常用求导积分公式及不定积分基本方法
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
常用求导积分公式及不定积分基本方法
Document number:PBGCG-0857-BTDO-0089-PTT1998
一、基本求导公式
1. ()1x x μμμ-'= ()ln 1x x
'= 2. (sin )cos x x '= (cos )sin x x '=-
3. 2(tan )sec x x '= 2(cot )csc x x '=-
4. (sec )tan sec x x x '= (csc )cot csc x x x '=-
5. ()ln x x a a a '=,()x x e e '=
6. ()
2arctan 11x x '+= ()arcsin x '= ()
2arccot 11x x '+=- ()arccos x '=二、基本积分公式 1. 1d (111)x x x C μμμμ+=
+ =-/ +⎰, 1ln ||+dx x C x =⎰ 2. d ln x
x a a x C a
=+⎰,d x x e x e C =+⎰ 3. sin d cos x x x C =-+⎰, cos d sin x x x C =+⎰
4. 2sec d tan x x x C =+⎰ 2csc d cot x x x C =-+⎰
5. tan d ln |cos |x x x C =-+⎰ cot d ln |sin |x x x C =+⎰
6. sec d ln |sec tan |x x x x C =++⎰ csc d ln |csc cot |x x x x C =-+⎰
7.
21d arctan 1x x C x =++⎰ arcsin x x C =+
2211d arctan x x C a x a a
=++⎰ arcsin x x C a =+
8.
ln x x C =+
(
ln x x C =+ 9. 221
1d ln 2x a
x C a x a x a -=+-+⎰
三、常用三角函数关系
1. 倍角公式
21cos 2sin 2x
x -= 21cos 2cos 2x
x +=
2. 正余切与正余割
正割 1
sec cos x x = 22sec 1tan x x =+
余割 1
csc sin x x = 22csc 1cot x x =+
四、常用凑微分类型 1.1
1
()d d ()ln ()()()f x x f x f x C f x f x '==+⎰⎰; 2.1
()d ()d() (0)f ax b x f ax b ax b a a +=++≠⎰⎰; 3.11
()d ()d (0)f x x x f x x μμμμμμ-⋅=≠⎰⎰; 4.1
()d ()d (0,1)ln x x x x f a a x f a a a a a =>≠⎰⎰;
(e )e d (e )de x x x x f x f =⎰⎰; 5. 1
(ln )d (ln )d ln f x x f x x x ⋅=⎰⎰;
6. (sin )cos d (sin )dsin f x x x f x x = ⎰⎰;
(cos )sin d (cos )dcos f x x x f x x =-⎰⎰;
7. 2(tan )sec d (tan )d tan f x x x f x x =⎰⎰;
2(cot )csc d (cot )dcot f x x x f x x =-⎰⎰;
8.(sec )sec tan d (sec )dsec f x x x x f x x ⋅=⎰⎰;
(csc )csc cot d (csc )dcsc f x x x x f x x ⋅=- ⎰⎰;
9.(arcsin )(arcsin )d arcsin f x x f x x = ⎰⎰;
21(arctan )d (arctan )d arctan 1+f x x f x x x
⋅
= ⎰⎰. 五、第二类换元法常用的代换方法 (1)
可作代换t a x sin =; (2) 22x a +,可作代换t a x tan =;
(3) 22a x -,可作代换t a x sec =;
(4) 分母中次数比较高时,常用倒代换代换1x t
=;
可作代换t =;
可作代换t = 六、分部积分
基本公式 udv uv vdu =-⎰⎰
基本方法: ()f x dx ⎰
()()()f x u x v x '=−−−−−→分解()()u x v x dx '⎰
−−−→凑微分()()u x dv x ⎰ −−−−→分部积分()()()()u x v x v x du x =-⎰ 使用分部积分法的关键是将()f x dx 恰当地凑成()()u x dv x 的形式,其遵循的一般原则是:(1)()v x 容易求得;(2)()()v x du x ⎰要容易积分;
一般地,按“反 对 幂 指 三”的顺序,前者取为)(x u ,后者取为()v x '.
反三角函数 对数函数 幂函数 指数函数 三角函数
1. ()11cos 2d cos 22d cos d()2222x x x x x x x '=
⋅=⎰⎰⎰ (1cos d 2u u ⎰
) 1sin 22
x C =+ 2. ()331(25)d (25)25d 2
x x x x x '+=+⋅+⎰⎰ 31(25)d(25)2x x =++⎰ (31d 2
u u ⎰) 41(25)8x C =++ 3. ()222222d d d x x x xe x e x x x e '=⋅=⎰⎰⎰ (d u u e u e C =+⎰)
2
x e C =+
类似地, ()344411d 12d 12812x x x x x x '=⋅+++⎰⎰ 444111d(1+2)ln(12)8128
x x C x =
=+++⎰ 4. sin 1tan d d (cos )d cos cos x x x x x x x x
'==-⋅⎰⎰⎰ cos 1d ln |cos |cos x x C x
=-=-+⎰ 5. ()32231sin d sin 1c sin d d co os cos cos .3s x x x x x x x x x C = =-=-+-⎰⎰⎰ 6. 33421tan tan tan sec d d tan 4
x x x C x x x = =+⎰⎰ 7. 2524sin cos d sin co cos d s x x x x x x x = ⎰⎰
()2
22sin 1sin dsin x x x =-⎰ ()246357sin 2sin sin d sin 121sin sin sin .357x x x x
x x x C =-+=-++⎰