热处理车间课程设计
搓丝板热处理课程设计
搓丝板热处理课程设计一、课程目标知识目标:1. 学生能够理解搓丝板的工作原理及热处理的基本概念。
2. 学生能够掌握搓丝板热处理的工艺流程及其对材料性能的影响。
3. 学生能够了解并描述热处理过程中的相变原理。
技能目标:1. 学生能够运用所学知识,分析和解决搓丝板热处理过程中出现的问题。
2. 学生能够操作热处理设备,进行简单的搓丝板热处理实验。
3. 学生能够通过实验数据和观察,评估热处理效果,提出改进措施。
情感态度价值观目标:1. 学生培养对材料科学的兴趣,增强对工程技术的认识和尊重。
2. 学生形成良好的团队合作精神,学会在实验和探讨中尊重他人意见。
3. 学生能够认识到热处理在工业生产中的重要性,激发其为我国制造业发展贡献力量的决心。
课程性质:本课程为实践性与理论性相结合的课程,以搓丝板热处理为主题,结合学生特点和教学要求,注重培养学生的实际操作能力和解决问题的能力。
学生特点:考虑到学生年级特点,课程内容设计以直观、易懂为主,结合实际操作,提高学生的学习兴趣。
教学要求:课程要求学生在理解基本概念的基础上,能够进行实际操作,通过观察、分析和评估,提高对搓丝板热处理工艺的认识和应用能力。
教学过程中,注重引导学生主动探究,培养学生的创新意识和实践能力。
二、教学内容1. 理论知识:- 搓丝板工作原理及结构特点- 热处理基本概念与分类- 热处理对材料性能的影响- 热处理过程中的相变原理2. 实践操作:- 搓丝板热处理工艺流程- 热处理设备的使用与维护- 搓丝板热处理实验操作步骤- 实验数据记录与分析3. 教学大纲:- 第一周:搓丝板工作原理及结构特点,热处理基本概念与分类- 第二周:热处理对材料性能的影响,热处理过程中的相变原理- 第三周:搓丝板热处理工艺流程,热处理设备的使用与维护- 第四周:搓丝板热处理实验操作,实验数据记录与分析4. 教材章节:- 第三章:金属热处理- 第四章:金属热处理工艺及其设备- 第五章:热处理过程中的相变教学内容注重科学性和系统性,结合课程目标,按照教学大纲安排进度。
常规热处理课程设计
常规热处理课程设计一、课程目标知识目标:1. 学生能理解并掌握常规热处理的基本概念、原理及分类。
2. 学生能够描述不同热处理工艺对金属材料性能的影响。
3. 学生能够解释热处理过程中常见的组织转变及其与应用之间的关系。
技能目标:1. 学生能够运用所学知识,选择合适的热处理工艺,解决实际问题。
2. 学生能够设计简单的热处理工艺流程,并进行初步的工艺参数计算。
3. 学生能够通过实验操作,观察和分析热处理过程中材料组织与性能的变化。
情感态度价值观目标:1. 学生能够培养对材料科学的兴趣,激发探索科学的精神。
2. 学生能够认识到热处理在工业生产和国防建设中的重要性,增强国家意识。
3. 学生能够树立安全意识,养成严谨、细致、负责的工作态度。
课程性质:本课程为金属材料学科的基础课程,旨在让学生掌握常规热处理的基本知识,培养学生解决实际问题的能力。
学生特点:学生处于高中年级,已具备一定的物理和化学基础,对材料科学有一定了解,但缺乏实践操作经验。
教学要求:注重理论与实践相结合,以学生为主体,充分调动学生的积极性和主动性,培养学生的动手能力和创新能力。
通过本课程的学习,使学生在知识、技能和情感态度价值观方面均取得具体的学习成果。
二、教学内容1. 常规热处理基本概念:包括热处理定义、目的、分类及其在材料加工中的应用。
相关教材章节:第一章第二节。
2. 热处理原理:讲解加热、保温、冷却过程中组织转变的规律,重点分析马氏体、奥氏体、贝氏体和珠光体的形成及性能特点。
相关教材章节:第二章。
3. 常见热处理工艺:介绍退火、正火、淬火、回火等工艺的原理、操作步骤及适用范围。
相关教材章节:第三章。
4. 热处理工艺参数计算:学习热处理工艺参数的确定方法,包括加热温度、保温时间、冷却速度等。
相关教材章节:第四章。
5. 热处理对材料性能的影响:分析不同热处理工艺对材料力学性能、物理性能和化学性能的影响。
相关教材章节:第五章。
6. 热处理实验操作:组织学生进行热处理实验,观察材料组织与性能的变化,巩固理论知识。
正火热处理炉课程设计
正火热处理炉课程设计一、课程目标知识目标:1. 学生能理解并掌握正火热处理炉的基本结构及其工作原理;2. 学生能够描述正火热处理炉在不同工业领域的应用及其重要性;3. 学生能掌握正火热处理炉操作流程中的关键参数及其对材料性能的影响。
技能目标:1. 学生能够分析正火热处理炉的操作手册,独立完成设备的启停和简单故障排除;2. 学生通过实验及模拟操作,能够设计简单的热处理工艺流程,并对结果进行初步分析;3. 学生能够运用所学知识,针对特定材料提出合理的热处理方案,并进行小组讨论。
情感态度价值观目标:1. 学生通过学习,培养对材料科学和工业制造的兴趣,增强对工程技术的尊重和责任感;2. 学生能够在小组合作中展现团队精神,学会倾听、交流、协作和互相尊重;3. 学生通过了解正火热处理炉在环保和资源利用方面的要求,培养节能减排的意识和责任感。
课程性质:本课程为实践性较强的专业课程,旨在帮助学生将理论知识与工程实践相结合,提升解决实际问题的能力。
学生特点:高二年级学生,具备一定的物理和化学基础,对工程技术和实际操作有较高的兴趣和好奇心。
教学要求:结合学生的知识水平和兴趣点,通过理论与实践相结合的教学方法,引导学生主动参与,注重培养学生动手能力和创新能力。
教学过程中,强调安全意识与环保意识的培养。
通过具体的学习成果的分解,使学生在完成课程后能够达到上述课程目标。
二、教学内容1. 正火热处理炉概述- 炉型结构与分类- 工作原理及特点- 应用领域及重要性2. 正火热处理工艺流程- 加热、保温、冷却的基本过程- 工艺参数对材料性能的影响- 常见材料的热处理工艺实例3. 正火热处理炉操作- 设备启停及安全操作规程- 炉内气氛控制与调节- 热处理过程中的质量控制4. 热处理工艺设计- 实验室热处理工艺设计与实施- 模拟操作软件的应用- 小组讨论与方案优化5. 节能与环保- 正火热处理炉的能效与节能减排- 环保要求与措施- 绿色热处理技术的发展趋势教学内容安排和进度:第一周:正火热处理炉概述及工作原理第二周:正火热处理工艺流程及工艺参数影响第三周:正火热处理炉操作与安全规程第四周:热处理工艺设计及实验操作第五周:节能与环保,绿色热处理技术探讨教材章节关联:本教学内容与教材中“金属材料热处理”、“热处理设备与工艺”、“现代热处理技术”等章节密切相关,为学生提供了系统的正火热处理知识体系。
东莞热处理课程设计
东莞热处理课程设计一、教学目标本课程旨在让学生掌握东莞热处理的基本原理、方法和应用,培养学生的实践能力和创新精神。
具体目标如下:1.知识目标:学生能理解东莞热处理的基本概念、原理和方法,掌握热处理工艺参数的优化和调整,了解东莞热处理在工程中的应用。
2.技能目标:学生能运用所学知识进行热处理工艺的设计和实施,具备分析和解决实际问题的能力,能熟练使用热处理设备和仪器。
3.情感态度价值观目标:学生形成对热处理技术的兴趣和好奇心,认识热处理技术在现代工业中的重要性,培养学生的社会责任感和职业道德。
二、教学内容本课程的教学内容主要包括东莞热处理的基本原理、常用热处理工艺、热处理设备及操作、热处理工艺参数的优化等。
具体安排如下:1.东莞热处理的基本原理:介绍热处理的概念、分类和作用,讲解热处理的基本原理。
2.常用热处理工艺:阐述退火、正火、淬火、回火等常见热处理工艺的原理、特点和应用。
3.热处理设备及操作:介绍热处理设备的基本结构、工作原理和操作方法,包括电阻炉、气体炉、真空炉等。
4.热处理工艺参数的优化:讲解热处理工艺参数(如温度、时间、冷却速度等)对材料性能的影响,学会优化和调整工艺参数。
三、教学方法本课程采用讲授法、案例分析法、实验法等多种教学方法,以激发学生的学习兴趣和主动性。
1.讲授法:通过讲解东莞热处理的基本原理、工艺和设备,使学生掌握课程的基本知识。
2.案例分析法:分析典型热处理工程案例,让学生学会运用所学知识解决实际问题。
3.实验法:学生进行热处理实验,培养学生的实践操作能力和创新能力。
四、教学资源本课程的教学资源包括教材、参考书、多媒体资料、实验设备等。
1.教材:选用权威、实用的教材,为学生提供系统的理论知识。
2.参考书:提供丰富的参考资料,帮助学生拓展知识面。
3.多媒体资料:制作精美的课件、视频等多媒体资料,增强课堂教学的趣味性和生动性。
4.实验设备:配置完善的热处理实验设备,为学生提供实践操作的机会。
热处理工艺课程设计
钢的热处理工艺设计说明书学生姓名设计题目加工中心主轴指导教师系主任完成日期年月日前言热处理工艺是金属材料工程的重要组成部分。
通过热处理可以改变材料的加工工艺性能,充分发挥材料的潜力,提高工件的使用寿命。
本课程设计是在《材料科学基础》﹑《金属热处理工艺学》﹑《失效分析》﹑《金属力学性能》等课程学习的基础上开设的,是理论与实践相结合的重要教学环节。
通过该课程设计,可使学生在综合运用所学专业基础理论和专业知识能力方面得到训练,学会独立分析问题和解决问题的方法,提高工程意识和工程设计能力。
热处理工艺是整个机械加工过程种的一个重要环节,它与工件设计及其它加工工艺之间存在密切关系。
如何实现工件设计时提出的几何形状和加工精度,满足设计时所要求的多种性能指标,热处理工艺制定的合理与否,有着至关重要的作用。
目录前言一.热处理工艺课程设计的目的 (5)二.热处理工艺课程设计的任务 (5)三.热处理工艺课程设计设计内容和步骤 (5)3.1零部件简图,钢种和技术要求 (5)3.2零部件的工作条件、破坏方式和性能要求的分析 (6)3.3零部件用钢的分析 (6)3.3.1 相关钢种化学成分的作用 (6)3.3.2.相关钢种的热处理工艺性能分析 (7)3.3.3钢材的组织性能与各种热处理工艺的关系 (8)3.4热处理工艺方案及工艺参数的论述 (11)3.4.1零件的加工工艺路线及其简单论证 (11)3.4.2锻造工艺曲线 (11)3.4.3预备热处理工艺方案、工艺参数及其论证 (12)3.4.4最终热处理工艺方案,工艺参数及论证 (12)3.4.4.1 20CrMnMo的正火工艺 (12)3.4.4.2 20CrMnMo的渗碳工艺 (14)3.4.4.3 20CrMnMo的淬火工艺 (17)3.4.4.4 20CrMnMo的回火工艺 (19)3.4.4.5 总的热处理工艺曲线 (22)3.4.5 辅助工序方案 (22)四.选择加热设备 (22)4.1 中温井式电阻炉 (22)4.2 井式渗碳炉 (23)五.工装图 (25)六.工序质量检验项目、标准方法 (27)七.热处理工艺过程中缺陷分析 (28)7.1常见的渗碳缺陷 (28)7.2常见的淬火缺陷 (29)7.3常见的回火缺陷 (29)八.心得体会 (30)九.参考文献 (31)一、热处理工艺课程设计的目的1. 深入了解热处理课程的基本理论2. 初步学会制定零部件的热处理工艺3. 了解与本设计有关的新技术,新工艺4. 设计尽量采用最新技术成就,并注意和具体实践相结合,是设计具有一定的先进性和实践性.二、热处理工艺课程设计的设计任务1. 编写设计说明书2. 编制工序施工卡片3. 绘制必要的工装图三、热处理工艺课程设计内容和步骤3.1零部件简图、钢种和技术要求1.简图2.钢种: 20CrMnMo3.技术要求:1.要求主轴头部144.4mm及尾部30mm处渗碳淬火,渗碳层深度1.3~1.5mm;2.硬度为60~65HRC.3.2零部件的工作条件、破坏方式和性能要求的分析1.零部件的工作条件作为机床的传动件,主轴是传递动力的零件,传递着动力和各种负荷,它的前后端由于承受一定的扭转和摩擦力,它的合理选材直接影响整台车床的精度和使用寿命。
热处理车间设计
热处理车间设计(总16页)本页仅作为文档页封面,使用时可以删除This document is for reference only-rar21year.March热处理设备课程设计题目:热处理车间设计学院:专业:学号:学生姓名:指导教师:日期:1 绪论 (5)2 车间生产纲领的确定 (5)3 热处理工艺设计 (6)4 车间工作制度和工作时间总数 (7)5 热处理设备的选择和计算 (8)5.1 感应加热设备选择 (8)5.2 设备生产率的计算 (8)5.3 设备年负荷时数及设备数量计算 (9)5.4 冷却设备的选择 (9)5.5 可控气氛发生装置的选择 (9)5.6 辅助设备选择 (9)6 车间的组织和人员 (11)6.1 车间的组织与管理 (11)6.2 车间的人员及其数量 (11)7 车间的面积组成 (11)7.1 各类面积的组成 (11)7.2 车间面积概算 (12)8 车间的平面布置 (12)8.1 平面布置设计基本原则 (12)8.2 设备布置间距 (13)8.3 设备区域布置图 (13)9 热处理车间的采暖、通风、采光 (13)9.1 车间的取暖 (14)9.2 车间的通风 (14)9.3 车间的采光 (14)10 热处理车间厂房建筑 (14)10.1 建筑物的设计 (14)10.2 厂房出入口 (14)10.3 地面载荷及地面材料 (15)10.4 特殊构筑物及附属建筑物的设计 (15)11 热处理车间技术计算 (15)11.1 电力安装容量 (15)11.2 压缩空气 (16)11.3 蒸汽 (16)11.4 氧、乙炔 (16)11.5 生产用水 (16)11.6 燃料 (16)12 热处理车间经济分析 (16)12.1 车间基本投资计算 (16)12.2 热处理车间的技术经济指标 (17)12.3 热处理生产的成本分析 (17)13 车间生产安全与环境保护 (17)13.1 生产安全 (17)13.2 环境保护 (17)参考文献 (18)摘要随着我国工业化进程的快速推进,无论在冶金部门还是机械制造部门,需要热处理的金属工件数量日益增多,对热处理的质量要求也日益严格;在提高劳动生产率及降低热处理成本等方面也提出了新的要求。
热处理工艺设计课程设计
北华航天工业学院《热处理工艺设计》课程设计报告报告题目:CA8480轧辊车床主轴和淬火量块热处理工艺的设计作者所在系部:材料工程系作者所在专业:金属材料工程作者所在班级:B10821作者学号:20104082104作者姓名:倪新光指导教师姓名:翟红雁完成时间:2013.06.27课程设计任务书课题名称 CA8480轧辊车床主轴和淬火量块热处理工艺的设计完成时间06.27指导教师翟红雁职称教授学生姓名倪新光班级B10821总体设计要求一、设计要求1.要求学生在教师指导下独立完成零件的选材;2.要求学生弄清零件的工作环境。
3.要求学生通过对比、讨论选择出最合理的预先热处理工艺和最终热处理工艺方法;4.要求学生分别制定出预先热处理和最终热处理工艺的正确工艺参数,包括加热方式、加热温度、保温时间以及冷却方式;5.要求学生写出热处理目的、热处理后组织以及性能。
工作内容及时间进度安排内容要求时间备注讲解并自学《金属热处理工艺》课本第六章;收集资料, 分析所给零件的工作环境、性能要求,了解热处理工艺设计的方法、内容和步骤;通过对零件的分析,选择合适的材料以及技术要求0.5天热处理工艺方法选择和工艺路线的制定确定出几种(两种以上)工艺 线及热处理方案,然后进行讨论对比优缺点, 确定最佳工艺路线及热处理工艺方案1.5天热处理工艺参数的确定及热处理后组织、性能查阅资料,确定出每种热处理工艺的参数,包括加热方式、温度和时间,冷却方式等,并绘出相应的热处理工艺曲线1.5天编写设计说明书按所提供的模板0.5天答辩1天课程设计说明书内容要求一. 分析零件的工作环境,确定出该零件的性能要求,结合技术要求,选出合适的材料,并阐述原因。
二. 工艺路线和热处理方案的讨论。
要求两种以上方案进行讨论,条理清晰,优缺点明确。
三. 每种热处理工艺参数的确定(工序中涉及到的所有热处理工艺)。
写出确定参数的理由和根据,(尽可能写出所使用的设备)要求每一种热处理工艺都要画出热处理工艺曲线;四. 写出每个工序的目的以及该零件热处理后常见缺陷。
热处理车间课程设计
一、车间的任务和工作制度1.1 车间生产任务本次设计热处理车间的生产任务是年产1000t,生产三类六种规格的刀具,各种规格刀具的年产量各占总年产量的1/6。
详见《专业课程设计任务书》。
本热处理车间生产的废品率为3%(包括热处理报废和运输报废),达30吨,故热处理车间的实际生产任务为970吨/年。
则六种刀具各自的年产量为161.7吨,见表1-11.2 车间的工作制度及年时基数1.2.1 工作制度热处理车间常有长工艺周期的生产和热处理炉空炉升温时间长的情况,所以多数采用二班制或三班制。
本设计采用二班制。
1.2.2 设备年时基数设备年时基数为设备在全年内的总工时数,等于在全年工作日内应工作的时数减去各种时间损失。
根据文献《热处理车间设计》的公式计算,公式如下:F设 =D设Nn(1-b%)式中F设——设备年时基数(h);D 设——设备全年工作日,等于全年日数(365天)-全年假日(10 天)-全年双修日(106天)=249天;N——每日工作班数;n——每班工作时数,取8h;b——损失率,时间损失包括设备检修及事故损失,工人非全日缺勤而无法及时调度的损失,以及每班下班前设备和场地清洁工作所需的停工损失,此处取5%。
计算F设的值,F设 =249×2×8×(1-5%)=3744.96≈3783(h)1.2.3 工人年时基数工人年时基数可依据下式计算:F人=D人n(1—b%)式中F人——工人年时基数(h);D人——工人全年工作日(249天);b——时间损失率,包括病假、事假、探亲假、产假及哺乳、设备清扫、工间休息等工时损失,本设计取4%。
计算F人的值,F人 =249×8×(1—4%)=1912.32≈1912(h)二、工艺分析和设备选择2.1 材料选择及刀具规格2.1.1 材料的选择本设计车间的生产产品为齿轮铣刀、锥柄钻、车刀。
查查《热处理工艺规范数据手册》P94及《热处理工艺设计与选择》P194,可知三种刀具宜用高速钢类,最终材料的选择是车刀选用w6mo5cr4v2,锥柄钻选用w9mo3cr4v,齿轮铣刀选用w18cr4v。
20钢热处理课程设计
20钢热处理课程设计一、课程目标知识目标:1. 让学生掌握20钢的基本成分、性质及应用范围;2. 使学生了解热处理的基本原理,理解20钢在不同热处理工艺下的组织结构及性能变化;3. 帮助学生掌握20钢热处理工艺参数的调整方法,并能根据性能要求选择合适的热处理工艺。
技能目标:1. 培养学生运用显微镜观察20钢热处理前后组织结构的能力;2. 培养学生设计简单的20钢热处理工艺方案,并能进行初步的实验操作;3. 提高学生运用所学知识解决实际工程问题的能力。
情感态度价值观目标:1. 培养学生对材料学科的兴趣,激发学生探索科学奥秘的热情;2. 培养学生严谨、务实、创新的学习态度,提高学生的自主学习能力;3. 强化学生的团队合作意识,培养学生在团队中沟通、协作的能力。
课程性质:本课程为专业实践课,旨在帮助学生将理论知识与实际应用相结合,提高学生的实践操作能力和创新能力。
学生特点:学生具备一定的金属材料基础知识,对热处理工艺有一定的了解,但实践经验不足。
教学要求:结合学生特点,注重实践操作,提高学生的动手能力;采用启发式教学,引导学生主动思考、探究问题;强调团队合作,培养学生的沟通协作能力。
通过本课程的学习,使学生能够将所学知识应用于实际工作中,为未来的职业发展打下坚实基础。
二、教学内容1. 20钢的基本性质与成分:包括20钢的化学成分、力学性能、用途等,参考教材第二章第一节;2. 热处理基本原理:介绍热处理的定义、目的、分类,讲解加热、保温、冷却过程中的组织转变,对应教材第二章第二节;3. 20钢热处理工艺及组织性能关系:分析不同热处理工艺(如退火、正火、淬火、回火)对20钢组织结构和性能的影响,参考教材第二章第三节;4. 热处理工艺参数调整方法:探讨如何根据性能要求调整热处理工艺参数,包括加热温度、保温时间、冷却速度等,结合教材第二章第四节;5. 实践操作:设计20钢热处理实验,让学生动手操作,观察组织结构变化,对应教材第二章实验部分;6. 工艺方案设计:培养学生根据性能要求设计20钢热处理工艺方案,包括工艺流程、参数选择等,参考教材第二章案例分析。
热处理课程设计
热处理课程设计一、课程设计的背景和意义热处理是指通过加热、保温和冷却等工艺过程,使金属材料在其内部组织结构、物理性能和化学性能上发生变化的一种技术。
热处理在现代工业生产中广泛应用,对于提高材料的强度、硬度、韧性、耐腐蚀性等方面具有重要作用。
热处理课程的设计与开展对于培养学生的实践能力和科学素质具有重大意义。
二、课程设计的目标本次热处理课程设计旨在通过理论学习与实验操作相结合的方式,使学生掌握以下知识和技能:1. 了解常见金属材料的组织结构及其对应的物理性能和化学性能;2. 掌握常见热处理工艺,如退火、正火、淬火等;3. 能够正确选择适当的热处理工艺,并进行相应实验操作;4. 学会使用金相显微镜观察样品组织结构,并进行分析判断。
三、教学内容安排本次课程设计共分为三个部分:理论讲解、实验操作和实验报告撰写。
1. 理论讲解(1)金属材料的组织结构及其对应的物理性能和化学性能;(2)常见热处理工艺,如退火、正火、淬火等;(3)热处理工艺的选择原则及注意事项。
2. 实验操作(1)准备样品:选取不同种类的金属材料,制备成相同尺寸和形状的样品;(2)退火实验:将样品加热至一定温度并保温一段时间,然后缓慢冷却至室温;(3)正火实验:将样品加热至一定温度并保温一段时间,然后以适当速率冷却至室温;(4)淬火实验:将样品加热至一定温度并保温一段时间,然后迅速浸入水中进行淬火处理;(5)金相显微镜观察:使用金相显微镜观察不同处理工艺下的样品组织结构,并进行分析判断。
3. 实验报告撰写学生根据所进行的实验操作和观察结果,撰写实验报告。
报告内容包括:实验目的、实验步骤、实验结果及分析、结论和思考等。
四、教学方法本次课程设计采用理论讲解与实验操作相结合的方式进行。
在理论讲解环节,教师通过PPT等形式向学生介绍相关知识点,同时注重与实际应用的联系,引导学生进行思考。
在实验操作环节,教师先向学生演示实验步骤和注意事项,然后指导学生自行进行实验操作。
20crmnmo热处理课程设计
20crmnmo热处理课程设计一、课程目标知识目标:1. 让学生掌握20CrMnMo合金钢的成分、性能及应用特点,理解其热处理原理;2. 使学生了解不同热处理工艺对20CrMnMo合金钢组织和性能的影响,掌握相关热处理工艺参数;3. 引导学生运用所学知识,分析并解决实际工程中20CrMnMo合金钢的热处理问题。
技能目标:1. 培养学生具备独立进行20CrMnMo合金钢热处理实验的能力,熟练操作相关设备;2. 提高学生运用图表、数据等分析20CrMnMo合金钢热处理效果的能力;3. 培养学生团队协作和沟通能力,通过讨论、分析,共同解决热处理过程中遇到的问题。
情感态度价值观目标:1. 培养学生对材料科学和热处理技术的兴趣,激发学生的学习热情;2. 培养学生严谨的科学态度,注重实验数据的准确性和可靠性;3. 增强学生的环保意识,认识到热处理工艺在节能降耗、减少污染方面的重要性。
本课程针对高中年级学生,结合学科特点,注重理论知识与实际应用的结合,旨在培养学生的实践操作能力、分析问题和解决问题的能力。
通过本课程的学习,使学生能够更好地理解和应用20CrMnMo合金钢热处理知识,为未来从事相关领域工作奠定基础。
二、教学内容1. 20CrMnMo合金钢的基本特性及热处理原理:讲解合金元素的加入对钢性能的影响,分析20CrMnMo合金钢的力学性能、淬透性及回火稳定性等特性,阐述热处理原理及目的。
教材章节:第二章《合金钢》第三节《合金钢的热处理》2. 20CrMnMo合金钢的热处理工艺:介绍常见热处理工艺(如淬火、回火、调质等)的原理、工艺参数及对20CrMnMo合金钢组织和性能的影响。
教材章节:第二章《合金钢》第四节《热处理工艺及其对性能的影响》3. 热处理工艺在实际工程中的应用:分析实际工程中20CrMnMo合金钢热处理工艺的选择与优化,举例说明不同热处理工艺在实际应用中的效果。
教材章节:第二章《合金钢》第五节《热处理工艺在实际应用中的案例分析》4. 热处理实验操作与数据处理:指导学生进行20CrMnMo合金钢热处理实验,学习操作热处理设备,掌握实验数据处理方法。
热处理工艺课程设计
热处理工艺课程设计热处理工艺课程设计学院:机械工程学院班级:材料0903一.温度控制系统1.设计要求1)系统应能满足生产要求除了应达到所给定的要求外,还应符合生产过程的各种工艺要求。
2)可靠性高过程控制计算机的工作环境比较恶劣,各种干扰严重。
为此,在设计时必须必须选用高性能,高可靠性的计算机,把安全可靠放在首位。
可靠性高是计算机最重要的一个基本要求。
因为计算机一旦出现故障,将造成整个生产的混乱,引起严重后果,特别是对CPU的要求更为严格。
为保证可靠性可采用多CPU组成的多微机控制系统来提高可靠性,目前一般采用双机系统和集散控制系统。
集散控制系统是分级分布式控制,它是多台以微处理器为核心的基本控制器分别控制各个被控制对象,由上一级计算机进行监督处理,这种分散控制系统可使故障对整个系统的影响减至最少。
3)操作性能好操作性能好表现在两个方面:一是使用方便,二是容易维修。
4)实时性强过程计算机的实时性表现在对内部和外部事件能够及时地做出响应,不丢失信息,不延误操作。
5)通用性能好为了适应生产工艺的变更和控制规模,控制功能的扩充,在设计系统的时候必须考虑它能与上,下机通信以及与后援装置模拟仪表控制台,系统的控制与连接,以便在构成集散控制系统和分级控制系统时,能方便地进行系统扩充。
6)技术先进,经济效益高系统设计时既要考虑其先进性,又要考虑其性能价格比,要有市场意识。
随着计算机技术的迅速发展,应尽量缩短设计周期,并有一定预见性,以保持其先进性,提高社会效益,经济效益,应从提高产品的数量和质量,消耗成本,消除污染环境,改善劳动条件等方面综合考虑。
7)确定系统的整体控制方案在对生产过程控制进行详细调研的基础上,应充分了解控制要求,控制规模,各种工艺参数,限制条件,操作系统及其他控制要求。
在工程人员和现场控制人员的密切配合下,研究和确定控制系统的初步方案:是集中型控制还是分散型控制,是闭环控制还是开环控制,是数据处理类还是控制调节类。
热处理课程设计修正版
摘要本次课程设计《热处理设备课程设计》是热处理设备实践教学环节的重要组成部分,其目的是通过课程设计加深对本课程基础知识的理解,提高综合运用知识的能力;掌握本课程的主要内容、工程设计或撰写论文的步骤和方法;提高制图能力,学会应用有关设计资料进行设计计算和理论分析的方法,以提高独立分析问题、解决问题的能力。
本设计是950℃中温井式电阻炉的设计,实际生产率为90kg/h。
首先选择15CrMo 阀座的热处理工艺,选择其中的正火和低温回火,分析其工艺特点,画出工艺曲线,然后通过合理的选择炉体材料和估算炉衬厚度,校核炉衬厚度以及表面温度来确定炉体结构,应用热平衡计算法确定炉子的加热功率,分析蓄热散热,估算空炉升温时间等,最后根据炉子的技术参数合理的选择电热元件,并分析其接线方式和布置方法,完成整个炉子的设计。
关键词:中温井式电阻炉,热处理,热流密度,散热损失目录1.15CrMo阀座的热处理工艺设计 (03)2.炉型的选择 (04)3.确定炉体结构和尺寸 (04)4.炉衬材料的确定和厚度估算 (05)5.炉衬厚度的校核 (06)6.砌体平均表面积计算 (08)7.计算炉子功率 (09)8.炉子热效率计算 (13)9.炉子空载功率计算 (13)10.空炉升温时间计算 (13)11.功率的分配与接线 (16)12.电热元件材料选择及计算 (16)13.炉子技术指标 (19)14.编制使用说明书 (19)15.参考文献 (19)16.致谢 (20)1 15CrMo 阀座的热处理工艺设计多品种,小批量,工件最长2.1m ,周期式长时间生产。
热处理最高工作温度为950℃。
炉外壁温度小于60℃。
1.1 15CrMo 阀座加工制造工艺流程正火→机械加工→渗碳→淬火→回火→检验→成品 15CrMo正火920±10℃ 0.5h 空冷 渗碳 930±10℃ 6~8h 空冷 淬火 840±10℃ 1h 油冷 回火180±10℃ 1.5h 空冷1.2 正火和回火的热处理参数加热温度 加热方法 加热介质 保温时间 冷却方法 冷却介质 最终组织 正火 920℃ 中温井炉 空气 0.5h 出炉空冷 空气 细P+F 回火180℃中温井炉空气1.5h出炉空冷空气M+碳化物1.3 热处理工艺曲线1.4 常见热处理缺陷① 过烧:由于加热温度过高,出现晶界氧化,甚至晶界局部熔化,造成工件报废。
热处理课程设计报告修正版
摘要本次课程设计《热处理设备课程设计》是热处理设备实践教学环节的重要组成部分,其目的是通过课程设计加深对本课程基础知识的理解,提高综合运用知识的能力;掌握本课程的主要内容、工程设计或撰写论文的步骤和方法;提高制图能力,学会应用有关设计资料进行设计计算和理论分析的方法,以提高独立分析问题、解决问题的能力。
本设计是950℃中温井式电阻炉的设计,实际生产率为90kg/h。
首先选择15CrMo阀座的热处理工艺,选择其中的正火和低温回火,分析其工艺特点,画出工艺曲线,然后通过合理的选择炉体材料和估算炉衬厚度,校核炉衬厚度以及表面温度来确定炉体结构,应用热平衡计算法确定炉子的加热功率,分析蓄热散热,估算空炉升温时间等,最后根据炉子的技术参数合理的选择电热元件,并分析其接线方式和布置方法,完成整个炉子的设计。
关键词:中温井式电阻炉,热处理,热流密度,散热损失目录1.15CrMo阀座的热处理工艺设计 (03)2.炉型的选择 (04)3.确定炉体结构和尺寸 (04)4.炉衬材料的确定和厚度估算 (05)5.炉衬厚度的校核 (06)6.砌体平均表面积计算 (08)7.计算炉子功率 (09)8.炉子热效率计算 (13)9.炉子空载功率计算 (13)10.空炉升温时间计算 (13)11.功率的分配与接线 (16)12.电热元件材料选择及计算 (16)13.炉子技术指标 (19)14.编制使用说明书 (19)15.参考文献 (19)16.致谢 (20)1 15CrMo阀座的热处理工艺设计多品种,小批量,工件最长2.1m,周期式长时间生产。
热处理最高工作温度为950℃。
炉外壁温度小于60℃。
1.1 15CrMo阀座加工制造工艺流程正火→机械加工→渗碳→淬火→回火→检验→成品15CrMo正火920±10℃ 0.5h 空冷 渗碳 930±10℃ 6~8h 空冷 淬火 840±10℃ 1h 油冷 回火180±10℃ 1.5h 空冷1.2 正火和回火的热处理参数1.3 热处理工艺曲线180±10℃温度/℃正火渗碳淬火回火时间/t1.4 常见热处理缺陷①过烧:由于加热温度过高,出现晶界氧化,甚至晶界局部熔化,造成工件报废。
《热处理原理与工艺课程设计》报告---拉刀热处理工艺设计
《热处理原理与工艺课程设计》报告设计题目:拉刀热处理工艺设计内容摘要(总结设计方案、主要的工艺参数、选择的设备、热处理后的显微组织、性能等)本次课程设计的零件为拉刀,分析零件工作环境、失效形式和性能要求,结合技术要求,对W18Cr4V、9W18Cr4V、W6Mo5Cr4V2、进行分析对比,选择材料为W18Cr4V。
本次设计预备热处理选择退火,最终热处理选择分级淬火和3次回火。
退火温度为840~860℃,随炉加热,加热时间15min,随炉冷却,退火后硬度≤255HBW,退火设备选择RX-3-15-9型号的箱式电阻炉。
淬火加热温度为1260-1300℃,随炉加热,冷却介质为油,淬火后硬度淬火后硬度>66HRC,获得碳化物+马氏体+残余奥氏体,选择RDM-35-13型号的埋入式盐浴炉;3次高温回火,回火温度为550℃,随炉加热,加热介质选择100NaNO3,加热时间选择10min,保温1h,冷却介质为空气,基体组织为回火马氏体和极少量残留奥氏体,其上分布有白色块状及颗粒状碳化物,碳化物细小而分布均匀,硬度为64HRC。
关键词:拉刀W18Cr4V 热处理目录课程设计任务书 ............................................................................................................................. 错误!未定义书签。
内容摘要 (1)(总结设计方案、主要的工艺参数、选择的设备、热处理后的显微组织、性能等) (1)关键词:拉刀W18Cr4V 热处理 (1)目录 (2)前言 (3)一、热处理课程设计的目的 (3)《热处理原理与工艺课程设计》是金属材料工程专业学生的一门专项实践课程,是学习相关课程后运用理论知识指导生产实践的一个必经环节。
其目的是: (3)二、热处理课程设计的意义 (3)三、热处理课程设计的主要内容 (3)正文 (4)一、零件的技术要求及选材 (4)(一)拉刀技术要求 (4)(二)具体材料的选择 (5)(三)上述所选材料合金元素作用分析: (6)(四)所选材料的相变临界点 (7)(五)拉刀的热处理工艺路线 (7)二、热处理工艺参数制定及设备选择 (8)(一)预热 (8)(二)退火 (8)(三)淬火 (9)(四)回火 (9)(五)退火设备选择 (10)三、热处理后显微组织、性能分析 (11)(一)显微组织 (11)(二)存在的缺陷 (13)(三)淬火处理缺陷分析 (14)(四)回火处理缺陷分析 (15)三、质量检验 (16)总结 (18)参考书目 (18)前言一、热处理课程设计的目的《热处理原理与工艺课程设计》是金属材料工程专业学生的一门专项实践课程,是学习相关课程后运用理论知识指导生产实践的一个必经环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、车间的任务和工作制度1.1 车间生产任务本次设计热处理车间的生产任务是年产1000t,生产三类六种规格的刀具,各种规格刀具的年产量各占总年产量的1/6。
详见《专业课程设计任务书》。
本热处理车间生产的废品率为3%(包括热处理报废和运输报废),达30吨,故热处理车间的实际生产任务为970吨/年。
则六种刀具各自的年产量为161.7吨,见表1-1表1-11.2 车间的工作制度及年时基数1.2.1 工作制度热处理车间常有长工艺周期的生产和热处理炉空炉升温时间长的情况,所以多数采用二班制或三班制。
本设计采用二班制。
1.2.2 设备年时基数设备年时基数为设备在全年内的总工时数,等于在全年工作日内应工作的时数减去各种时间损失。
根据文献《热处理车间设计》的公式计算,公式如下:F设=D设Nn(1-b%)式中F设——设备年时基数(h);D 设——设备全年工作日,等于全年日数(365天)-全年假日(10 天)-全年双修日(106天)=249天;N——每日工作班数;n——每班工作时数,取8h;b——损失率,时间损失包括设备检修及事故损失,工人非全日缺勤而无法及时调度的损失,以及每班下班前设备和场地清洁工作所需的停工损失,此处取5%。
计算F设的值,F设=249×2×8×(1-5%)=3744.96≈3783(h)1.2.3 工人年时基数工人年时基数可依据下式计算:F人=D人n(1—b%)式中F人——工人年时基数(h);D人——工人全年工作日(249天);b——时间损失率,包括病假、事假、探亲假、产假及哺乳、设备清扫、工间休息等工时损失,本设计取4%。
计算F人的值,F人=249×8×(1—4%)=1912.32≈1912(h)二、工艺分析和设备选择2.1 材料选择及刀具规格2.1.1 材料的选择本设计车间的生产产品为齿轮铣刀、锥柄钻、车刀。
查查《热处理工艺规范数据手册》P94及《热处理工艺设计与选择》P194,可知三种刀具宜用高速钢类,最终材料的选择是车刀选用w6mo5cr4v2,锥柄钻选用w9mo3cr4v,齿轮铣刀选用w18cr4v。
2.1.2 刀具规格尺寸刀具在高速切削时,其刃部的温度可达600℃以上,而刀具硬度只有轻微的下降,要求有较高的红硬性。
在这样的条件下,一般都选用高速钢。
高速钢在650℃是的实际硬度仍然高于50HRC。
高速钢需要经过退火、淬火和回火处理,具体热处理工艺后面将有介绍。
查《机械加工常用刀具数据速查手册》,各刀具的尺寸数据如下:表2-1表2-2品种规格尺寸车刀A1010x6x4A1212x8x5表2-3品种规格锥柄钻φ11.8×85φ14.1×1922.2 工艺设计2.2.1 工艺路线高速钢的热处理一般工艺路线如下:预备热处理→淬火预热→淬火加热→淬火→三次回火2.2.2 详细工艺参数查《热处理工艺与实践》P116-119,得三种材料工艺参数如下:表2-4牌号退火工艺淬火和回火工艺等温退火淬火预热淬火加热淬火介质回火制度备注加热温度/°C 保温时间/h冷却温度/°C时间(s/mm)介质温度°C时间(s/mmW6M o5Cr4 V28502炉冷至750℃,保温 4h850241200~122012~1556℃,3薄刃刀具1230复杂刀具1240简单刀具对于不同的产品,由于规格尺寸的不同,则各种的热处理工艺参数略有不同。
在预热阶段,车刀由于尺寸较小,选用一次预热法预热;铣刀及锥柄钻由于尺寸较大,形状复杂选用二次预热法预热。
预热的具体工艺参数下表。
锥柄钻淬火温度选1250℃,车刀选1240℃,齿轮铣刀选1270℃。
加热时间都选择12s/mm。
表2-5盐浴炉单,截面较小的工件齿轮铣刀、锥柄钻二次预热法第一次预热65040适于形状复杂或截面较大的工件第二次预热85024在淬火工艺中,车刀形状简单,直接使用油淬,即在油中冷却至350℃后空冷。
对于形状较复杂的刀具,为了减小刀具畸变和开裂的倾向,都采用分级淬火工艺。
齿轮铣刀和锥柄钻都采用一次分级淬火,将淬火加热后的工件放入620℃的中性盐浴炉中,保持一段时间(相当于淬火加热时间),然后空冷至室温。
2.2.3 各刀具工艺曲线各刀具工艺曲线如图所示(1)车刀工艺曲线(2)锥柄钻工艺曲线(3)齿轮铣刀工艺曲线2.3 热处理设备选择2.3.1预备热处理设备的选择由《热处理设备》可知工件退火一般选用箱式炉。
本设计等温退火温度为850℃,故选用中温箱式炉。
查《热处理设备》P67,初步选用RX3-75-9型中温箱式炉,炉膛尺寸为1800×900×550(单位:mm),最大装料量1200kg,查《热处理手册》第三版第三卷表3-5知道炉温850℃时空炉升温时间为3.5小时。
装料时,工件与电热元件或工件与炉膛之间应保持一定的距离,查《热处理炉》附表22,RX3-75-9型中温箱式炉的有效装料体积为:V =1430×770×500=550550000 mm³炉冷速度一般为10~20℃/h,此处取15℃/h则等温退火各阶段的时间:t升温=3.5h,t保温=4+2=6h;t随炉冷=(750-550)/15=13.3h ;上下料时间t上下=0.5h ;退火总时间t退火=3+4+2+13.3+0.5=23.3h (1)生产齿轮铣刀(a)生产M10规格的铣刀,由表2-1可知该铣刀的尺寸,则该铣刀每一个所占的空间为:v=120×120×31.0=446400mm³n =V/v≈1233个M=1.41n=1738.35kg>1200kg当n=851时M=1199.91kg≤1200kg生产率为 P=M/t退火=52.62kg/hE1=161700/52.62=3140.41h(b) 生产M5.5规格的铣刀,由表2-1可知该铣刀的尺寸,则该铣刀每一个所占的空间为:v =95×95×17.3=156132.5 mm³则,每炉可装该铣刀的个数为: n =V/v≈3526个装料总重量为: M =0.1n =1868.78kg>1200kg所以,n取2264时,M=1199.92kg≤1200kg生产率为 P=M/t退火=51.49kg/h年负荷时数E2=Q/P=3140.41h(2)生产车刀(a)A10车刀10×6×4同上,计算各参数v=240 mm³当n=600000时,M=1200kgP=51.50kg/hE3=3139.81h(b)车刀A12 12×8×5v=480 mm³当n=300000时,M=1200kgP=51.50kg/hE4=3139.81h(3)生产锥柄钻(a)生产φ11.8×85规格的锥柄钻锥柄钻每一个所占的空间为:v =11.8×11.8×85=11835.4 mm³则,每炉可装的个数为:n=V/v≈45617个则,装料总重量为:M=0.105n=4884.29>1200kg可取n=11428 M=1199.94kg生产率为P=M/t退火=51.5kg/h年负荷时数为:E5=Q/P =3139.81h(b)滚刀φ14.1X192滚刀每一个所占的空间为:v=38171.5mm³每炉可装的个数为:n=V/v≈14423个装料总重量为:M=0.325n=4687.47kg>1200kg所以n=3692时 M=1199.9kg生产率为P=51.5kg/h年负荷时数为E6=Q/P =3139.81h综上所述,RX3-75-9型中温箱式炉用做等温热处理炉适用于所有产品,则该设备的年负荷时数为E=E1+E2+E3+E4+E5+E6=18839.47h;设备数量为C=E/F设=4.98,C’=6 ;设备负荷率为K=C/C’×100%=83% 符合二班制设备负荷率80%~90%的要求的要求。
2.3.2 预热处理设备的选择预热时,分一次预热和二次预热两种工艺。
各刀具采用的预热工艺见表2-5①一次预热法由《热处理手册第四版第三册》P237~243初步选用RDM-45-13型埋入式高温盐浴炉,炉膛尺寸350×300×700(单位:mm),额定温度1300℃,预热温度850℃。
加热系数为24s/mm。
a)生产车刀A10 由于该刀具采用一次预热法,在预热中加热时间为t加热=24×4=96s查《热处理工艺参数手册》P21,保温时间可按下列经验公式计算:τ=αKD式中τ——保温时间(min)α——保温时间系数(min/mm),查《热处理工艺参数手册》表1-18,本设计选取0.35K——工件装炉方式修正系数,,通常取1.0~1.5本设计选取1.0D——工件有效厚度(mm)则A10的保温时间为τ=0.35×1.0×4=1.4min= 84s所以,该刀具预热工艺时间为t= t加热+τ=180s车刀A10的装料设计埋入式盐浴炉炉膛尺寸的设计如下图工件距离熔盐表面的距离一般不小于30mm,本设计a取30mm;工件距离炉膛内壁的距离约为50mm,本设计b取50mm;熔盐表面与炉膛口的距离约为50~100mm,本设计c取50mm;电极下端距离炉膛底的距离d一般为50~70mm,本设计取50mm;电极高度由炉型而定,本炉型的电极高度e取113mm,则工件距离底部的距离大于163mm,本设计f取200mm。
则,该盐浴炉工作空间尺寸大约为250×200×500(单位:mm)车刀A10的尺寸为10X6X4,则装料方式可设计为横排10个,纵排15个,列排20个,即装料的方式为10x15x20。
综上,RDM-35-13型盐浴炉,一炉可以放置的车刀A10的个数为n=10×15×20=3000个则一炉装料量M=0.002n=6kg生产率P=M/t=(6/180)×3600=120kg/h设备年负荷时数E1=Q/P=161700/120=1347.5h(b)车刀A12该车刀采用的是一次预热法。
选用RDM-45-13型埋入式高温盐浴炉。
该盐浴炉工作空间尺寸大约为250×200×500(单位:mm)。
计算该车刀预热时间为t= 225s装料设计如下:对应工作空间尺寸,装料方式为10x10x15综上,一次装载个数为n=1500个一次装料量为M=0.004n= 6kg生产率为P=M/t=96kg/h设备年负荷时数E2=Q/P=1684.38 hE=E1+E2=3031.88h设备数量C=E/F设=3031.88/3783=0.801C’=1 台设备负荷率K=C/C’×100%=80.1%②二次预热法第一次预热本次预热初步选用RDM-70-8型埋入式中温盐浴炉,炉膛尺寸为450×350×700(单位:mm),额定温度为850℃,工作空间尺寸为350×250×500(单位:mm)。