高中数学必修一 6函数的定义域和值域

合集下载

数学必修一定义域值域知识点分析

数学必修一定义域值域知识点分析

数学必修一定义域值域知识点分析定义高中函数定义设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数fx和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=fx,x属于集合A。

其中,x叫作自变量,x的取值范围A叫作函数的定义域;常见题型1,已知fx的定义域,求fgx的定义域.例1,已知fx的定义域为-1,1,求f2x-1的定义域.略解:由 -1<2x-1<1有 0<1∴f2x-1的定义域为0,12,已知fgx的定义域,求fx的定义域.例2,已知f2x-1的定义域为0,1,求fx的定义域。

解:已知0<1,设t=2x-1∴x=t+1/2∴0<t+1/2<1∴-1<1∴fx的定义域为-1,1注意比较例1与例2,加深理解定义域为x的取值范围的含义。

3,已知fgx的定义域,求fhx的定义域.例3,已知f2x-1的定义域为0,1,求fx-1的定义域。

略解:如例2,先求出fx的定义域为-1,1,然后如例1有 -1<1,即0<2∴fx-1的定义域为0,2指使函数有意义的一切实数所组成的集合。

其主要根据:①分式的分母不能为零②偶次方根的被开方数不小于零③对数函数的真数必须大于零④指数函数和对数函数的底数必须大于零且不等于1例4,已知fx=1/x+√x+1,求fx的定义域。

略解:x≠0且x+1≧0,∴fx的定义域为[-1,0∪0,+∞注意:答案一般用区间表示。

例5,已知fx=lg-x 2+x+2,求fx的定义域。

略解:由-x 2+x+2 >0 有 x 2-x-2 <0即-1<2∴fx的定义域为-1,2函数应用题的函数的定义域要根据实际情况求解。

例6,某工厂统计资料显示,产品次品率p与日产量x件x∈N,1≦x<99的关系符合如下规律:又知每生产一件正品盈利100元,每生产一件次品损失100元.求该厂日盈利额T元关于日产量x件的函数;解:由题意:当日产量为x件时,次品率p=2/100-x则次品个数为:2x/100-x,正品个数为:x-2x/100-x所以T=100[x-2x/100-x ]-100·2x/100-x即T=100[x-4x/100-x ],x∈N且1≦x≦89一集合弄懂概念就明白了二函数这是个重点,但是说起来也不好说,要作专题训练,比如说二次函数,指数对数函数等等做这一类型题的时候,要掌握几个函数思想如构造函数函数与方程结合对称思想,换元等等三数列这也是个比较重要的题型,做体的时候要有整体思想,整体代换,等比等差要分开来,也要注意联系,这样才能做好,注意观察数列的形式判断是什么数列,还要掌握求数列通向公式的几种方法,和求和公式,求和方法,比如裂项相消,错位相减,公式法,分组求和法等等四三角函数三角函数不是考试题型,只是个应用的知识点,所以只要记熟特殊角的三角函数值和一些重要的定理就行五平面向量这是个比较抽象的把几何与代数结合起来的重难点,结体的时候要有技巧,主要就是把基本知识掌握到位,注意拓展,另外要多做题,见的题型多,结体的时候就有思路,能够把问题简单化,有利于提高做题效率两角和公式感谢您的阅读,祝您生活愉快。

高中数学函数的定义定义域值域解析式求法

高中数学函数的定义定义域值域解析式求法

课题7:函数的概念(一)一、复习准备:1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?2.回顾初中函数的定义:在一个变化过程中,有两个变量x 和y ,对于x 的每一个确定的值,y 都有唯一的值与之对应,此时y 是x 的函数,x 是自变量,y 是因变量。

表示方法有:解析法、列表法、图象法.二、讲授新课:(一)函数的定义:设A 、B 是两个非空的数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数()f x 和它对应,那么称:f A B →为从集合A 到集合B 的一个函数(function ),记作:(),y f x x A=∈其中,x 叫自变量,x 的取值范围A 叫作定义域(domain ),与x 的值对应的y 值叫函数值,函数值的集合{()|}f x x A ∈叫值域(range )。

显然,值域是集合B 的子集。

(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;(2)二次函数2y ax bx c =++(a≠0)的定义域是R,值域是B;当a>0时,值域244ac b B y y a ⎧⎫-⎪⎪=≥⎨⎬⎪⎪⎩⎭;当a﹤0时,值域244ac b B y y a ⎧⎫-⎪⎪=≤⎨⎬⎪⎪⎩⎭。

(3)反比例函数(0)k y k x =≠的定义域是{}0x x ≠,值域是{}0y y ≠。

(二)区间及写法:设a 、b 是两个实数,且a<b ,则:(1)满足不等式a x b ≤≤的实数x 的集合叫做闭区间,表示为[a,b];(2)满足不等式a x b <<的实数x 的集合叫做开区间,表示为(a,b );(3)满足不等式a x b a x b ≤<<≤或的实数x 的集合叫做半开半闭区间,表示为[)(],,,a b a b ;这里的实数a 和b 都叫做相应区间的端点。

符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。

6函数的概念、定义域、值域求法-教师版.doc

6函数的概念、定义域、值域求法-教师版.doc

教学内容概要教学内容【知识精讲】一、函数的概念1、函数的定义:设A、B是非空的数集,如果按照某个确定的对应关系/,使对于集合A 中的任意一个数x,在集合3中都有唯一确定的数/(兀)和它对应,那么就称f:A^B为从集合A到集合B 的一个函数。

记作:y = /(X),XG A O其中,兀叫做自变量,兀的取值范围A叫做函数的定义域;与X的值相对应的y值叫做函数值,函数值的集合{/(X)|XG A}叫做函数的值域。

2、函数的三要素分别指函数的定义域、值域、对应法则;当两个函数的定义域、对应法则分別相同时,那么这两个函数是同一函数。

3、函数的表示方法一般有解析法、列表法、图像法当图像满足和= 的图像最多只有一个交点时才可作为函数图像。

分段函数:在用解析法表示函数的吋候,往往在其定义域的不同子集上,因对应法则不同而用几个式子来表示的函数即分段函数。

分段函数是一个函数,而不是几个函数。

在解决问题过程中,要处理好整体与局部的关系。

4、函数的运算:对于两个函数y = ./'(兀X XW DJ,y = ^(xX^e D2),设D = D}r\D2^(j)把函数/(x)+g(x)(x w Q)叫做函数『=/(xXx e £>!)与『=£(疋)(兀丘》2)的和函数把函数/(x)g(x)(xw D)叫做函数丿=/(X X A:e £>!)与y = g(xXxw£>2)的积函数6、复合函数:对于两个函数y = /(%X x w D), y = g(x)(兀w 2),若满足<?(兀)w 9的x的取值范围为E,设D= Er>D2^(/),把函数y = /(g(x))叫做函数y = f(x\x G £>,),y = 兀w»2)的复合函数,兀是复合函数y = /(g(兀))的自变量,定义域为D,g(x)叫做内函数,/(x)叫做外函数。

函数的定义域与值域 知识点与题型归纳

函数的定义域与值域 知识点与题型归纳

了解构成函数的要素,会求一些简单函数的定义域和值域.★备考知考情定义域是函数的灵魂,高考中考查的定义域多以选择、填空形式出现,难度不大;有时也在解答题的某一小问当中进行考查;值域是定义域与对应法则的必然产物,值域的考查往往与最值联系在一起,三种题型都有,难度中等.一、知识梳理《名师一号》P13知识点一常见基本初等函数的定义域注意:1、研究函数问题必须遵循“定义域优先”的原则!!!2、定义域必须写成集合或区间的形式!!!(1)分式函数中分母不等于零(2)偶次根式函数被开方式大于或等于0(3)一次函数、二次函数的定义域均为R(4)y=a x(a>0且a≠1),y=sin x,y=cos x的定义域均为R(5)y=log a x(a>0且a≠1)的定义域为(0,+∞)(6)函数f(x)=x0的定义域为{x|x≠0}12 (7)实际问题中的函数定义域,除了使函数的解析式有意 义外,还要考虑实际问题对函数自变量的制约. (补充)三角函数中的正切函数y =tan x 定义域为{|,,}2∈≠+∈x x R x k k Z ππ 如果函数是由几个部分的数学式子构成的,那么函数的定义域是使各部分式子都有意义的实数集合.知识点二 基本初等函数的值域注意:值域必须写成集合或区间的形式!!!(1)y =kx +b (k ≠0)的值域是R .(2)y =ax 2+bx +c (a ≠0)的值域是:当a >0时,值域为{y |y ≥4ac -b 24a}; 当a <0时,值域为{y |y ≤4ac -b 24a} (3)y =k x (k ≠0)的值域是{y |y ≠0}(4)y =a x (a >0且a ≠1)的值域是{y |y >0}(5)y =log a x (a >0且a ≠1)的值域是R .(补充)三角函数中正弦函数y =sin x ,余弦函数y =cos x 的值域均为[]1,1- 正切函数y =tan x 值域为R3 《名师一号》P15知识点二 函数的最值注意:《名师一号》P16 问题探究 问题3函数最值与函数值域有何关系?函数的最小值与最大值分别是函数值域中的最小元素与最大元素;任何一个函数,其值域必定存在,但其最值不一定存在.1、温故知新P11 知识辨析1(2)函数21=+x y x 的值域为11,,22⎛⎫⎛⎫-∞+∞ ⎪ ⎪⎝⎭⎝⎭( )答案:正确2、温故知新P11 第4题4 函数(]()1122,,222,,2--⎧-∈-∞⎪=⎨-∈-∞⎪⎩x x x y x 的值域为( ) 3.,2⎛⎫-+∞ ⎪⎝⎭A ().,0-∞B 3.,2⎛⎫-∞- ⎪⎝⎭C (].2,0-D答案:D注意:牢记基本函数的值域3、温故知新P11 第6题函数()=y f x 的值域是[]1,3,则函数()()123=-+F x f x 的值域是( )[].5,1--A [].2,0-B [].6,2--C [].1,3D答案:A注意:图像左右平移没有改变函数的值域二、例题分析:(一)函数的定义域1.据解析式求定义域例1. (1)《名师一号》P13 对点自测15(2014·山东) 函数()=f x 为( )A.⎝ ⎛⎭⎪⎫0,12 B .(2,+∞) C.⎝ ⎛⎭⎪⎫0,12∪(2,+∞) D.⎝ ⎛⎦⎥⎤0,12∪[2,+∞)解析 要使函数有意义,应有(log 2x )2>1,且x >0, 即log 2x >1或log 2x <-1,解得x >2或0<x <12. 所以函数f (x )的定义域为⎝ ⎛⎭⎪⎫0,12∪(2,+∞). 例1. (2)《名师一号》P14 高频考点 例1(1)函数f (x )=1-2x +1x +3的定义域为( ) A .(-3,0] B .(-3,1]C .(-∞,-3)∪(-3,0]D .(-∞,-3)∪(-3,1]6 解析:由题意得⎩⎨⎧1-2x ≥0,x +3>0,解得-3<x ≤0.注意:《名师一号》P14 高频考点 例1 规律方法(1) 求函数的定义域,其实质就是以函数解析式所含运算有意义为准则,列出不等式或不等式组,然后求出它们的解集. 函数的定义域一定要用集合或区间表示例2. (补充)若函数2()lg(21)f x ax x =++的定义域为R 则实数a 的取值范围是 ;答案:()1,+∞变式:2()lg(21)=++f x ax ax ?练习:(补充) 若函数27()43kx f x kx kx +=++的定义域为R7则实数k 的取值范围是 ;答案:30,4⎡⎫⎪⎢⎣⎭2.求复合函数的定义域例3.(1)《名师一号》P14 高频考点 例1(2)(2015·北京模拟)已知函数y =f (x )的定义域为[0,4],则函数y =f (2x )-ln(x -1)的定义域为( )A .[1,2]B .(1,2]C .[1,8]D .(1,8]解析:由已知函数y =f (x )的定义域为[0,4].则使函数y =f (2x )-ln(x -1)有意义,需⎩⎨⎧ 0≤2x ≤4,x -1>0,解得1<x ≤2,所以定义域为(1,2].例3. (2)《名师一号》P13 对点自测2已知函数f (x )=1x +1,则函数f (f (x ))的定义域是( ) A .{x |x ≠-1} B .{x |x ≠-2}C .{x |x ≠-1且x ≠-2}D .{x |x ≠-1或x ≠-2}8解析 ⎩⎪⎨⎪⎧ x ≠-1,1x +1+1≠0,解得x ≠-1且x ≠-2.注意:《名师一号》P14 高频考点 例1 规律方法(2) (P13 问题探究 问题1 类型二)已知f (x )的定义域是[a ,b ],求f [g (x )]的定义域, 是指满足a ≤g (x )≤b 的x 的取值范围,而已知f [g (x )]的定义域是[a ,b ],指的是x ∈[a ,b ].例4.(补充)已知2(1)f x +的定义域是[]0,1,求()f x 的定义域。

函数的定义域与值域教案

函数的定义域与值域教案

函数的定义域与值域教学设计课题:函数的定义域和值域学科:数学授课教师: 数理19.4胡家华教材:高中必修1第一章第2节一、教学目标:1、知识目标:了解函数定义域和值域的定义,熟悉掌握简单函数定文域和值域的求法,会求抽象函数的定义域2、能力目标提高学生对函数工定义域、值域及相关问题的解题能力和运算能力,使学生准确而快速地求出函数定义域和值域3、情感目标通过由易到难的知识点层层递进和对各类题解题思路解法的不断运用掌握来提高学生的信心,二、教学重难点:求函数的定义域和值域,求抽象函数的定义域三、教学方法1.通过知识回顾引出新课,用学生熟悉的知识快速将学生的思绪从课间带回到课堂上来,同时也便于同学们更快的接受新知识,理解新概念。

2.通过提问和互动,使学生集中注意力,跟上老师的思路在思考和回答的过程中更好的理解和掌握新知识。

3.通过竞赛式随堂练习题,促进学生积极思考问题在解题的过程中不断巩固新知,并且让学生主动回答问题,加深同学的印象,同时提升学生的自信心。

四、教学过程1.知识回顾函数的概念:设A、B为非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A B为从集合A到集合B的一个函数记作:y=f(x),x∈A(其中X叫做函数的:自变量y叫做函数的函数值)2.新课引入定义域的概念:使函数有意义的自变量的取值范围,叫做函数的定义域。

值域的概念:函数值的集合,就叫做值域(明确“域”即集合,求函数的定义域值域时要表示成集合的形式)思考:上述函数y=f(x)的定义域是多少?f 那么值域呢?是否为B ?讨论得出,定义域为A ,值域不一定为B例: A B A C通过这个例子得出;f :A →B ,也可以表示成 : f :A →C即:函数:定义域 值域进而得出结论:(同时更好的理解定义域与值域的概率)函数的三要素:定义域、对应关系、值域俩个函数相等即:俩个函数的定义域相同,并且对应关系完全一致。

高一函数定义域和值域知识点

高一函数定义域和值域知识点

高一函数定义域和值域知识点在高中数学中,函数是一个非常重要的概念。

函数是一个映射关系,它将一个集合中的元素对应到另一个集合中的元素。

而函数的定义域和值域则是函数的两个基本性质,它们对于理解函数的性质和特点非常关键。

一、函数的定义域函数的定义域是指函数中所有可能输入的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输入可以采取哪些值。

例如,考虑一个简单的函数f(x) = √x。

这个函数的定义域是什么呢?我们知道平方根是一个实数运算,但是如果x取负值,那么该函数就无法定义了。

因此,这个函数的定义域是所有非负实数。

我们可以表示为:定义域D = [0, +∞)。

同样地,对于一个分式函数g(x) = 1/x,我们知道分母不能为零。

因此,该函数的定义域是除了x=0之外的所有实数。

我们可以表示为:定义域D = (-∞, 0)∪(0, +∞)。

另外,有些函数的定义域可能受到一些附加条件的限制。

比如,如果考虑一个函数h(x) = log(x),我们知道对数运算要求x必须大于0,因此,该函数的定义域是所有正实数。

我们可以表示为:定义域D = (0, +∞)。

二、函数的值域函数的值域是指函数中所有可能输出的取值范围。

也就是说,在定义一个函数时,我们需要确定函数的输出可以采取哪些值。

例如,考虑函数f(x) = x^2,我们可以通过平方运算得到一个非负数。

因此,该函数的值域是所有非负实数。

我们可以表示为:值域R = [0,+∞)。

同样地,对于函数g(x) = sin(x),我们知道正弦函数的取值范围是在[-1, 1]之间的所有实数。

因此,该函数的值域是[-1, 1]。

另外,有些函数的值域可能受到一些附加条件的限制。

比如,如果考虑函数h(x) = e^x,我们知道指数函数的取值范围是大于0的实数。

因此,该函数的值域是大于0的所有实数。

我们可以表示为:值域R = (0, +∞)。

总结起来,函数的定义域和值域是函数的两个基本性质。

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法(含答案)

高一数学求函数的定义域与值域的常用方法一. 求函数的定义域与值域的常用方法求函数的解析式,求函数的定义域,求函数的值域,求函数的最值二. 求函数的解析式3、求函数解析式的一般方法有:(1)直接法:根据题给条件,合理设置变量,寻找或构造变量之间的等量关系,列出等式,解出y 。

(2)待定系数法:若明确了函数的类型,可以设出其一般形式,然后代值求出参数的值; (3)换元法:若给出了复合函数f [g (x )]的表达式,求f (x )的表达式时可以令t =g (x ),以换元法解之; (4)构造方程组法:若给出f (x )和f (-x ),或f (x )和f (1/x )的一个方程,则可以x 代换-x (或1/x ),构造出另一个方程,解此方程组,消去f (-x )(或f (1/x ))即可求出f (x )的表达式;(5)根据实际问题求函数解析式:设定或选取自变量与因变量后,寻找或构造它们之间的等量关系,列出等式,解出y 的表达式;要注意,此时函数的定义域除了由解析式限定外,还受其实际意义限定。

(二)求函数定义域1、函数定义域是函数自变量的取值的集合,一般要求用集合或区间来表示;2、常见题型是由解析式求定义域,此时要认清自变量,其次要考查自变量所在位置,位置决定了自变量的范围,最后将求定义域问题化归为解不等式组的问题;3、如前所述,实际问题中的函数定义域除了受解析式限制外,还受实际意义限制,如时间变量一般取非负数,等等;4、对复合函数y =f [g (x )]的定义域的求解,应先由y =f (u )求出u 的范围,即g (x )的范围,再从中解出x 的范围I 1;再由g (x )求出y =g (x )的定义域I 2,I 1和I 2的交集即为复合函数的定义域;5、分段函数的定义域是各个区间的并集;6、含有参数的函数的定义域的求解需要对参数进行分类讨论,若参数在不同的范围内定义域不一样,则在叙述结论时分别说明;7、求定义域时有时需要对自变量进行分类讨论,但在叙述结论时需要对分类后求得的各个集合求并集,作为该函数的定义域;一:求函数解析式1、换元法:题目给出了与所求函数有关的复合函数表达式,可将内函数用一个变量代换。

高中数学必修一-函数的值域与表示

高中数学必修一-函数的值域与表示

函数的值域与表示知识集结知识元常见的求函数值域类型知识讲解一、定义函数值的集合{f(x)|x∈A}叫做函数的值域.A是函数的定义域.二、求函数值域的常用方法(1)公式法:适用于一次函数、二次函数、反比例函数及以后要学的基本初等函数,形如(且分式不可约)的值域为.(2)图象法:适用于能画出图象的函数,如,.(3)不等式性质法(包含观察法、配方法、分离常数法、有界法):适用于解析式中只出现“一个”或通过变形化成只能出现“一个”函数,如:,等.(4)换元法:适用于无理式中含有自变量的函数,如等.(5)判别式:适用于形如(,不全为零且分式不可约)的函数.(6)方程思想(包括判别式法、反解法):适用于可解出的解析式函数,如等.例题精讲常见的求函数值域类型例1.函数f(x)=x+1,x∈{﹣1,1,2}的值域是()A.0,2,3B.0≤y≤3C.{0,2,3}D.[0,3]例2.函数y=的定义域是(﹣∞,1)∪[2,5),则其值域是()A.(﹣∞,0)∪(,2]B.(﹣∞,2]C.(﹣∞,)∪[2,+∞)D.(0,+∞)例3.函数y=的值域是()A.(﹣∞,1)∪(1,+∞)B.(﹣∞,0)∪(0,+∞)C.(﹣∞,)∪(,+∞)D.(﹣∞,)∪(,+∞)例4.函数的值域是.备选题库知识讲解本题库作为知识点“函数的值域”的题目补充.例题精讲备选题库例1.函的值域是()A.R B.[-1,1]C.{-1,1}D.{-1,0,1}例2.函数y=的值域是()A.[0,+∞)B.[0,4]C.[0,4)D.(0,4)例3.函数的值域为()A.[-1,+∞)B.[0,+∞)C.(-1,+∞)D.(0,+∞)例4.已知,则函数f(x)=log2x的值域是()A.[-3,-2]B.[-2,3]C.[-3,3]D.[-2,2]例5.函数y=2+1的值域为()A.[0,+∞)B.[1,+∞)C.[2,+∞)D.例6.已知函数f(x)=-,则函数f(x)的值域为()A.[-3,0]B.[0,3]C.[-3,3]D.[3,12]例7.下列哪个函数的定义域与函数f(x)=()x的值域相同()A.y=|x|B.y=C.y=x+D.y=lnx例8.定义函数f(x)={x∙{x}},其中{x}表示不小于x的最小整数,如{1.5}=2,{-2.5}=-2,当x∈(0,n],n∈N*时,函数f(x)的值域为A n,记集合A n中元素的个数为a n,则a n=()A.n B.C.D.图象法知识讲解1.图象法在坐标平面中用曲线的表示出函数关系.即图象上的任意点的坐标满足函数的关系式,反之满足函数关系的点都在图象上.这种由图形表示函数的方法叫作图象法.2.函数图象的作法步骤①列表;②.描点;③.连线.注意:一般情况下,函数需要同解变形后,结合函数的定义域,通过函数的对应法则,列出表格,然后在直角坐标系中,准确描点,然后连线(平滑曲线)例题精讲图象法例1.若a+b=0,则直线y=ax+b的图象可能是()A.B.C.D.例2.若一次函数y=ax+b的图象经过二、三、四象限,则二次函数y=ax2+bx的图象可能是()A.B.C.D.例3.甲、乙两人在一次赛跑中,从同一地点出发,路程S与时间t的函数关系如图所示,则下列说法正确的是()A.甲比乙先出发B.乙比甲跑的路程多C.甲、乙两人的速度相同D.甲比乙先到达终点例4.已知函数f(x)=x2﹣2x,则下列各点中不在函数图象上的是()A.(1,﹣1)B.(﹣1,3)C.(2,0)D.(﹣2,6)例5.可作为函数y=f(x)的图象的是()A.B.C.D.图象的平移变换知识讲解一、变换作图法设,.例题精讲图象的平移变换例1.已知函数f(x)的图象关于直线x=1对称,如图所示,则满足等式f(a﹣1)=f(5)的实数a的值为.例2.已知反比例函数y=的图象如图所示,则二次函数y=2kx2﹣4x+k2的图象大致为()A.B.C.D.例3.若函数y=f(x)的图象如图①所示,则图②对应函数的解析式可以表示为()A.y=f(|x|)B.y=|f(x)|C.y=f(﹣|x|)D.y=﹣f(|x|)例4.函数y=f(x)的图象是两条直线的一部分(如图所示),其定义域为[﹣1,0)∪(0,1],则不等式f(x)﹣f(﹣x)>﹣1的解集为.例5.将y=f(x)的图象的横坐标伸长为原来的3倍,纵坐标缩短为原来的,则所得函数的解析式为()A.y=3f(3x)B.C.D.函数的解析式知识讲解一、解析法:用解析式把把x与y的对应关系表述出来,y=f(x);这种方法叫做解析法.注意:函数的三种表示方法间具有互补性,因此在实际研究问题时,通常是三种方法交替使用,例如在研究用解析式表示的某一函数的性质时,可以根据解析式画出函数图象,数形结合更清晰、直观,如何画函数图象?列表法,通常取其自变量的部分值,根据解析式算出相应的函数值,列表显示其数值的对应关系,再根据表格,在平面直角坐标系中描点,形成该函数的图象.二、求函数解析式的常用方法1.配凑法:原函数的表达式为,t是关于x的式子,要求的解析式,这是要把通过变形、整理,使其变为只含t与常数的式子,然后将t换成x,即可以得到的解析式,这种方法叫做配凑法.2.换元法:解题时,把某个式子看做整体,用一个新的变量取代替它,从而使问题简化,这种方法叫做配凑法.3.待定系数法:已知的函数类型,要求的解析式时,可根据类型先设出函数解析式,再将对应值代入,利用恒等式原理求出待定系数即可.4.解方程组法(或消元法):在已知式子中,含有关于两个不同变量的函数,而这两个变量有着某种关系,这时就要依据两个变量的关系,建立一个新的关于两个变量的式子,由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种方法叫做解方程组法(或消元法).5.赋值法:如果一个函数关系式中的变量对某个范围内的一切值都成立,结合题设条件的结构特点,给变量适当赋值,从而使问题简单化、具体化.例题精讲函数的解析式例1.若函数,,则f(x)+g(x)=.例2.已知a,b为常数,若f(x)=x2+4x+3,f(ax+b)=x2+10x+24,则5a﹣b =.例3.已知f(x)=2x+3,g(x+2)=f(x),则g(x)等于()A.2x+1B.2x﹣1C.2x﹣3D.2x+7例4.已知g(x)=1﹣2x,f[g(x)]=(x≠0),则f()等于()A.15B.1C.3D.30例5.已知f(x+1)=2x2+1,则f(x﹣1)=.构造函数知识讲解例题精讲分段函数知识讲解1.定义分段函数是定义在不同区间上解析式也不相同的函数.若函数在定义域的不同子集上的对应法则不同,可用几个式子来表示函数,这种形式的函数叫分段函数.已知一个分段函数在某一区间上的解析式,求此函数在另一区间上的解析式,这是分段函数中最常见的问题.1.学习分段函数的注意事项(1)分段函数是一个函数,而不是几个函数;(2)处理分段函数问题时,要首先确定自变量的取值属于哪一范围,然后选取相应的对应关系.要注意写解析式是各自端点的开闭,做到不重复、不遗漏.(3)分段函数的定义域是各段定义域的并集,分段函数的值域是分别求出各段上值域的并集;分段函数的最大(小)值则是分别在没端上求出最大(小)值,然后取各个最大(小)值中的最大(小)值.例题精讲分段函数例1.设f(x)=,则f(5)的值为()A.10B.11C.12D.13例2.函数,其中P、M为实数集R的两个非空子集,又规定A={y|y =f(x),x∈P},B={y|y=f(x),x∈M},给出下列三个判断:①若P∩M=Φ,则A∩B=Φ;②若P∪M=R,则A∪B=R;③若P∪M≠R,则A∪B≠R.其中错误的判断是(只需填写序号).例3.已知函数f(x)=则f(f(5))=()A.0B.-2C.-1D.1例4.设f(x)=,则f(5)的值为()A.10B.11C.12D.例5.设函数f(x)=,若互不相等的实数x1,x2,x3满足f(x1)=f (x2)=f(x3),则x1+x2+x3的取值范围是()A.(]B.()C.(]D.()列表法知识讲解1.列表法:通过列出自变量与对应的函数值的表来表达函数关系的方法叫列表法.例题精讲列表法例1.设f,g都是由A到A的映射,其对应法则如下表(从上到下):表1映射f的对应法则原象1234象3421表2映射g的对应法则原象1234象4312则与f[g(1)]相同的是()A.g[f(1)]B.g[f(2)]C.g[f(3)]D.g[f(4)]例2.已知函数f(x),g(x)分别由表给出,则f(g(1))=.x123 f(x)213 g(x)321例3.已知函数分别由下表给出x123f(x)131x123g(x)321则f(g(1))=.备选题库知识讲解本题库作为知识点“函数的表示方法”的题目补充.例题精讲备选题库例1.直线l1:y=kx+b和直线l2:(k≠0,b≠0)在同一坐标系中,两直线的图形应为()A.B.C.D.例2.函数f(x)=ln|x|-|x|的图象为()A.B.C.D.例3.二次函数y=ax2+bx+c(x∈R)的部分对应值如表:则不等式ax2+bx+c>0的解集是()A.(-∞,-6)∪(-6,+∞)B.(-∞,-2)∪(3,+∞)C.(-2,3)D.(-6,+∞)例4.已知函数f(x)=x2+bx,若函数y=f(f(x))的最小值与函数y=f(x)的最小值相等,则实数b的取值范围是______________。

高中数学 函数的定义域和值域教案 新人教A版必修1

高中数学 函数的定义域和值域教案 新人教A版必修1

专题三 求函数的定义域、值域的常用方法 高考要求 函数的值域及其求法是近几年高考考查的重点内容之一 本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题 重难点归纳(1)求函数的值域 此类问题主要利用求函数值域的常用方法 配方法、分离变量法、单调性法、图象法、换元法、不等式法等 无论用什么方法求函数的值域,都必须考虑函数的定义域(2)函数的综合性题目 此类问题主要考查函数值域、单调性、奇偶性、反函数等一些基本知识相结合的题目 此类问题要求考生具备较高的数学思维能力和综合分析能力以及较强的运算能力 在今后的命题趋势中综合性题型仍会成为热点和重点,并可以逐渐加强题型综合训练:1、求下列函数的定义域(1)2log (2)y x =+ (2)y =2、若函数()y f x =的定义域是[0, 2],求函数2()()1f xg x x =-的定义域。

3、设2()lg 2x f x x +=-,求2()()2x f f x+的定义域。

4、求下列函数的值域(1)22y x x =+ (2)|1||4|y x x =-++(3)2121x x y +=- (4)2y x =+5、用min(,,)a b c 表示,,a b c 三个数中的最小值,设()min{2,2,10}x f x x x =+-(0)x ≥,求()f x 的最大值。

6、设函数21()2f x x x =++的定义域是[,1]()n n n N +∈,那么在()f x 的值域中共有多少个整数?8、已知实数,x y 满足22410x y x +-+=,求y x的取值范围。

9、已知实数,x y 满足10x y ++=,求22x y +的最小值。

10、求下列函数的值域(1))4(log 221x x y -= (2) x x y 2231+-⎪⎭⎫ ⎝⎛=11、(1)求函数x x y -+-=53 的值域。

(2)求函数的值域。

高中数学课件 第2章 第2节 《函数的定义域和值域》

高中数学课件 第2章 第2节 《函数的定义域和值域》

因此, 因此,g(x)min=g(2)=1-2a, = - , 而g(3)-g(1)=(2-3a)-(1-a)=1-2a, - = - - - = - , 故当0≤a≤ 故当 当 时,g(x)max=g(3)=2-3a,有h(a)=1-a; = - , = - ;
<a≤1时,g(x)max=g(1)=1-a,有h(a)=a, 时 = - , = ,
3.不等式法:借助于基本不等式a+b≥2 不等式法:借助于基本不等式 + 不等式法
(a>0,b>0)求数 , 求数
的值域.用不等式法求值域时, 的值域 用不等式法求值域时,要注意基本不等式的使用 用不等式法求值域时 条件“一正、二定、三相等”. 条件 一正、二定、三相等 一正 4.单调性法:首先确定函数的定义域, 4.单调性法:首先确定函数的定义域,然后再根据其单调 单调性法 性求函数的值域,常用到函数 = + 性求函数的值域,常用到函数y=x+ 增区间为(- ,- 增区间为 -∞,- (0, ). , ]和[ 和 (p>0)的单调性: 的单调性: 的单调性
+∞),减区间为 - ,0)和 ,减区间为(- 和
[特别警示 (1)用换元法求值域时,需认真分析换元后变 特别警示] 用换元法求值域时, 特别警示 用换元法求值域时 量的范围变化;用判别式求函数值域时, 量的范围变化;用判别式求函数值域时,一定要注意自变 量x是否属于 是否属于R. 是否属于 (2)用不等式法求函数值域时,需认真分析其等号能否成立; 用不等式法求函数值域时,需认真分析其等号能否成立; 用不等式法求函数值域时 利用单调性求函数值域时,准确地找出其单调区间是关键 利用单调性求函数值域时,准确地找出其单调区间是关键. 分段函数的值域应分段分析,再取并集 分段函数的值域应分段分析,再取并集. (3)不论用哪种方法求函数的值域,都一定要先确定其定义 不论用哪种方法求函数的值域, 不论用哪种方法求函数的值域 域,这是求值域的重要环节. 这是求值域的重要环节

[数学必修一定义域值域知识点总结]定义域和值域

[数学必修一定义域值域知识点总结]定义域和值域

数学必修一定义域知识点定义(高中函数定义)设A,B是两个非空的数集,如果按某个确定的对应关系f,使对于集合A中的任意一个数某,在集合B中都有唯一确定的数f(某)和它对应,那么就称f:A--B为集合A到集合B的一个函数,记作y=f(某),某属于集合A。

其中,某叫作自变量,某的取值范围A叫作函数的定义域;常见题型1,f(某)的定义域,求f(g(某))的定义域.例1,f(某)的定义域为(-1,1),求f(2某-1)的定义域.略解:由 -1<2某-1<1有 0<1∴f(2某-1)的定义域为(0,1)2,f(g(某))的定义域,求f(某)的定义域.例2,f(2某-1)的定义域为(0,1),求f(某)的定义域。

解:0<1,设t=2某-1∴某=(t+1)/2∴0<(t+1)/2<1∴-1<1∴f(某)的定义域为(-1,1)注意比拟例1与例2,加深理解定义域为某的取值范围的含义。

3,f(g(某))的定义域,求f(h(某))的定义域.例3,f(2某-1)的定义域为(0,1),求f(某-1)的定义域。

略解:如例2,先求出f(某)的定义域为(-1,1),然后如例1有 -1<1,即0<2∴f(某-1)的定义域为(0,2)指使函数有意义的一切实数所组成的集合。

其主要根据:①分式的分母不能为零②偶次方根的被开方数不小于零③对数函数的真数必须大于零④指数函数和对数函数的底数必须大于零且不等于1例4,f(某)=1/某+√(某+1),求f(某)的定义域。

略解:某≠0且某+1≧0,∴f(某)的定义域为[-1,0)∪(0,+∞)注意:答案一般用区间表示。

例5,f(某)=lg(-某 2+某+2),求f(某)的定义域。

略解:由-某 2+某+2 >0 有某 2-某-2 <0即-1<2∴f(某)的定义域为(-1,2)函数应用题的函数的定义域要根据实际情况求解。

某 1 2 3 4 (89)p 2/99 1/49 2/97 1/48 …2/11又知每生产一件正品盈利100元,每生产一件次品损失100元.求该厂日盈利额T(元)关于日产量某(件)的函数;解:由题意:当日产量为某件时,次品率p=2/(100-某)那么次品个数为:2某/(100-某),正品个数为:某-2某/(100-某)所以T=100[某-2某/(100-某) ]-100·2某/(100-某)即T=100[某-4某/(100-某) ],(某∈N且1≦某≦89)数学必修一值域知识点名称定义函数中,应变量的取值范围叫做这个函数的值域函数的值域,在数学中是函数在定义域中应变量所有值的集合常用的求值域的方法(1)化归法;(2)图象法(数形结合);(3)函数单调性法;(4)配方法;(5)换元法;(6)反函数法(逆求法);(7)判别式法;(8)复合函数法;(9)三角代换法;(10)根本不等式法等关于函数值域误区“范围”与“值域”相同吗“范围”与“值域”是我们在学习中经常遇到的两个概念,许多同学常常将它们混为一谈,实际上这是两个不同的概念。

高中数学 函数概念及其性质知识总结

高中数学 函数概念及其性质知识总结

高中数学函数概念及其性质知识总结数学必修1:函数概念及性质函数的概念函数是指从一个集合到另一个集合的一种对应关系。

具体而言,设A、B是非空的数集,如果按照某个确定的对应关系f,使得对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。

记作:y=f(x),其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域。

函数的定义域能使函数式有意义的实数x的集合称为函数的定义域。

求函数的定义域时,列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1;(5)如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是使各部分都有意义的x的值组成的集合;(6)指数为零底不可以等于零。

实际问题中的函数的定义域还要保证实际问题有意义。

注意:求出不等式组的解集即为函数的定义域。

构成函数的三要素构成函数的三个要素是定义域、对应关系和值域。

由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)。

两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)。

函数的值域函数的值域取决于定义域和对应法则。

不论采取什么方法求函数的值域都应先考虑其定义域。

应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。

求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等。

函数图象在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象。

高中数学必修一定义域与值域(超全的方法)

高中数学必修一定义域与值域(超全的方法)

高中数学精英讲解——函数(概念理解以及定义域) 【第一部分】知识复习【第二部分】典例讲解考点一:函数得定义域1)已知解析式,求定义域例1、写出下列函数定义域(1)得定义域为___________;(2)得定义域为______________;(3)得定义域为____________(4)得定义域为_________________.例2.函数得定义域为_____________________.例3.若函数得定义域为R,则实数得取值范围__________.变式1、函数得定义域就是()A.(,)B.(,) C.(,1) D.(,)变式2、求得定义域2)求抽象函数得定义域例1、已知函数定义域就是,则得定义域就是( )A. B、C、 D、例2.设函数得定义域为,则函数得定义域为__________。

变式1、已知函数得定义域为[0,4],求函数得定义域( )A.B. C.D.变式2、已知集合,,则____考点二:函数得解析式1)换元法,配凑法,求解析式例1、、已知,求得解析式.变式1、(1)已知,求及;(2)已知,求、2)已知解析式形式,求解析式例1、已知()就是一次函数,且满足,求;例2、已知二次函数得最小值等于4,且,求得解析式.变式1设二次函数满足(+2)=(2-),且方程得两实根得平方与为10, 得图象过点(0,3),求()得解析式、3)求抽象函数得解析式例.已知 ( 0), 求.变式1.设(x-1)=3x-1,则(x)=___________________________.考点三:抽象函数例.设函数对任意x、y满足,且,则=____A.-2B.±C.±1 ﻩD.2变式.函数对于任意实数满足条件,若,求.考点四:分段函数例1.若函数,则= .例2已知函数若则实数得取值范围( )A B C D例3、已知函数若,则、例4若函数则不等式得解集为____________、例5.已知则不等式≤5得解集就是_________变式1、若函数,则____________________变式2、函数则实数a得取值范围就是________________变式3、定义在R上得函数f(x)= ,则f(3)=( )A、-1 B、-2 C、1 D、 2考点五:函数概念得应用例.判断下列各组中得两个函数就是同一函数得为( )⑴,;⑵,;⑶,;⑷,;⑸,。

新湘教版必修1高中数学 函数的定义域和值域

新湘教版必修1高中数学 函数的定义域和值域

1.2.5 函数的定义域和值域1.实际问题中的函数,它的自变量的值不但要使函数表达式有意义,还受到实际问题的限制,要符合实际情形.2.若只写函数的表达式,略去函数的定义域,那么这个函数的定义域就是使函数的表达式有意义的自变量的变化范围.求下列函数的定义域: (1)y =31-x -1;(2)y =x 2+12+x +1|x |. [提示] (1)要使函数有意义,自变量x 须满足:⎩⎨⎧x -1≥01-x -1≠0解得:x ≥1且x ≠2.∴函数的定义域为[1,2)∪(2,+∞). (2)要使函数有意义,x 须满足: ⎩⎪⎨⎪⎧x 2+12+x ≥0|x |≠0即⎩⎪⎨⎪⎧2+x >0x ≠0解得x >-2且x ≠0.∴函数的定义域为(-2,0)∪(0,+∞).把图象上的点向y 轴上作投影,投影点集合对应的数集,就是函数的值域.函数y =x2x 2+1(x ∈R)的值域是________.[提示] y =x 2x 2+1=1-1x 2+1,∴y 的值域为[0,1). 答案:[0,1)[例1] (1)f (x )=1|x |-2; (2)f (x )=5-x +x -5; (3)f (x )=(x +1)0|x |-x ·x +6(x ∈Z).[思路点拨] 解答本题可根据函数解析式的结构特点,构造使解析式有意义的不等式(组),进而解不等式求解.[解] (1)要使函数有意义,需满足|x |-2≠0.|x |≠2,即x ≠±2, 所以原函数的定义域为{x |x ≠±2}.(2)要使函数有意义,需满足⎩⎪⎨⎪⎧ 5-x ≥0x -5≥0,即⎩⎪⎨⎪⎧x ≤5x ≥5,∴只有x =5使函数有意义,所以原函数的定义域是{5}. (3)要使函数有意义,需满足 ⎩⎪⎨⎪⎧x +1≠0,|x |-x >0,x +6>0,即⎩⎪⎨⎪⎧x ≠-1,x <0,x >-6,∴-6<x <0且x ≠-1,又x ∈Z , ∴x =-5,-4,-3,-2.因此,所求函数的定义域为{-5,-4,-3,-2}.1.求下列函数的定义域. (1)y =x +1+12-x ;(2)y =x -1x +1. 解:(1)使y =x +1+12-x有意义, 则⎩⎪⎨⎪⎧ x +1≥0,2-x ≠0,∴⎩⎪⎨⎪⎧x ≥-1,x ≠2. ∴y =x +1+12-x的定义域是{x |x ≥-1且x ≠2}. (2)要使函数有意义,则⎩⎪⎨⎪⎧x -1≥0,x +1>0,解得⎩⎪⎨⎪⎧x ≥1,x >-1.∴x ≥1,∴函数y =x -1x +1的定义域为[1,+∞).[例2] (1)y =2x +1,x ∈{1,2,3,4}; (2)y =1-x 2; (3)y =1+1x +1(x >0).[思路点拨] 求函数的值域就是求函数值的取值集合.[解] (1)x =1时,y =3;x =2时,y =5;x =3时,y =7;x =4时,y =9. 所以函数y =2x +1,x ∈{1,2,3,4}的值域为{3,5,7,9}. (2)因为1-x 2≤1,所以y =1-x 2的值域为(-∞,1].(3)∵x +1>1,∴0<1x +1<1,∴1<1+1x +1<2, ∴y =1+1x +1的值域为(1,2).2.求下列函数的值域.(1)y =2x -4x +3;(2)y =x 2-6x +6,x ∈[1,6).解:(1)y =2(x +3)-10x +3=2-10x +3.∵x +3≠0,∴10x +3≠0,∴y ≠2.∴函数的值域为{y |y ∈R ,y ≠2}.(2)法一:配方,得y =x 2-6x +6=(x -3)2-3. ∵x ∈[1,6),∴0≤(x -3)2<9, ∴-3≤y <6.∴函数的值域为{y |-3≤y <6}. 法二:配方,得y =(x -3)2-3. ∵x ∈[1,6),结合图,∴函数的值域为{y |-3≤y <6}.1.函数y =x 2-2x 的定义域为{0,1,2,3},那么其值域为( ) A .{-1,0,3} B .{0,1,2,3} C .{y |-1≤y ≤3}D .{y |0≤y ≤3}解析:选A 由对应关系y =x 2-2x 得,0→0,1→-1,2→0,3→3,所以值域为{-1,0,3}. 2.函数f (x )=13x -1+4-x +2的定义域为( )A.(-∞,4] B .(1,4]C .(-∞,-1)∪(1,4)D .(-∞,1)∪(1,4]解析:选D 要使函数f (x )=13x -1+4-x +2有意义,需满足⎩⎪⎨⎪⎧x -1≠0,4-x ≥0,解得⎩⎪⎨⎪⎧x ≠1,x ≤4,即x <1或1<x ≤4, ∴函数的定义域是(-∞,1)∪(1,4]. 3.函数f (x )=1+x2+x(x >0)的值域是( ) A .(-∞,1) B .(1,+∞) C.⎝⎛⎭⎫12,1D.⎝⎛⎭⎫0,12 解析:选C ∵f (x )=1+x 2+x =x +2-1x +2=1-1x +2在(0,+∞)上为增函数,∴f (x )∈⎝⎛⎭⎫12,1. 4.函数f (x )=1|x |-3+4-x 的定义域是(用区间表示)________. 解析:只要⎩⎪⎨⎪⎧ |x |-3≠04-x ≥0,∴⎩⎪⎨⎪⎧x ≠±3,x ≤4.∴定义域为(-∞,-3)∪(-3,3)∪(3,4]. 答案:(-∞,-3)∪(-3,3)∪(3,4] 5.函数y =x +x +1的值域是________.解析:因y =x +x +1为增函数,且x ≥-1,则y ≥-1. 答案:[-1,+∞) 6.已知函数f (x )=1-x +|2+x |2x +4的定义域为A ,函数g (x )的定义域为B =[-1,1),求A ∩B ,A ∪B ,B ∪(∁R A ).解:由已知得⎩⎪⎨⎪⎧1-x ≥02x +4>0,∴-2<x ≤1.∴A =(-2,1].∴∁R A =(-∞,-2]∪(1,+∞). 又∵B =[-1,1),∴A ∩B =[-1,1),A ∪B =(-2,1],B ∪(∁R A )=(-∞,-2]∪[-1,1)∪(1,+∞).求函数值域常用的方法有哪些?观察法:对于一些简单的函数,通过对解析式的简单变形和观察,来求出函数的值域;隔离常数法:对于分式函数y =ax +b cx +d(ad ≠bc ),可先分离出一个常数,即y =ac +bc -ad c 2x +d c ,所以其值域为⎩⎨⎧⎭⎬⎫y ⎪⎪y ∈R ,且y ≠a c.配方法:对于二次函数在其定义域范围内的值域问题,可用配方法来求.同时要结合二次函数的图象来求解,注意给定区间可能在对称轴同侧或包含对称轴.一、选择题 1.已知f (x )=1x +1,则f [f (x )]的定义域为( ) A .{x |x ∈R 且x ≠-2} B .{x |x ∈R 且x ≠-1}C .{x |x ∈R 且x ≠-1且x ≠-2}D .{x |x ∈R 且x ≠0且x ≠-1} 解析:选C ∵f [ f (x )]=1f (x )+1=11x +1+1=x +1x +2(x +1≠0),∴f [ f (x )]有意义,则⎩⎪⎨⎪⎧x +1≠0,x +2≠0,x ∈R.∴其定义域{x |x ∈R 且x ≠-1且x ≠-2}. 2.函数y =1-x +x 的定义域为( ) A .{x |x ≤1} B .{x |x ≥0} C .{x |x ≥1或x ≤0}D .{x |0≤x ≤1}解析:选D 使y =1-x +x 有意义,则⎩⎪⎨⎪⎧1-x ≥0,x ≥0.∴0≤x ≤1, ∴该函数的定义域为{x |0≤x ≤1}. 3.函数y =2x -32x +3的值域是( )A .(-∞,-1)∪(-1,+∞)B .(-∞,1)∪(1,+∞)C .(-∞,0)∪(0,+∞)D .(-∞,0)∪(1,+∞)解析:选B 对函数y =2x -32x +3隔离常数得,y =1-62x +3, ∴y ≠1,即值域为(-∞,1)∪(1,+∞).4.若函数f (x )=x 2-3x -4的定义域为[0,m ],值域为⎣⎡⎦⎤-254,-4,则m 的取值范围是( )A .(0,4] B.⎣⎡⎦⎤32,4 C.⎣⎡⎦⎤32,3D.⎣⎡⎭⎫32,+∞解析:选C 由二次函数的对称性可求得. 二、填空题5.已知f (x +1)的定义域为[1,2],则f (x )的定义域为________. 解析:∵f (x +1)的定义域为[1,2].∴1≤x ≤2,2≤x +1≤3.∴f (x )的定义域为[2,3]. ∴f (x )中2≤x ≤3,∴4≤x ≤9. 答案:[4,9]6.将长为a 的铁丝折成矩形,则面积y 与一边长x 的函数关系式为________,定义域为________.解析:由于边长为x ,则邻边长为a -2x 2,∴y =x ⎝⎛⎭⎫a 2-x ,∵x >0,a2-x >0, ∴0<x <a2.答案:y =-x 2+a 2x ⎩⎨⎧⎭⎬⎫x|0<x <a 2三、解答题7.求下列函数的定义域. (1)y =-x2x 2-3x -2;(2)y =x -1·1-x ; (3)y =31-1-x;(4)y =x 2-3+5-x 2.解:(1)由题意得⎩⎪⎨⎪⎧-x ≥0,2x 2-3x -2≠0,解得⎩⎪⎨⎪⎧x ≤0,x ≠2且x ≠-12, ∴函数的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x ≤0且x ≠-12. (2)由题意得⎩⎪⎨⎪⎧x -1≥0,1-x ≥0,解得x =1.∴函数的定义域为{x |x =1}.(3)由题意得⎩⎨⎧1-1-x ≠0,1-x ≥0,解得⎩⎪⎨⎪⎧x ≠0,x ≤1.∴函数的定义域为{x |x ≤1且x ≠0}.(4)由题意得⎩⎪⎨⎪⎧ x 2-3≥0,5-x 2≥0,解得⎩⎪⎨⎪⎧x 2≥3,x 2≤5.∴函数的定义域为{x |3≤x ≤5或-5≤x ≤-3}. 8.求函数f (x )=1x -x (1≤x ≤4)的值域.解:因为函数y =1x 和y =-x 在区间[1,4]上都单调递减,所以函数f (x )=1x -x 在区间[1,4]上是减函数.于是f (4)≤f (x )≤f (1),即值域为⎣⎡⎦⎤-74,0.。

高考数学中的函数定义域及值域的详细解释

高考数学中的函数定义域及值域的详细解释

高考数学中的函数定义域及值域的详细解释在高中数学的学习过程中,函数的定义域和值域是非常重要的一个知识点。

掌握函数的定义域和值域,对于学生未来的学习和职业发展都有着极为重要的作用。

接下来,我们就来详细解释函数的定义域和值域的概念及其在高考数学中的应用。

一、函数的定义域是什么?在数学中,函数可以看作是一种联系两个集合的规律。

其中,一个集合是自变量的取值集合,另一个集合是函数值的取值集合。

函数的定义域指的就是自变量的取值集合。

以一个简单的例子为说明:设有一个函数f(x) = √(10 - x),其中x 的取值范围是整个实数集合,那么函数 f(x) 的定义域就是整个实数集合。

但是实际上,在某些情况下,函数的自变量可能不是整个实数集合。

例如,函数 f(x) = 1/x,x 的取值范围为整个实数集合,但由于在 x = 0 处没有定义,因此函数的定义域就是整个实数集合减去 0。

通过以上例子,可以看出函数的定义域并不是简单的取值范围,而是根据函数的性质来确定的。

每个函数都有其自己对应的定义域。

二、函数的值域是什么?函数的值域指的是函数在定义域上所有可能的函数值所组成的集合。

也以前面的例子f(x)= √ (10-x),为例。

将这个函数的定义域限定在 [0,10] 上,那么函数的值域就是在这个区间内所有满足条件的函数值组成的集合。

在求解函数的值域的问题上,可以借助一些特殊的技巧。

比如,在许多函数的求值问题上,我们可以使用函数的性质、图像、导数等方式来简单地确定函数的值域。

三、函数的定义域和值域在高考数学中的应用函数的定义域和值域是高中数学的重点知识点,而在高考中经常考到的题型则是在此基础上进行加深。

经过高中的语文、英语、数学学习,学生应该已经掌握了认真分析问题的方法。

在高考数学的题目中,有许多都需要从某个小细节来全面分析题目,从而解决问题。

而在面对一些函数及其图像的问题时,掌握函数的定义域和值域概念,不仅能在图像问题及函数在某个区间的取值问题上提供大量便利,还可以为高考数学的综合应用题提供更好的思路。

高中数学函数的定义域、值域

高中数学函数的定义域、值域

海豚教育个性化教案 (内部资料,存档保存,不得外泄)海豚教育个性化教案编号:函数的定义域和值域一、知识回顾1、函数的定义域、值域:在函数y =f (x ),x ∈A 中,x 叫做自变量, 叫做函数的定义域;与x 的值对应的y 值叫做函数值, 叫做函数的值域.2、确定函数定义域的常见方法:(1)分式的 ; (2)偶次方根的 ;(3)零指数幂和负数指数幂的 ;(4)对数式的真数 ,底数 ;(5)正切函数 ;(6)实际问题 。

3、求函数值域的常见方法:(1)直接法——利用常见基本初等函数的值域:①)0(≠+=k b kx y 的值域 ②)0(≠=k xk y 的值域 ③c bx ax y ++=2的值域:0>a 时为 ; 0>a 时为 。

④x a y =的值域 ⑤x y a log =的值域⑥x y sin =,x y cos =的值域是 ⑦x y tan =的值域是(2)配方法——转化为二次函数,配成完全平方式.(3)换元法——通过变量代换转化为能求值域的函数,化归思想(4)分离常数法——适用于型如:dcx b ax y ++=的函数 (5)判别式法——适用于型如:p nx mx c bx ax y ++++=222的函数 (6)不等式法:借助于基本不等式ab b a 2≥+(a>0,b>0)求函数的值域.用不等式法求值域时,要注意基本不等式的使用条件“一正、二定、三相等”.(7)单调性法:首先确定函数的定义域,然后再根据其单调性求函数的值域。

常用到函数)0(>+=k x k x y 的单调性: 增区间为(-∞,- k ]和[k ,+∞),减区间为(-k ,0)和(0,k ).二、例题变式例1、求下列函数的定义域:(1)43--=x x y (2)1lg 4x y x -=- (3)6522+--=x x x y (4) )13lg(132++-=x xx y变式1、求下列函数的定义域:(1)x xy 513-=(2)y = (3)y =(4)y =例2、已知等腰三角形的周长为17,写出它的底边长y 与腰长x 之间的函数关系式?并指出函数的定义域。

人教版高中数学教案-函数的定义域和值域

人教版高中数学教案-函数的定义域和值域

函數的定義域與值域 【學習目標】1. 掌握求常規函數的定義域與值域的方法。

2. 瞭解特殊情形下的函數的定義域與值域的求法。

3. 以極度的熱情投入學習,體會成功的快樂。

【學習重點】基本初等函數的定義域與值域的求法。

【學習難點】複合函數的定義域與值域的求法。

[自主學習] 一、定義域:1.函數的定義域就是使函數式 的集合. 2.常見的三種題型確定定義域:① 已知函數的解析式,就是 .② 複合函數f [g(x )]的有關定義域,就要保證內函數g(x )的 域是外函數f (x )的 域. ③實際應用問題的定義域,就是要使得 有意義的引數的取值集合. 二、值域:1.函數y =f (x )中,與引數x 的值 的集合.2.常見函數的值域求法,常用的方法有:①觀察法;②配方法;③反函數法;④不等式法;⑤單調性法;⑥數形法;⑦判別式法;⑧有界性法;⑨換元法 例如:① 形如y =221x +,可採用 法;② y =)32(2312-≠++x x x ,可採用 法或法;③ y =a [f (x )]2+bf (x )+c ,可採用 法;④ y =x -x -1,可採用 法;⑤ y =x -21x -,可採用 法;⑥ y =xx cos 2sin -可採用 法等.[典型例析](A )例1. 求下列函數的定義域:(1)y=xx x -+||)1(0; (2)y=232531x x -+-; (3)y=1·1-+x x變式訓練1:求下列函數的定義域: (1)y=212)2lg(x x x -+-+(x-1)0 ;(2)y=)34lg(2+x x +(5x-4)0; (3)y=225x -+lgcosx;( B)例2. 設函數y=f(x)的定義域為[0,1],求下列函數的定義域. (1)y=f(3x); (2)y=f(x1); (3)y=f()31()31-++x f x ; (4)y=f(x+a)+f(x-a).小結:(B)例3. 求下列函數的值域:(1)y=;122+--x x xx (2)y=x-x 21-; (3)y=1e 1e +-x x .(4)y=521+-x x; (5)y=|x|21x -.小結:(C)例4已知函數f(x)=x2-4ax+2a+6 (x∈R).(1)求函數的值域為[0,+∞)時的a的值;(2)若函數的值均為非負值,求函數f(a)=2-a|a+3|的值域.[當堂檢測]1.若函數)(x f y =的定義域為[-1,1],求函數)41(+=x f y )41(-⋅x f 的定義域__________。

高中数学函数入门——三要素:定义域、值域、对应关系的求法

高中数学函数入门——三要素:定义域、值域、对应关系的求法

高中数学函数入门——函数的三要素及其求法函数的定义:设B A 、是非空数集,如果按照某种确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的一个函数)(function记作 A x x f y ∈=),(其中x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合}|)({A x x f ∈叫做函数的值域,显然值域是集合B 的子集.一、定义域求法(1)具体函数(函数给定解析式)1、)(x f 是整式:R ;2、)(x f 是分式:使分母不为0的数集;3、)(x f 是二次(偶次)根式:根号内式子≥0;4、幂式0x :0≠x ;5、对数:真数大于0;6、以上几部分组合:各式都有意义的数集。

【总结反思】求具体函数定义域——看“x ”在哪里【例1】 求下列函数的定义域。

).4(log 123)()3(;23||2)()2(;213)()1(220x x x x f x xx x f x x x f -+-=-+-=+++=).2,21()(,221,04012),4(log 123)()3(]3,()(3,03||02023||2)()2(),2()2,3[)(,23,0203213)()1(2220的定义域为即解得的定义域为,即解得的定义域为即且解得,【解析】x f x x x x x xx f x f x x x x x x x x f x f x x x x x x x f <<⎩⎨⎧>->-∴-+-=--∞-≤⎪⎩⎪⎨⎧≥->-≠∴-+-=+∞-⋃---≠-≥⎩⎨⎧≠+≥+∴+++=(2)抽象函数(没有给定解析式)【例2】 (1)若函数y=f(x)的定义域是[0,2020],则函数g(x)=f(x+1)x−1的定义域是()A.[0,1)∪(1,2020]B.[-1,1)∪(1,2020]C.[0,1)∪(1,2019]D.[-1,1)∪(1,2019](2)已知函数f(x+1)的定义域为(-4,-2),则f(2x -1)的定义域为( )A.(-1,0)B.-12,12C.(0,1)D.-12,0【解析】(1)由函数y=f(x)的定义域是[0,2020]可知要使f(x+1)有意义,需满足0≤x+1≤2020,解得-1≤x ≤2019,所以要使g(x)=f(x+1)x−1有意义,需满足{-1≤x ≤2019,x −1≠0,解得-1≤x<1或1<x ≤2019.故选D.(2)∵函数f(x+1)的定义域为(-4,-2),∴-4<x<-2,∴-3<x+1<-1,则f(x)的定义域为(-3,-1),由-3<2x -1<-1,得-1<x<0,∴f(2x -1)的定义域为(-1,0).故选A【总结反思】求抽象函数定义域——抓住定义域的定义:x 的取值范围二、求解析式的方法①换元法:已知复合函数f[g(x)]的解析式,注意新元范围.②配凑法:已知f[g(x)]=F(x),可将F(x)改写成关于g(x)的表达式,再以x 代替g(x)得到f(x)的解析式.③待定系数法:已知函数类型,如一次函数、二次函数等基本初等函数.④解方程组法:已知f(x)与f(-x)、f(x 1)的等量关系,再以-x 代替x 、x1代替x 构造一个等式.⑤“求谁设谁”(对称法):已知f(x)的奇偶性及某一区间上解析式,求对称区间上的解析式.【例3】 (1)已知函数f(√x +1)=x-4,则f(x)= .(2)已知f(x)为二次函数且f(0)=3,f(x+2)-f(x)=4x+2,则f(x)= .(3)已知函数f(x)对一切不为0的实数x 均满足f(x)+2f 2020x =2020x +2,则f(x)= . (4)已知函数f(x)为R 上的奇函数,当x>0,f(x)=-2x 2+3x+1,求f(x)的解析式.【解析】(1)方法一(换元法):令t=√x +1≥1,则x=(t-1)2,故f(t)=(t-1)2-4=t 2-2t-3(t ≥1),故f(x)=x 2-2x-3(x ≥1).方法二(配凑法):由题可知√x +1≥1,f(√x +1)=x-4=(√x +1)2-2(√x +1)-3,故f(x)=x 2-2x-3(x ≥1).(2)(待定系数法)∵f(x)为二次函数,∴设f(x)=ax 2+bx+c(a ≠0),∵f(0)=3,∴c=3.由f(x+2)-f(x)=4x+2,得a(x+2)2+b(x+2)+3-ax 2-bx-3=4x+2,解得a=1,b=-1,∴f(x)=x 2-x+3.(3)(解方程组法)f(x)+2f2020x =2020x +2,① 将①中的x 换成2020x ,得f2020x +2f(x)=x+2, ② 将①②联立并消去f 2020x ,得f(x)=23x-20203x +23(x ≠0).(4) (求谁设谁)设x<0,则-x>0,f(-x)=-2x 2-3x+1,∵f(x)为R 上的奇函数,∴f(x)=-f(-x)=2x 2+3x-1∴x<0时f(x)=2x 2+3x-1,f(0)=0⎪⎩⎪⎨⎧<-+=>++-=∴0,1320,00,132)(22x x x x x x x x f三、求值域的方法(1)原则:依据函数的定义域求值域,即先确定定义域再求值域.(2)常用方法.①观察法:对于一些比较简单的函数,其值域可通过观察得到;②配方法:此法是求“二次函数类”值域的基本方法,即把函数通过配方转化为能直接看出其值域的方法;③分离常数法:此方法主要是针对有理分式,即将有理分式转化为“反比例函数类”的形式,便于求值域;④换元法:即运用新元代换,将所给函数化成值域易确定的函数,从而求得原函数的值域.注意新元的范围.【例4】 求下列函数的值域12)4(3)3(]5,1[,64)2(1)1(2-+=-=∈+-=+=x x y x x y x x x y x y),21[210,00,)1(212121,0,12)4(}1|{1,03333133)3(3)3(]11,2[115,222]5,1[,2)2()2().,1[111,0,0)1(2222+∞∴==≥∴≥+=++=∴+=≥-=≠∴≠∴≠--+=-+-=-=∴====∴=∈+-=+∞+=∴≥+∴≥∴≥函数的值域为处取得最小值即在上单调递增函数在设函数值域为函数值域为取最大值在取最小值在,在给定区间对称轴为配方得的值域为解:x u u u u u u y u x u x u y y y x x x x x x y y x y x x x x y x y x x x 【总结反思】定义域、值域是集合,要用集合或区间表示.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课题:函数的定义域和值域
授课时间:
教学目标
知识与技能
(1)继续理解函数的概念和记号以及域函数概念相关的定义域、函数值、值域的概念。

(2)掌握两个函数是同一函数的条件。

(3)会求简单函数的定义域和值域。

过程与方法
(1)通过对函数的概念的学习,初步探索客观世界中各种运动域数量间的相互依赖关系。

(2)使学生掌握求函数是=式的值得方法。

(3)培养批判思维能力、自我调控能力、交流与合作能力。

情感、态度与价值观
(1)懂得变化、联系、制约的辩证唯物主意观点。

(2)学会全面的观察、分析、研究问题。

重点难点
重点:符号“y=f(x)”的含义。

难点:符号“y=f(x)”的含义。

教法学法:探讨研究
教学用具:多媒体
教学过程。

相关文档
最新文档