若,CF= ,求CG的长;(2)求证:AB=ED+CG。
全品作业本答案
![全品作业本答案](https://img.taocdn.com/s3/m/82d77e85db38376baf1ffc4ffe4733687f21fc50.png)
全品作业本答案1. 前言在学习过程中,练习题和作业本答案对于检查和巩固知识点的理解至关重要。
全品作业本答案提供了对全品教育出版社出版的作业本的答案解析,帮助学生更好地完成作业和自我检查。
2. 作业本答案目录以下是全品作业本答案的目录:1.第一章:数学基础2.第二章:语文基础3.第三章:英语基础4.第四章:科学基础5.第五章:历史与社会6.第六章:地理与环境7.第七章:道德与法治8.第八章:思品素养9.第九章:美术与综合实践10.第十章:音乐与综合实践3. 第一章:数学基础3.1. 第一节1.计算:2 + 3 = 52.判断:5 > 33.解方程:x + 5 = 10,解得 x = 53.2. 第二节1.简化算式:2 * (3 + 4) = 142.比较大小:3/4 > 2/53.解不等式:2x + 3 < 7,解得 x < 23.3. …4. 第二章:语文基础…5. 第三章:英语基础…6. 第四章:科学基础…7. 第五章:历史与社会…8. 第六章:地理与环境…9. 第七章:道德与法治…10. 第八章:思品素养…11. 第九章:美术与综合实践…12. 第十章:音乐与综合实践…13. 结语全品作业本答案为学生提供了对应作业本的答案解析,帮助学生更好地学习和巩固知识点。
通过检查答案,学生可以更好地了解自己的知识水平和进步情况,从而进行有针对性的学习。
希望同学们能够充分利用全品作业本答案,提升学业成绩。
全品学练考数学九上新课标HS答案
![全品学练考数学九上新课标HS答案](https://img.taocdn.com/s3/m/b16f34357f21af45b307e87101f69e314332fad4.png)
全品学练考数学九上新课标HS答案
由于您请求的内容是关于特定教材的答案,我无法提供具体的教材答案,因为这通常涉及版权问题,并且我也无法访问或提供未经授权的教材内容。
然而,我可以提供一些学习数学的一般性建议和策略。
数学学习通常包括以下几个方面:
1. 理解概念:确保你理解每个数学概念和定理的基本原理。
这通常意味着不仅仅记住公式,而是要理解它们是如何工作的。
2. 练习题目:通过大量的练习来巩固你的理解。
解决不同类型的问题可以帮助你更好地理解概念,并提高解决问题的能力。
3. 复习和总结:定期回顾你已经学习的内容,总结关键点和容易忘记的细节。
4. 寻求帮助:如果你在某个概念上遇到困难,不要犹豫去寻求帮助。
可以是老师、同学或者在线资源。
5. 使用图形和图表:对于几何和一些代数问题,使用图形和图表可以帮助你更直观地理解问题。
6. 时间管理:在考试或练习时,合理分配时间,确保有足够的时间来解决每个问题。
7. 检查答案:在完成练习后,检查你的答案是否正确,并理解错误发生的原因。
如果你需要具体的数学问题的帮助,你可以提供问题,我会尽力帮助你理解和解决。
全品作业本九年级数学答案
![全品作业本九年级数学答案](https://img.taocdn.com/s3/m/c48d3bb1dd88d0d233d46a8e.png)
篇一:全品作业本答案第二课时物体的浮沉条件1.上浮下沉悬浮2.等于3.D4.B5.D6.不变上浮一些7. 675000000变大8.大于小于9.B 10.A 11.12 上浮12.0.2 20 物体所受浮力小于物体自身重力方法213.下沉拓展培优:1.A2.重力在浮力一定条件下,物体的上浮或下沉与物体的重力有关甲同学将铁钉全部插入萝卜中,在铁变重力时控制浮力保持不变第三课时浮力问题的分析与计算1.C2.D3.A4.D5.C6.3 600335 7.0.5N0.00005m 1100kg/m38.D 9.12N 8N 1500kg/m 10.6N3600kg/m拓展培优:1.C 2.0.6 零0.04kg篇二:九年级全品答案篇三:浙教版九年级数学《全品作业本》答疑江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
全品作业本九年级数学答案-教学范文
![全品作业本九年级数学答案-教学范文](https://img.taocdn.com/s3/m/fd72aade0975f46526d3e11f.png)
篇一:全品作业本答案第二课时物体的浮沉条件1.上浮下沉悬浮2.等于3.D4.B5.D6.不变上浮一些7. 675000000变大8.大于小于9.B 10.A 11.12 上浮12.0.2 20 物体所受浮力小于物体自身重力方法213.下沉拓展培优:1.A2.重力在浮力一定条件下,物体的上浮或下沉与物体的重力有关甲同学将铁钉全部插入萝卜中,在铁变重力时控制浮力保持不变第三课时浮力问题的分析与计算1.C2.D3.A4.D5.C6.3 600335 7.0.5N0.00005m 1100kg/m38.D 9.12N 8N 1500kg/m 10.6N3600kg/m拓展培优:1.C 2.0.6 零0.04kg篇二:九年级全品答案篇三:浙教版九年级数学《全品作业本》答疑江西省南昌市2015-2016学年度第一学期期末试卷(江西师大附中使用)高三理科数学分析试卷紧扣教材和考试说明,从考生熟悉的基础知识入手,多角度、多层次地考查了学生的数学理性思维能力及对数学本质的理解能力,立足基础,先易后难,难易适中,强调应用,不偏不怪,达到了“考基础、考能力、考素质”的目标。
试卷所涉及的知识内容都在考试大纲的范围内,几乎覆盖了高中所学知识的全部重要内容,体现了“重点知识重点考查”的原则。
1.回归教材,注重基础试卷遵循了考查基础知识为主体的原则,尤其是考试说明中的大部分知识点均有涉及,其中应用题与抗战胜利70周年为背景,把爱国主义教育渗透到试题当中,使学生感受到了数学的育才价值,所有这些题目的设计都回归教材和中学教学实际,操作性强。
2.适当设置题目难度与区分度选择题第12题和填空题第16题以及解答题的第21题,都是综合性问题,难度较大,学生不仅要有较强的分析问题和解决问题的能力,以及扎实深厚的数学基本功,而且还要掌握必须的数学思想与方法,否则在有限的时间内,很难完成。
3.布局合理,考查全面,着重数学方法和数学思想的考察在选择题,填空题,解答题和三选一问题中,试卷均对高中数学中的重点内容进行了反复考查。
九年级上人教版数学练习册答案.pdf
![九年级上人教版数学练习册答案.pdf](https://img.taocdn.com/s3/m/882e427a6294dd88d1d26b8a.png)
1 数学·九年级上·人教版第二十一章 二次根式第1节 二次根式1.C 2.B 3.A 4.D 5.A 6.<槡7.7 犪2+犫槡28.(1)狓≥-1;(2)任何实数;(3)犿≤0;(4)犿=2;(5)犪>0;(6)犪>39.(1)80;(2)74;(3)910.4 11.1或-1 12.2犫+犮-犪第2节 二次根式的乘除1.D 2.C 3.C 4.狓≥25.48 32 306.8狓槡狔狔 --槡犪 -槡犫犪7.-1-槡犪 8.< <9.(1)槡-11;(2)(1-犪)1-槡犪;(3)-2犪犫10.(1)-2;(2)2槡11.306cm212.(1)槡117;(2)槡82;(3)槡5513.014.提示:平方后比较,槡槡2+6<槡槡3+5.第3节 二次根式的加减练习一(加减运算)1.B 2.03.(1)槡-142;(2)285槡10;(3)169槡34.(1)0;(2)105.(1)槡246;(2)槡槡6-56.(1)2;(2)槡-657.1槡8.-29.114练习二(混合运算)1.D 2.B 3.A 4.3 45 槡5.326.(狓2+3)(狓+槡3)(狓-槡3)槡7.1-468.(1)狓=-1;(2)狓≤0槡9.1+310.甲的对,被开方数根要大于零11.200112.∵犪槡-4+3犪-槡犫=0而犪槡-4≥0,3犪-槡犫≥0∴犪槡-4=0,且3犪-槡犫=0解之得 犪=4,犫=12∴犪2+犫2=42+122=160.13.提示:作一个腰为1的等腰直角三角形犃犅犆,以其斜边犃犆为直角边作直角三角形犃犆犈,其中犈犆=1.则以点犃为圆心,以直角三角形犃犆犈的斜边长为半径画弧,它与数轴正半轴的交点即为表示槡3的点,即可找到槡3+1的点.图12 人教版·数学·九年级(上)第二十二章 一元二次方程第1节 一元二次方程1.4狓2-5狓+3=0 4 -5 32.D 3.C 4.C 5.B6.狓2+2狓-1=0.7.设最小的整数为狀,则狀2+狀-272=0.8.设这个人行道的宽度为狓m,则(24-2狓)(20-2狓)=32.9.设中粳“6427”稻谷的出米率的增长率为狓,则稻谷产量的增长率为2狓.根据题意,得500(1+2狓)·70%(1+狓)=462,化简可得:50狓2+75狓-8=0.10.(1)设11、12月的平均月增长率为狓,则100(1+狓)+100(1+狓)2=231;(2)1100吨.11.设最短的直角边长为狓,则长直角边为狓+14,可得狓(狓+14)=120.12.设兔舍平行于旧墙的长为狓m,则宽为12(35-狓)m.根据题意,得狓·12(35-狓)=150,化简得:狓2-35狓+300=0,解得狓1=15,狓2=20.第2节 降次———解一元二次方程练习一1.B 2.C3.(1)狓1=2,狓2=4;(2)狓1=2,狓2=10.4.(1)狓1,2=1±槡63;(2)狓1=8,狓2=-193.5.(1)狓1=0,狓2=2;(2)狓=56.狓1=-2,狓2=1 7.1s8.13±槡347≈32分9.4或1.0 10.8,911.若一元二次方程犪狓2+犫狓+犮=0的两个根是狓1、狓2,则二次三项式犪狓2+犫狓+犮=(狓+狓1)(狓+狓2).12.(1)两种方法的本质是相同的,都运用的是配方法.(2)第一种方法出现分式犫2犪,配方比较繁;两边开方时分子、分母都出现“±”,相除后为何只有分子上有“±”,不好理解;还易误认为4犪槡2=2犪.所以,第二种方法好.13.(1)狓2+7狓+6=(狓+1)(狓+6);(2)狓2-7狓-60=(狓-12)(狓+5);(3)狆2+7狆-18=(狆+9)(狆-2);(4)犫2+11犫+28=(犫+4)(犫+7).14.(1)犿1=-1,犿2=-2;(2)狓1=1,狓2=6;(3)犿1=3,犿2=4;(4)狓1=4,狓2=2.练习二1.B 2.0或-2 3.0 -1 14.145.13 6.2.5m7.设三、四月份平均每月增长的百分率为狓,依题意得60×(1-10%)(1+狓)2=96.解得狓=13≈33.3%.8.设2007年年获利率为狓,则2008年的年获利率为(狓+0.1),100(1+狓)(1+狓+0.1)=156,解得狓=20%,0.1+狓=30%.9.因为8<狓<14,通过估算可知狓=10.10.设应挖狓m,则(64-4狓)(162-2狓)=9600,解得狓=1m.11.A 12.C 13.C 14.D 15.C16.2 17.10 18.犽>119.(1)方程无实数根;(2)方程有两个不相等的实数根;20.(1)答案不唯一.根据一元二次方程根的判别式,只要满足犿<5的实数即可;如犿=1,得方程狓2+4狓=0,它有两个不等实数根:狓1=0,狓2=-4;(2)答案不唯一.要依赖(1)中的犿的值,由根与系数的关系可得答案.α=0,β=4,α2+β2+αβ=0+16+0=16.21.(1)Δ=(犿-1)2-4(-2犿2+犿)=9犿2-6犿+1=(3犿-1)2 3 参考答案与提示要使狓1≠狓2,∴Δ>0,得犿≠13.另解:由狓2+(犿-1)狓-2犿2+犿=0得狓1=犿,狓2=1-2犿,由狓1≠狓2解得.(2)∵狓1=犿,狓2=1-2犿,狓12+狓22=2∴犿2+(1-2犿)2=2解得犿1=-15,犿2=1.另解:也可用韦达定理来解.22.(1)狓1=-1,狓2=-1,狓1+狓2=-2,狓1·狓2=1(2)狓1=槡3+132,狓2=槡3-132,狓1+狓2=3,狓1·狓2=-1(3)狓1=1,狓2=-73,狓1+狓2=-43,狓1·狓2=-73猜想:犪狓2+犫狓+犮=0的两根为狓1与狓2,则狓1+狓2=-犫犪,狓1·狓2=犮犪,应用:另一根为槡2-3,犮=123.依题意有:狓1+狓2=-2(犿+2) ①狓1狓2=犿2-5②狓12+狓22=狓1狓2+16③Δ=4(犿+2)2-4(犿2-5)≥0烅烄烆④由①②③解得:犿=-1或犿=-15,又由④可知犿≥-94,∴犿=-15(舍去),故犿=-1.24.由一元二次方程根与系数关系可知:狓1+狓2=2犽-3,狓1·狓2=2犽-4.(1)狓1+狓2>0,狓1·狓2>0即2犽-3>0,2犽-4>0所以犽>2;(2)狓1+狓2>0,狓1·狓2<0即2犽-3>0,2犽-4<0所以32<犽<2;(3)不妨设狓1>3,狓2<3,则狓1-3>0,狓2-3<0,即(狓1-3)(狓2-3)<0所以犽>72.第3节 实际问题与一元二次方程练习一1.C 2.A3.设这两年平均增长的百分率为狓,则8(1+狓)2=9,解得狓≈6%.4.设三、四月份的平均增长率为狓,则1000(1-10%)(1+狓)2=1296,解得狓=20%.5.由题意得10-狓()102=25%,解得狓=5.6.提示:设金边宽为狓cm,则(60+2狓)(40+2狓)-60×40=1375×60×40.7.设垂直墙面的边长为狓m,则另一边长为(33-2狓)m,列方程得狓(33-2狓)=130,解得狓1=6.5,狓2=10.当狓=6.5时,33-2狓=20>18不符合要求,舍去;当狓=10时,33-2狓=13<18符合要求.故花坛的长为13m,宽为10m.8.(1)∵四月份用电180度,交电费,恰好为每度0.2元,∴四月份用电没超过犪度,五月份用电250度,交电费56元,每度超过0.2元.∴五月份用电超过了犪度.(2)由题意得,(250-犪)·犪625+0.2犪=56整理得,犪2-375犪+56×625=0即(犪-200)(犪-175)=0,∴犪1=200,犪2=175又∵犪≥180,∴犪=200.9.(1)18000千克;(2)在果园出售,毛收入为18000×1.1=19800元;在市场出售,毛收入为18000×1.3-18×8×25=19800元;虽然,两个收入相同,但市场出售还要费人力、物力,所以选择在果园出售方式好;(3)设增长率为狓,则(19800-7800)[1+(1+狓)+(1+狓)2]=57000,解得狓=0.5=50%.4 人教版·数学·九年级(上)10.(1)狔=(30-2狓)狓;(2)10,8;(3)不是;狓=7.5时,最大为112.5m2.练习二1.设甬路宽度为狓m,根据题意得(40-2狓)(26-狓)=144×6,解得狓1=2,狓2=44(不合题意,舍去),所以甬路宽为2m.2.根据题意可得方程(50-2-狓)×(30-2狓)=50×302,化简可得 狓2-63狓+345=0,解得: 狓1≈6.06,狓2=56.94,经检验,狓2不合题意舍去,所以狓的值约取6.06m.图23.设狓s后两只蚂蚁与犗点组成的三角形面积等于450cm2.(1)若这只蚂蚁在犗犃上,根据题意得12(50-2狓)·3狓=450,解得狋1=10,狋2=15.(2)若这只蚂蚁在犗犅上,根据题意得12(2狓-50)·3狓=450,解得狋1=30,狋2=-5(不合题意,舍去).所以分别在10s,15s,30s时两只蚂蚁与犗点组成的三角形面积等于450cm2.4.设有狀个人参加聚会,则在这狀个人中任何1个人,他(她)都要与除自己以外的(狀-1)个人握手;又因为甲与乙握手与乙与甲握手是同一次握手,所以握手总次数为12狀(狀-1).所以,狀(狀-1)=56.和这个问题所列方程相同的实际问题很多,如:(1)狀个村庄,每两个之间都有一条公路,若有人统计共有28条公路,问共有多少个村庄?(2)在某两地的铁路线上,共有28个不同的火车站,问这条铁路共有多少个不同的票价?(3)一次乒乓球循环赛,每个队都要见面,共举行了28场比赛,问共有多少个代表队参加?(4)空间狀个点,任意三点不共线,可以连28条不同的直线,求空间共有多少个点?(5)平面上有28条直线,若任意两条不平行,任意三条不共点,则有多少个交点?和这个问题列方程的思想一样的实际问题很多,如:(1)春节前后,几个人互打电话问候,若共打了20次电话,问共有几人?(2)元旦前后,几个同学互相赠送贺年卡,若共赠送了20张贺年卡,问共有几人?(3)在某两地的铁路线上,共有20个不同的火车站,问这条铁路共需设计多少个不同的火车票?5.(1)由题意设2月,3月每月增长的百分率为狓,则25[1+(1+狓)+(1+狓)2]=91,解得狓=0.2=20%.即2月、3月份每月平均增长的百分率为20%.(2)显然,3月份的生产收入为25×(1+0.2)2=25×1.44=36(万元)设治理狀个月后所投资金开始见效,则有91+36(狀-3)-111≥20狀,狀≥8.即治理8个月后所投资金开始见效.6.设商品降低了狓个100元,则优惠价是(3500-100狓)元,每个商品的利润是[(3500-100狓)-2500]元,销售量为(8+2狓)个,由题意得[(3500-100狓)-2500](8+2狓)=8×(3500-2500)(1+12.5%),解得狓1=1,狓2=5.所以,优惠价应定为3000元或3400元.到底定为多钱,要视具体情况而定.7.(1)70,4,2007.(2)设2009年和2010年两年绿地面积的年平均增长率为狓,根据题意,得70(1+狓)2=84.7.整理后,得(1+狓)2=1.21.解这个方程,得狓1=0.1,狓2=-2.1(不合题意,舍去).故所求平均增长率为10%.第二十三章 旋 转第1节 图形的旋转1.C 2.B 3.D 4.A 5 参考答案与提示5.相同 相等 旋转中心6.45° 90° 7.犅犆犇 犆 60°8.底角是60°,腰与底相等的等腰梯形9.图略 10.五角星图311.(1)不正确.例如图(1)的情况下不正确,但图(2)的情况下正确.(2)犅犈=犇犌成立.如图3,连结犅犈.∵四边形犃犅犆犇和犃犈犉犌都是正方形,∴犃犇=犃犅,犃犌=犃犈,∠犇犃犅=∠犌犃犈=90°.∴∠犇犃犌+∠犌犃犅=90°=∠犅犃犈+∠犌犃犅.∴∠犇犃犌=∠犅犃犈.∴△犇犃犌≌△犅犃犈.∴犅犈=犇犌.12.(1)犃犅=2m,犃犆槡=3m.(2)画出犃点经过的路径,如图4所示.图4∵∠犃犅犃1=180°-60°=120°,犃1犃2=犃犆槡=3m,∴犃点所经过的路径长=120180×π×槡2+3=43π槡+3≈5.9(m).第2节 中心对称1.B 2.C 3.C 4.C5.关于原点对称6.3 7.48.(1)①④,(2)③④,(3)④,(4)④9.(1)以一个三角形的一条边为对称轴作与它轴对称的图形.(图5)(2)将得到的这组图形以一条边的中点为旋转中心旋转.(图6)(3)分别以这两组图形为平移的“基本图形”,各平移两次,即可得到最终的图形.图5图610.如图7所示,△犃″犅″犆″与△犃′犅′犆′是关于原点犗成中心对称的.图711.两个全等的正方形犃犅犆犇和犆犇犈犉组成矩形犃犅犉犈,它是中心对称图形,对称中心就是对角线犃犉与犅犈的交点犗,四边形犆犇犈犉绕犗顺时针(或逆时针)旋转180°后,能与四边形犃犅犆犇重合.注意到四边形犆犇犈犉绕点犇顺时针旋转90°后或绕点犆逆时针旋转90°后能与正方形犃犅犆犇重合,所以可以作为旋转中心(不是对称中心但包含对称中心)的点有3个,即犇、犗、犆.12.(1)以犅犆为对称轴作对称变换(如图8).(或以犅犆的中点犗把△犃犅犆绕犗点旋转180°)图8(2)把△犃犅犆绕犃犆的中点犗旋转180°即可(如图9).6 人教版·数学·九年级(上)图9四边形是菱形,平行四边形.13.答案不唯一,下面举出三例,如图10所示.图10第3节 课题学习 图案设计1.左右,上下2.圆心 逆时针 90°3.45°(答案不唯一)4.3 犗 90° 矩形犃犅犉犎 犉犎5.旋转变换,平移变换(答案不唯一)6.平移变换,旋转变换(答案不唯一)7.提示:(1)犃犉=犆犈;(2)两次旋转变换(答案不唯一)8.图案如图11所示,四边形犈犗犆犎的面积是4cm2.图119.(1)平移后的小船如图12所示.图12(2)如图12所示,点犃′与点犃关于直线犔成轴对称,连接犃′犅交直线犔于点犘,则点犘为所求.10.答案不唯一,下面举出两例(如图13所示).图1311.略第二十四章 圆第1节 圆练习一1.A 2.B 3.A槡4.63 5.306.50° 7.8 8.200°9.50° 10.15°11.64° 12.30° 13.︵犅犇的中点14.以犕为圆心,以大于犕到⊙犗的最小距离且小于犕到⊙犗的最大距离为半径画圆,与⊙犗的交点即分别为犃、犅.15.1cm或7cm 16.258cm槡17.35cm18.75°练习二1.B 2.C 3.B 4.A 5.96.2.5m7.50° 8.130° 槡9.53cm图1410.证明:如图14所示,作犗犌⊥犆犇于犌,则犆犌=犇犌.∵犈犆⊥犆犇,犇犉⊥犆犇,犗犌⊥犆犇,∴犈犆∥犇犉∥犗犌.∴犗犈=犗犉.又∵犗犃=犗犅,∴犃犈=犅犉.11.连结犃犆.由勾股定理得,犃犆= 7 参考答案与提示犃犅2+犅犆槡2=32+4槡2=5.当狉=犃犅=3时,⊙犃经过点犅,点犆、犇在⊙犃外;当狉=犃犇=4时,⊙犃经过点犇,点犅在⊙犃内,点犆在⊙犃外;当狉=犃犆=5时,⊙犃经过点犆,点犅、犇在⊙犃内.所以,(1)当狉<3时,点犅、犆、犇均在圆外;(2)当3≤狉<4时,点犅、犆、犇中有两点在圆外;(3)当4≤狉<5时,点犅、犆、犇中只有一点在圆外.12.如图15所示,(1)连结犅犈,则∠犅犈犆=90°.∵犃犅=犅犆,犅犈平分∠犃犅犆,∴∠犃犅犈=∠犆犅犈.图15∴︵犇犈=︵犆犈,∴∠犈犇犆=∠犈犆犇.(2)∵︵犇犈=︵犆犈,∴犇犈=犆犈.∵犃犅=犅犆,犅犈⊥犃犆,∴犃犈=犆犈.∴犃犈=犆犈=犇犈=3cm,犃犆=6cm.在Rt△犃犅犈中,犅犈=犃犅2-犃犈槡2=52-3槡2=4,∵犅犆为⊙犗直径,∴∠犃犈犅=∠犃犇犆=90°.又∠犃=∠犃,∴△犃犅犈∽△犃犆犇,∴犃犅犃犆=犅犈犆犇,即56=4犆犇.∴犆犇=4.8cm.13.(1)∵犃犇为∠犈犃犆的平分线,∴∠犈犃犇=∠犇犃犆.∵四边形犃犅犆犇是圆内接四边形,∴∠犈犃犇=∠犅犆犇.又∵∠犇犃犆=∠犇犅犆,∴∠犅犆犇=∠犇犅犆.∴犅犇=犇犆.(2)补充下列条件中的任意一个,都能使直线犇犉经过圆心.①犅犉=犆犉;②犇犉⊥犅犆;③犇犉平分∠犅犇犆.(理由略)图1614.(1)如图16所示,证明:连结犗犇.∵犃犅是直径,犃犅⊥犆犇,∴︵犅犆=︵犅犇.∴∠犆犗犅=∠犇犗犅=12∠犆犗犇.又∵∠犆犘犇=12∠犆犗犇,∴∠犆犘犇=∠犆犗犅.(2)∠犆犘′犇与∠犆犗犅的数量关系是:∠犆犘′犇+∠犆犗犅=180°.∵∠犆犘′犇+∠犆犘犇=180°,∠犆犘犇=∠犆犗犅,∴∠犆犘′犇+∠犆犗犅=180°.第2节 点、直线、圆和圆的位置关系练习一1.C 2.C 3.C 4.D 5.36.∠犅=∠犆7.∵犃犆=犅犆,∴∠犃=∠犅.∵直线犇犈切⊙犗于点犆,∴∠犃犆犇=∠犅.∴∠犃犆犇=∠犃.∴犇犈∥犃犅.图178.(1)如图17所示,连结犗犆.∵犘犆切⊙犗于点犆,∴∠犘犆犗=90°.∵∠犘犆犅=30°,∴∠犅犆犗=60°.∵犗犅=犗犆,∴△犅犗犆是等边三角形.∴∠犆犅犃=∠犅犗犆=60°.(2)在Rt△犗犆犘中,∵犗犆犗犘=cos∠犅犗犆=12,∴犗犘=2犗犆=6.∴犘犃=犗犘+犗犃=6+3=9.9.证明:如图18所示,连结犗犆.∵犅犆∥犗犘,∴∠犘犗犆=∠犅犆犗,∠犘犗犃=∠犅.∵犗犅=犗犆,∴∠犅犆犗=∠犅.∴∠犘犗犆=∠犘犗犃.8 人教版·数学·九年级(上)图18又∵犗犆=犗犃,犗犘=犗犘,∴△犘犗犆≌△犘犗犃,∴∠犘犆犗=∠犘犃犗.∵犘犃⊥犃犅,∴∠犘犃犗=90°,∴∠犘犆犗=90°∴犘犆是⊙犗的切线.图1910.(1)如图19所示,证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.(2)当犗犃<犗犅时,上述结论成立.当犗犃>犗犅时,上述结论也成立.图20如图20所示,以犗犃<犗犅为例证明如下:证明:连结犗犕.∵犗犕=犗犃,∴∠犃=∠犗犕犃.∵犅犃=犅犆,∴∠犃=∠犆.∴∠犗犕犃=∠犆.∴犗犕∥犅犆.∵犕犖切⊙犗于点犕,∴∠犗犕犖=90°.∵∠犕犖犆=∠犗犕犖=90°,∴犕犖⊥犅犆.11.“△犆犇犙是等腰三角形”还成立.证明:如图21所示,连结犗犆.∵犗犃=犗犆,∴∠犗犃犆=∠犗犆犃.∵∠犗犃犆=∠犘犃犙,∴∠犗犆犃=∠犘犃犙.∵犆犇切⊙犗于犆点,∴∠犗犆犇=90°.图21∴∠犇犆犙+∠犗犆犃=90°.∴∠犇犆犙+∠犘犃犙=90°.在Rt△犙犘犃中,∠犙犘犃=90°,∴∠犘犃犙+∠犙=90°.∴∠犇犆犙=∠犙.∴犇犙=犇犆.即△犆犇犙是等腰三角形.练习二1.B 2.A 3.2或6 4.30°5.14π犪2 6.75° 7.68.提示:连结三个圆的圆心构成等边三角形.最高点到地面的距离是2+槡3.图229.证明:如图22所示,延长犆犗2交⊙犗2于点犉,交犇犈于点犌,连结犃犅、犅犉.在⊙犗2中,∠犅犉犆=∠犅犃犆.∵四边形犃犅犈犇是⊙犗1的内接四边形,∴∠犅犃犆=∠犈.∴∠犅犉犆=∠犈.∵犆犉是⊙犗2的直径,∴∠犉犅犆=90°.∴∠犅犆犉+∠犅犉犆=90°.∴∠犅犆犉+∠犈=90°.∴∠犆犌犈=90°,∴犗2犆⊥犇犈.图2310.证明:如图23所示,连接犕犖、犖犃,连接犅犕并延长交犆犇于点犈.∵⊙犕与⊙犖外切于犘点,∴犕犖经过点犘.∴∠犅犘犕=∠犃犘犖.∵犕犅=犕犘,∴∠犅犘犕=∠犅.∵犖犃=犖犘,∴∠犃犘犖=∠犘犃犖.∴∠犅=∠犘犃犖.∴犅犈∥犖犃.∵犃犇切⊙犖于点犃,∴犖犃⊥犃犇. 9 参考答案与提示∴犅犈⊥犃犇,即犅犈⊥犆犇,∴︵犅犆=︵犅犇.图2411.(1)如图24所示,连结犗犙.∵犚犙是⊙犗的切线,∴∠犗犙犘+∠犚犙犘=90°.∵犗犃⊥犗犅,∴∠犗犘犅+∠犅=90°.∵犗犅=犗犙,∴∠犗犙犘=∠犅.∴∠犚犙犘=∠犗犘犅=∠犚犘犙.∴犚犘=犚犙.(2)延长犅犗交⊙犗于点犆.连结犆犙.∵犅犆是⊙犗的直径,∴∠犅犙犆=90°.∵犗犃⊥犗犅,∴∠犅犗犘=90°.∴∠犅犙犆=∠犅犗犘.又∵∠犅=∠犅,∴△犅犙犆∽△犅犗犘.∴犅犙犅犗=犅犆犅犘.∵犗犘=犘犃=1,∴犅犗=犃犗=2.∴犅犘=22+1槡2=槡5,犅犆=2犅犗=4.∴犅犙2=4槡5.∴犅犙=槡855.∴犘犙=槡855槡-5=槡355.图2512.(1)∠犅犘犆=∠犆犘犇成立.(2)(1)中的结论仍然成立,如图25所示.过点犘作两圆的公切线犘犕,则∠犕犘犅=∠犃,∠犕犘犆=∠犅犆犘.∴∠犅犘犆=∠犕犘犆-∠犕犘犅=∠犅犆犘-∠犃=∠犆犘犃.∴∠犅犘犆=∠犆犘犇.第3节 正多边形和圆1.C 2.D 3.B 4.2 5.略6.120,槡3,π 槡7.738.学生1:如图26(1),把井盖卡在角度尺间,可测得犃犅的长.记井盖所在圆的圆心为犗,连接犗犅、犗犆,由切线的性质得犗犅⊥犃犅,犗犆⊥犃犆,又,犃犅⊥犃犆,犗犅=犗犆,则四边形犃犅犆犇为正方形,那么井盖半径犗犆=犃犅,这样就可求出井盖的直径.学生2:如图26(2),把角尺顶点犃放在井盖边上某点,记角尺一边与井盖边缘交于点犅,另一边交于点犆(若角尺另一边无法达到井盖的边上,把角尺当直尺用,延长另一边与井盖边缘交于点犆),度量犅犆长即为直径.学生3:如图26(3),把角尺当直尺用,量出犃犅的长度,取犃犅中点犆,然后把角尺顶点与犆点重合.有一边与犆犅重合,让另一边与井盖边交于犇点,延长犇犆交井盖边于点犈,度量犇犈长即为直径.学生4:如图26(4),把井盖卡在角尺间,记录犅、犆的位置,再把角尺当作直尺用,可测得犅犆的长度.记圆心为犗,作犗犇⊥犅犆,犇为垂足,由垂径定理得犅犇=犇犆=12犅犆,且∠犅犗犇=∠犆犗犇.由作图知∠犅犗犆=90°,∴∠犅犗犇=12×90°=45°.在Rt△犅犗犇中,犅犗=犅犇sin45°,这样就可求出井盖的半径,进而求得直径.图2610 人教版·数学·九年级(上)学生5:如图26(5),把角尺当作直尺用,先测得犃犅的长度,记录犃、犅的位置,再量犃犆=犃犅,记录犆的位置,然后测得犅犆的长度.作等腰三角形犅犃犆底边犅犆上的高犃犇,犇为垂足.∵犃犇垂直平分犅犆,∴由垂径定理可求出犃犇,那么,在Rt△犅犇犗中,犗犅2=犅犇2+犗犇2=犅犇2+(犃犇-犃犗)2.设井盖半径为狉,则狉2=犅犇2+(犃犇-狉)2,∵犅犇、犃犇都已知.∴解一元二次方程就可求出井盖的半径狉,这样就可求出井盖的直径.9.(1)a、b、c,a、c;(2)略第4节 弧长和扇形面积练习一1.C 2.B 3.C 4.B 5.A6.23π 7.1练习二1.D 2.1 3.2π4.160° 5.57.32 6.12π犪27.犾=狀π犚180=120π×6180=4π(cm),∵弧长犾等于圆锥的底面周长,即犆=4π,∴底面半径狉=犆2π=2(cm),∴犛底=4π(cm2).8.23π犪2图279.证明:如图27所示,连结犗犘、犗犆,设∠犘犗犆=狀°.由已知得狀π×5180=52π,解得狀=90.∴∠犘犗犆=90°.∴∠犘犅犆=12∠犘犗犆=45°.∵犃犅是直径,∴∠犃犆犅=90°.∴∠犆犕犅=45°.∴∠犘犅犆=∠犆犕犅.∴犕犆=犅犆.10.(1)证明:∵∠犆犗犇=∠犃犗犅=90°,∴∠犃犗犆=∠犅犗犇.又∵犗犃=犗犅,犗犆=犗犇,∴△犃犗犆≌△犅犗犇.(2)犛阴影=犛扇形犗犃犅-犛扇形犗犆犇=2π.11.方法1:仔细观察,不难发现:犃、犅、犆阴影部分面积相等(正方形面积-圆的面积),由四选一型选择题的特点,只能选犇.方法2:因为犃、犅、犆中圆弧的半径均为犪2,犇中圆弧的半径为犪,所以犃、犅、犆、犇的面积分别为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犛犇=犪2-2π犪24-12×犪×[]犪=2犪2-π犪22=犪22(4-π).显然,犇最大.应选犇.图28方法3:因为犃、犅、犆中圆弧的半径均为犪2,所以犃、犅、犆的面积为:犛犃=犛犅=犛犆=犪2-π(犪2)2=犪24(4-π);犇中圆弧的半径为犪,可将原图形犇中白色区域对角线连结,然后将对角线上方的图沿着逆时针方向旋转90°,重新拼成图28,则犛犇=犪×2犪-π犪22=犪22(4-π).显然,犇最大.应选犇.第二十五章 概率初步第1节 随机事件与概率练习一1.16 2.12 12 3.23 4.145.50.2% 6.必然 7.浅色 8.犃9.B 10.A 11.B 12.B 13.3614.摸到红球、白球、黄球的可能性不相同.因为红球最多,所以摸到红球的可能性最大,而摸到黄球的可能性最小.练习二1.152 2.2% 11 参考答案与提示3.(1)小;(2)一样大;(3)大4.大于 5.大于 6.A 7.A 8.B9.D 10.C11.候车不超过3分钟的可能性较大.12.这个游戏不公平,小明更容易获胜.因为任意把两张卡片上的数字相加,和为奇数的更多.13.(1)108,114,120;(2)不能.第2节 用列举法求概率练习一1.D 2.B 3.C 4.C5.15 6.25 7.118 8.3 2 19.百万分之二10.可以用表格列举所有可能得到的牌面数字之和:共有16种情况,每种情况发生的可能性相同,而两张牌的牌面数字之和等于5的情况共出现4次,因此牌面数字之和等于5的概率为25%.11.(1)1个;(2)列举略,两次摸到不同颜色的球的概率为犘=1012=56.练习二1.B 2.D 3.A 4.D5.13 23 6.12 12 17.14 113 1528.14组 1189.(1)篮球:10%+12%+15%+5%=42%,足球:20%+12%+18%+5%=55%,乒乓球:15%+18%+15%+5%=53%;所以开展足球运动会有更多人参与;(2)抽到喜欢乒乓球的可能性较大.10.(1)犘(1等奖)=136;犘(2等奖)=19,犘(3等奖)=16;(2)5000元.第3节 利用频率估计概率1.A 2.C 3.C 4.D5.(1)相同条件 (2)实验的次数(3)不一定6.(1)1 3 1;(2)1 20 5,10,15,207.(1)219 (2)519 (3)12198.28 0.56 9.0.3 1510.(1)表中数据:频数从上到下依次为:9,21,50;频率从上到下依次为:0.42,0.04;(2)0.76×400=304;(3)能,不能.11.A、B、C、D、E五种品牌的雪糕分别按总量的25.5%、35%、13%、7.5%、19%进货.12.不合理,图钉落地后钉尖朝上和钉尖朝下的机会不均等.13.(1)不可信.实验次数太少;(2)不好.改变了实验条件,啤酒瓶盖和可乐瓶盖落地后正面朝上的机会不一定相同;(3)好.这样既能提高速度又不会对实验结果造成影响,但应在瓶盖完全相同的条件下进行实验.14.可能性为34,这种说法是正确的.15.24%第4节 课题学习 键盘上字母的排列规律略期中综合练习1.B 2.C 3.B 4.C 5.C 6.C7.A 8.B槡9.2 10.-6 11.1和012.② 13.犿≠-1且犿≠2槡14.3-5 15.略16.化简后为狓2+4 17.略18.19000只19.原式=2狓+4.当狓=槡2-2时,原式槡=22.20.(1)-3,9;(2)是第十个;(3)狓2-2狀狓-3狀2=0.21.提示:(犪-21)(350-10犪)=400,解之得 犪1=25,犪2=31.因为 21×(1+20%)=25.2而犪=3112 人教版·数学·九年级(上)不合题意,舍去.所以 350-10犪=100件所以进货100件,定价为25元.期末综合练习1.A 2.A 3.C 4.D 5.C 6.B7.D 8.D 9.A 10.D槡11.±2212.狓1=1,狓2=-3 13.1 14.515.①③④⑤ 16.127 17.65°18.略 19.4 20.4(1+狓)2=721.原式=槡2-122.(1)犘(指针指向奇数区域)=36=12;(2)方法一:如图29所示,自由转动转盘,当转盘停止时,指针指向阴影部分区域的概率为23;图29方法二:自由转动转盘,当它停止时,指针指向的数字不小于3时,指针指向的区域的概率是23.23.(1)可以通过逆时针旋转90°使△犃犅犈变到△犃犇犉的位置.(2)犅犈=犇犉.提示:证△犃犅犈≌△犃犇犉(SAS).24.设所折成矩形的长为狓cm,则有狓(11-狓)=30,即狓2-11狓+30=0,解得狓1=5,狓2=6.故矩形的长和宽分别为6cm、5cm时,面积是30cm2.由狓(11-狓)=32,即狓2-11狓+32=0,犫2-4犪犮=121-4×1×32<0,方程无实数根,故不能折成面积是图3032cm2的矩形.25.不改变.如图30所示,连结犗犘,犗犆=犗犘 ∠2=∠犘∠2=∠烍烌烎1 ∠1=∠犘犗犘∥犆犇犆犇⊥}犃犅犗犘⊥犃犅 ︵犘犃=︵犘犅 犘点为中点.26.(1)(方法1)连结犇犗,犗犇是△犃犅犆的中位线,运用中位线的性质.(方法2)连结犃犇,∵犃犅是⊙犗的直径,∴犃犇⊥犅犆.∵犅犇=犆犇,∴犃犅=犃犆.(2)连结犃犇,∵犃犅是⊙犗的直径,∴∠犃犇犅=90°,∴∠犅<∠犃犇犅=90°.∠犆<∠犃犇犆=90°.∴∠犅,∠犆为锐角.∵犃犆和⊙犗交于点犉,连接犅犉,∴∠犃<∠犅犉犆=90°.∴△犃犅犆为锐角三角形檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪檪殏殏殏殏.《练习册》参考答案下载请登陆:陕西师范大学教育出版集团网址:http://www.snupg.com。