spss案例分析报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Spss分析身高与体重的相互影响

姓名:刘海艳班级:11电商班学号:14113201683 序号:26

一、案例介绍:这是某幼儿园学生的身高体重数据,数据中主要包

括编号,学生姓名,性别,学生年龄,每个学生的体重以及身

高数值。主要是看下幼儿园学生体重与身高的相互关系。

二、研究案例的目的:分析幼儿园学生身高体重的相互关系和影响。

三、下面是数据来源:

四、研究的方法:主要是使用spss中的描述统计分析和线性回归

分析;在描述统计分析中主要是分析出身高体重的最大值和最小值、均值,在图表中可以看出身高的最大值;在线性回归分析中主要是采用身高为自变量,体重为因变量来进行分析的。

五、研究的结果:

1) 描述分析:

打开文件“某班23名同学的身高、体重、年龄数据”,通过菜单兰中的分析选项,进行描述性分析,选择体重和身高,求最大值最小值和均值,得到如下结果:

从结果看出,该班学生样本数为23,体重最小值为13.7kg,最大值为23kg,平均体重为17.7167kg。身高最小值为105cm,最大值为116cm,平均身高为108.85cm。

以身高为例子,选择描述中的频率选项可以得出分布,在频率对话框的图形选项中,选择条形图,即可用图形直观看到结果。

从图形中可以很直观的看出不同身高段的人数分布情况,其中108cm左右的人数最多。从表格中则可以清楚地看到具体数目。

2) 线性回归分析:

选择分析——回归——线性,在弹出的对话框中,以身高作为自变量,体重作为因变量,结果如下:

从表中可以得出。R=0.223,即两者具有弱相关性。

从图表中,可以看出它们之间的线性关系大概可以表示为y=-0.139x+2.617

六、研究结论:

从描述分析和回归分析可以身高和体重的相关性是相对比较弱的,也就是弱相关性。

相关文档
最新文档