八年级全等三角形专题练习(解析版)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、八年级数学全等三角形解答题压轴题(难)

1.(1)如图(1),已知:在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m, CE⊥直线m,垂足分别为点D、E.证明:DE=BD+CE.

(2)如图(2),将(1)中的条件改为:在△ABC中,AB=AC,D、A、E三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.

(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E

三点互不重合),点F为∠BAC平分线上的一点,且△ABF和△ACF均为等边三角形,连接BD、CE,若∠BDA=∠AEC=∠BAC,试判断△DEF的形状.

【答案】(1)见解析(2)成立(3)△DEF为等边三角形

【解析】

解:(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=900.

∵∠BAC=900,∴∠BAD+∠CAE=900.

∵∠BAD+∠ABD=900,∴∠CAE=∠ABD.

又AB="AC" ,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.

∴DE="AE+AD=" BD+CE.

(2)成立.证明如下:

∵∠BDA =∠BAC=α,∴∠DBA+∠BAD=∠BAD +∠CAE=1800—α.∴∠DBA=∠CAE.

∵∠BDA=∠AEC=α,AB=AC,∴△ADB≌△CEA(AAS).∴AE=BD,AD=CE.

∴DE=AE+AD=BD+CE.

(3)△DEF为等边三角形.理由如下:

由(2)知,△ADB≌△CEA,BD=AE,∠DBA =∠CAE,

∵△ABF和△ACF均为等边三角形,∴∠ABF=∠CAF=600.

∴∠DBA+∠ABF=∠CAE+∠CAF.∴∠DBF=∠FAE.

∵BF=AF,∴△DBF≌△EAF(AAS).∴DF=EF,∠BFD=∠AFE.

∴∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600.

∴△DEF为等边三角形.

(1)因为DE=DA+AE,故由AAS证△ADB≌△CEA,得出DA=EC,AE=BD,从而证得

DE=BD+CE.

(2)成立,仍然通过证明△ADB≌△CEA,得出BD=AE,AD=CE,所以DE=DA+AE=EC+BD.(3)由△ADB≌△CEA得BD=AE,∠DBA =∠CAE,由△ABF和△ACF均等边三角形,得

∠ABF=∠CAF=600,FB=FA,所以∠DBA+∠ABF=∠CAE+∠CAF,即∠DBF=∠FAE,所以

△DBF≌△EAF,所以FD=FE,∠BFD=∠AFE,再根据∠DFE=∠DFA+∠AFE=∠DFA+∠BFD=600得到△DEF是等边三角形.

2.如图1,在正方形ABCD中,P是对角线BD上的一点,点E在AD的延长线上,且

PA=PE,PE交CD于F

(1)证明:PC=PE;

(2)求∠CPE的度数;

(3)如图2,把正方形ABCD改为菱形ABCD,其他条件不变,当∠ABC=120°时,连接CE,试探究线段AP与线段CE的数量关系,并说明理由.

【答案】(1)证明见解析(2)90°(3)AP=CE

【解析】

【分析】

(1)、根据正方形得出AB=BC,∠ABP=∠CBP=45°,结合PB=PB得出△ABP ≌△CBP,从而得出结论;(2)、根据全等得出∠BAP=∠BCP,∠DAP=∠DCP,根据PA=PE得出∠DAP=∠E,即∠DCP=∠E,易得答案;(3)、首先证明△ABP和△CBP全等,然后得出PA=PC,

∠BAP=∠BCP,然后得出∠DCP=∠E,从而得出∠CPF=∠EDF=60°,然后得出△EPC是等边三角形,从而得出AP=CE.

【详解】

(1)、在正方形ABCD中,AB=BC,∠ABP=∠CBP=45°,

在△ABP和△CBP中,又∵ PB=PB ∴△ABP ≌△CBP(SAS),∴PA=PC,∵PA=PE,

∴PC=PE;

(2)、由(1)知,△ABP≌△CBP,∴∠BAP=∠BCP,∴∠DAP=∠DCP,

∵PA=PE,∴∠DAP=∠E,∴∠DCP=∠E,∵∠CFP=∠EFD(对顶角相等),

∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,即∠CPF=∠EDF=90°;

(3)、AP=CE

理由是:在菱形ABCD中,AB=BC,∠ABP=∠CBP,

在△ABP和△CBP中,又∵ PB=PB ∴△ABP≌△CBP(SAS),

∴PA=PC,∠BAP=∠DCP,

∵PA=PE,∴PC=PE,∴∠DAP=∠DCP,∵PA=PC ∴∠DAP=∠E,∴∠DCP=∠E

∵∠CFP=∠EFD(对顶角相等),∴180°﹣∠PFC﹣∠PCF=180°﹣∠DFE﹣∠E,

即∠CPF=∠EDF=180°﹣∠ADC=180°﹣120°=60°,∴△EPC是等边三角形,∴PC=CE,

∴AP=CE

考点:三角形全等的证明

3.如图,在ABC ∆中,ACB ∠为锐角,点D 为射线BC 上一动点,连接AD .以AD 为直角边且在AD 的上方作等腰直角三角形ADF .

(1)若AB AC =,90BAC ∠=︒

①当点D 在线段BC 上时(与点B 不重合),试探讨CF 与BD 的数量关系和位置关系; ②当点D 在线段C 的延长线上时,①中的结论是否仍然成立,请在图2中面出相应的图形并说明理由;

(2)如图3,若AB AC ≠,90BAC ∠≠︒,45BCA ∠=︒,点D 在线段BC 上运动,试探究CF 与BD 的位置关系.

【答案】(1)①CF ⊥BD ,证明见解析;②成立,理由见解析;(2)CF ⊥BD ,证明见解析.

【解析】

【分析】

(1)①根据同角的余角相等求出∠CAF=∠BAD ,然后利用“边角边”证明△ACF 和△ABD 全等,②先求出∠CAF=∠BAD ,然后与①的思路相同求解即可;

(2)过点A 作AE ⊥AC 交BC 于E ,可得△ACE 是等腰直角三角形,根据等腰直角三角形的性质可得AC=AE ,∠AED=45°,再根据同角的余角相等求出∠CAF=∠EAD ,然后利用“边角边”证明△ACF 和△AED 全等,根据全等三角形对应角相等可得∠ACF=∠AED ,然后求出∠BCF=90°,从而得到CF ⊥BD .

【详解】

解:(1)①∵∠BAC=90°,△ADF 是等腰直角三角形,

∴∠CAF+∠CAD=90°,∠BAD+∠ACD=90°,

∴∠CAF=∠BAD ,

在△ACF 和△ABD 中,

∵AB=AC ,∠CAF=∠BAD ,AD=AF ,

∴△ACF ≌△ABD(SAS),

∴CF=BD ,∠ACF=∠ABD=45°,

∵∠ACB=45°,

∴∠FCB=90°,

∴CF ⊥BD ;

②成立,理由如下:如图2:

相关文档
最新文档