中职数学实数指数幂及其运算法则
中职数学-实数指数幂及其运算ppt课件
别的说明,底数都表示完整正版课数件 .
17
例3:用分数指数幂的形式表示下列各式:
a 2 a,a 33a 2, aa(式 中 a0 )
分析:此题应结合分数指数幂意义与有理指数幂运算性质。
解:
a2 aa2a1 2a21 2a5 2;
a33a2a3a2 3a32 3a131;
11
31 3
aa(aa2)2(a2)2a4.
我说明们:规若定a了>0分,数p指是数一幂个的无意理义数以,后则,ap表指示 数一个的确概定念的就实从数整. 数上指述数有推理广指到数有幂理的运数算指性 数质,. 上对述于关无于理整数数指指数数幂幂都的适运用算. 即性当质指,数对的 于范围有扩理大指到数实幂数也集同R样后适,用幂,的即运对算任性质意仍有然 理是下数述r,的s,3条均. 有下面的性质:
( 1) - 3 = ( 2 - 2) - 3 = 2 ( - 2 ) ( - 3 ) = 26= 64 ; 4
( 16) - 3 4= ( 2) 4 ( - 3 4) = ( 2) - 3= 27。
81
3完整版课件
3
8
14
练习:求值:
912,6432
,(
1
1
)5
32
完整版课件
15
⒋有理指数幂的运算性质
⑴ ar·as=ar+s (a>0,r,s∈Q);
⑵ (ar)s=ars (a>0,r,s∈Q);
⑶ (ab)r=ar br (a>0,b>0,r∈Q).
完整版课件
16
1.正数的正分数指数幂的意义:
m
a n na m (a 0 ,m ,n N *且 ,n 1 )
高教版中职数学基础模块上册《实数指数幂》课件
跟踪训练2
1
−
3
3
1
-
5
1
3
计算23 + −8 +
10
[ 23 + −8
1
3
10
5 2 − 3 3 0的值是________.
1
+
−
3
3
1
5
- 5 2−3 3
1
1 3× −3
5
-1=8-2+5-1=10.]
0
= 8 + −2
3
1
3
+
当堂达标训练
一、选择题
1.已知a∈R,下列各式正确的是(
A.
−3
5
25
4.计算指数式
1 −2
的值等于(
2
1
A.
4
1
C.-
4
B
[
B.4
√
)
D.-4
1 −2
=[(2)-1]-2=22=4,故选B.]
2
5.计算
5+ 3
0
+
0
5 − 3 的值等于(
A.0
B.1
C.2
√
D.8
)
4
3
6.指数式 −27 的值等于(
)
√
D.-9
A.81
A
B.-81
C.9
4
3
[ −27 = −3
点拨:分数指数幂与根式密切相关,理解分数指数幂的定义,可以顺利完成两
者之间的相互转化.
跟踪训练1
5
3
根式
3
10
5
3
10
用分数指数幂表示为________.
中职数学 实数指数幂及其运算ppt课件
;.
4
二、零指数幂
a 0 = 1(a ≠ 0 )
练习2
(1)8 0 =
;
(2)(-0.8 ) 0 =
;
(3)式子 ( a-b ) 0 =1 是否恒成立?为什么?
;.
5
如果取消 =aaammn-n(m>n,a≠0)中m>n的 限制,如何通过指数的运算来表示?
计算: 23
1
(1) 2=4
;2
=23-4
;.
17
例3:用分数指数幂的形式表示下列各式:
a 2 a,a 33a 2, aa(式 中 a0 )
分析:此题应结合分数指数幂意义与有理指数幂运算性质。
解:
a2 aa2a1 2a21 2a5 2;
a33a2a3a2 3a32 3a131;
11
31 3
aa(aa2)2(a2)2a4.
a ;. ?
18
例4:计算下列各式(式中字母都是正数)
=2-1
1
2-1 =223来自1(2) 2=6
;8
=23-6
=2-3
1
2-3 =
23
a-1= (a1≠0) a
规定 a-n= (aa1n≠0,nN+)
;.
6
三、负整数指数幂
a-1 = a-n =
(1 a ≠ 0) a (1 a ≠ 0,n N+ ) an
练习3
(1)8-2 =
;
(2)0.2-3 = ;
⑴ ar·as=ar+s (a>0,r,s∈Q); ⑵ (ar)s=ars (a>0,r,s∈Q); ⑶ (ab)r=ar br (a>0,b>0,r∈Q).
;.
实数指数幂及其运算法则
实数指数幂及其运算法则实数指数幂是数学中的一个重要概念,它在数学、物理、工程等领域都有着广泛的应用。
本文将介绍实数指数幂的定义、性质以及运算法则。
一、实数指数幂的定义。
实数指数幂指的是形如a^b的数,其中a为实数,b为实数。
其中a称为底数,b称为指数。
当指数为正整数时,实数指数幂可以用连乘的形式表示,即a^b=aa...a,其中a出现了b次。
当指数为零时,实数指数幂定义为1。
当指数为负整数时,实数指数幂可以用连除的形式表示,即a^(-b)=1/(a^b)。
当底数为正数且指数为实数时,实数指数幂可以用连续开方的形式表示,即a^b=sqrt(sqrt(...(sqrt(a))...),其中开方的次数为b。
二、实数指数幂的性质。
1.相同底数的实数指数幂相乘,指数相加。
即a^m a^n =a^(m+n)。
2.相同底数的实数指数幂相除,指数相减。
即a^m / a^n =a^(m-n)。
3.不同底数的实数指数幂相乘,底数不变,指数相加。
即a^m b^m = (ab)^m。
4.不同底数的实数指数幂相除,底数不变,指数相减。
即a^m / b^m = (a/b)^m。
5.实数指数幂的乘方,指数相乘。
即(a^m)^n = a^(mn)。
6.实数指数幂的除法,指数相除。
即(a^m)^n = a^(m/n)。
7.任何数的零次幂都等于1。
即a^0 = 1。
8.任何数的一次幂都等于它本身。
即a^1 = a。
以上性质是实数指数幂运算的基本法则,可以帮助我们简化实数指数幂的运算,并且也可以推广到复数指数幂的运算中。
三、实数指数幂的运算法则。
实数指数幂的运算法则包括加减、乘除、乘方和开方等运算。
1.加减法。
对于相同底数的实数指数幂,可以直接对指数进行加减运算。
例如,2^3 + 2^4 = 2^7,2^5 2^3 = 2^2。
2.乘法。
对于相同底数的实数指数幂,可以直接对指数进行加法运算。
例如,2^3 2^4 = 2^(3+4) = 2^7。
中职数学基础模块上册实数指数幂及其运算法则word学案
§ 实数指数幂及其运算法则 导学案目标要求:明白得有理指数幂的含义,能运用有理指数幂的运算性质进行运算和化简,会进行根式与分数指数幂的彼此转化;了解实数指数幂的意义,体会有理指数幂向无理指数幂逼近的进程.通过温习和练习,明白得分数指数幂的意义和学会根式与分数指数幂之间的彼此转化及有理指数幂运算性质的应用,培育学生的思维能力,注重学生数学思想的渗透。
重点:实数指数幂的概念及分数指数的运算性质。
难点:对非整数指数幂意义的了解,专门是对无理指数幂意义的了解。
学习进程一、自主学习:1.整数指数幂概念: n a a a a =⋅⋅⋅个 )(*∈N n ; ()00a a =≠; n a -= ()0,a n N *≠∈.2.整数指数幂的运算性质:(1)mna a ⋅= (),m n Z ∈; (2)()nm a= (),m n Z ∈;(3)()nab = ()n Z ∈ 其中m n a a ÷= ,na b ⎛⎫= ⎪⎝⎭3.温习练习:求(1)9的算术平方根,9的平方根; (2)8的立方根,-8的立方根.问:什么叫a 的平方根?a 的立方根?二、合作探讨: 1.有理指数幂问题1:将下列根式写成份数指数幂的形式:2,32,3)2(,35,325,23)5(补充说明:0的正分数指数幂等于0,0的负分数指数幂没成心义。
2.有理指数幂的运算法则问题2:计算(1)2321x x ⋅; (2)234)(a ; (3)53)(xy212, 232, 232, 315, 325, 325公式:)0(1>=a a a nn),,,0(为既约分数且nmN n m a a a nm nm +∈>=),,,0(11为既约分数且nmN n m a a aanmnm nm +-∈>==问题2:(1)2x ; (2)6a ; (3)5353y x 法则:(1)αa ·βαβ+=aa),,0(Q a ∈>βα;(2)αββαaa =)( ),,0(Q a ∈>βα(3)αααa a ab =)( ),0(Q a ∈>α。
语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件3
一般地,当m,n Î
N
且n>1时,规定:
+
m
an
=
n
am ( a
?
0)
-m n
=
1
a >0
a a ( ) n
m
二、实数指数幂及其运算法则
1、求出下列各式的值
18
(1)、 33.33
1
7
(2)、2 2.2 2
(3)、a
1
3.a
8 3
二、实数指数幂及其运算法则
(1) ar.as = a (r+s a > 0, r, s ? Q)
4.1.2中职数学-实数指数幂的运算法则
4.1.2 实数指数幂及其运算法则一、教材分析本节课是新课标职业高中数学基础模块上册第四章实数指数幂第二课时,也是指数函数的入门课程。
指数函数对于学生来说是一个全新的函数模型,学习起来比较困难。
而实数指数幂的运算是指数函数的基础,是认识指数函数的先遣队。
我们通过初中学习整数指数幂的运算,进一步推广到实数指数幂的运算,为我们的指数函数铺路搭桥。
实数指数幂的运算是高中数学中的一类重要运算,需要理解运算对象,掌握运算法则,探究运算思路,选择运算方法,是培养学生具备运算能力的重要载体。
通过本节课的学习,可以让学生重新认识幂运算,为指数函数做铺垫。
从而更清晰,深刻地认识和理解指数函数模型,培养学生的逻辑思维能力。
二、学情分析学生进入高中学习时间短,运算能力,逻辑思维能力,探究能力,合作学习能力还不够成熟。
需要在我们的教学过程中继续强化,引导。
初中已经学习《整数指数幂及其运算法则》。
本节课是在初中学习基础上继续深入学习,将幂指数的限定由整数推广到实数,运算法则不变,所以学生有前面的基础,我们的探究过程会显得更加从容,学生能够通过合作交流完成猜想与探究。
通过对不等式的学习,已有一定的运算基础,同时对相互转化的思想,探究能力、逻辑思维能力得到了一定的锻炼。
因此,学生已具备了探索发现研究新知的认识基础,故应通过指导,教会学生独立思考、团结协作、大胆猜测和灵活运用类比、转化、归纳等学习方法。
三、教学设计0.,且a≠时,规定四、板书设计:五、课后反思学生是教学的主体,为了体现以学生发展为本,遵循学生的认知规律,体现循序渐进与启发式的教学原则,本节课给学生提供各种参与机会。
为了调动学生学习的积极性,使学生化被动为主动。
本节课我采用学生独立完成加小组合作交流,分享小组成果等方式调动学生主动参与的积极性。
在教学重难点上,循序渐进、启发学生的思维,通过课堂练习、学生讨论的方式来加深理解,很好地突破难点和提高教学效率。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
《实数指数幂及其运算法则》中职数学基础模块上册4.2ppt课件2【语文版】
难读到老师的表情。认真听讲不单纯是指听老师说的话,把握老师的表情和语调之类的小细节也是很有必要的。说话比平时更用力,或者表情严肃地强调的那个部分几乎百分之百地会出现在考试中。但是如果坐在后面,那种重要的提示就全都错过了。
•
与此相反,如果坐在前面,首先心情就很不同,自己比别人靠前的感觉让你听课时的态度变得更积极。与老师眼神交会的机会增多,感觉就好像是老师在做一对一个人辅导。
解:1
6 a3b4
a3b4
1
31 41
12
6 a 6b 6 a2b3 ;
2
3 a2
2
a 3 a1
2 1
a3
1
a3
.
a
课堂练习:P96、练习
例3 计算: 2 2 4 32 4 2
1
1
1
原式 2 22 25 4 24
1
5
1
222 24 24
1 1 5 1
2 2 4 4
23
8
课本98页 练习、习题二
编者语
• 要如何做到上课认真听讲?
•
我们都知道一个人的注意力集中时间是有限的,一节课45分钟如何保持时时刻刻都能认真听讲不走神呢?
•
1、往前坐
•
坐的位置越靠后,注意力就越难集中。老师不会注意到你的事实可以让你不再紧张,放心去做别的事情。坐在后面,视线分散,哪怕你是在看老师,如果有人移动,你的视线就会飘到那个同学的后脑勺上去,也就无法集中注意力。 而且,坐在后面很
;
3
(3)16 4
;
(4)3
3 3 36 3.
2
解 : (1)83
语文版中职数学基础模块上册4.2《实数指数幂及其运算法则》ppt课件4
【1】下列各式中, 不正确的序号是( ① ④ ).
① 4 16 2 ② ( 5 3)5 3 ③ 5 (3)5 3 ④ 5 (3)10 3 ⑤ 4 (3)4 3
【2】求下列各式的值.
⑴ 5 32;
⑵ ( 3)4 ;
⑶ ( 2 3)2 ; ⑷ 5 2 6 .
分数指数幂在底数小于0时无意义.
⒉负分数指数幂的意义
注回意忆:负整负数分指数数指幂数的幂意在义:有意义的情况下,
总在指表数示上正.数a-,n=而a1不n (是a≠负0,n数∈,N负*)号. 只是出现
正数的负分数指数幂的意义和正数的负整
数指数幂的意义相仿,就是:
m
an
1
m
an
1 (a>0,m,n∈N*,且n>1). n am
64的6次方根是2,-2.
记作: 6 64 2.
1.正数的偶次方根有两个且互为相反数
偶次方根 2.负数的偶次方根没有意义
正数a的n次方根用符号 n a 表示(n为偶数)
(1) 奇次方根有以下性质: 正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零.
(2)偶次方根有以下性质:
r4
0.0001 104
a2 b2c
a 2b 2c 1
回顾初中知识,根式是如何定义的?有
那些规定?
①如果一个数的平方等于a,则这个数叫做 a
的平方根.
22=4 (-2)2=4
2,-2叫4的平方根.
②如果一个数的立方等于a,则这个数叫做a
的立方根.
23=8
2叫8的立方根.
(-2)3=-8
-2叫-8的立方根.
例2.如果 2x2 5x 2 0, 化简代
《实数指数幂及其运算法则》ppt课件
$(uv)^n = u^n times v^n$
积的运算性质
$(u^n)v = u times u times ldots times u times v$(共n个u相乘)
积的运算性质2
$(u^n)v = u times (u^n)v$
积的运算性质3
$(ab)^{-n} = frac{1}{(ab)^n} = frac{1}{a^n times b^n}$
积的运算性质
$frac{a^m}{b^m} = (a/b)^m$
商的指数运算性质
$frac{a^m}{b^{-m}} = (a/b)^{m-n} = frac{a^{m-n}}{b^{m-n}}$
总结与回顾
卑鄙!只要 your question mark keeps track of keeping your work. OMRC
Cited from: "https://www.bokephases"
总结与回顾
* "
" 输入: 6th Party View : 尾声 (疏影)
# 2nd Party View
幂运算在数学、物理、工程等领域有广泛应用。
幂的应用
积运算可以用于计算多个数的乘积,简化计算过程。
在统计学中,积运算可以用于计算样本方差、标准差等统计量。
在物理学中,积运算可以用于计算多个物理量的乘积,如力矩、功等。
积的应用
商的应用
商运算可以用于计算两个数的比值,用于比较大小、排序等。
在经济学中,商运算可以用于计算成本效益比、投资回报率等。
尾声 (疏影): 6th Party View : 尾声 (疏影)
中职数学基础模块上册《实数指数幂及其运算法则》word教案
中职数学基础模块上册《实数指数幂及其运算法则》word教案第一章:指数幂的概念与性质1.1 教学目标1. 理解指数幂的概念2. 掌握指数幂的性质3. 学会运用指数幂的性质解决问题1.2 教学内容1. 指数幂的定义与例子2. 指数幂的性质3. 指数幂的应用1.3 教学重点与难点1. 重点:指数幂的概念与性质2. 难点:指数幂的应用1.4 教学方法与手段1. 讲授法:讲解指数幂的定义与性质2. 案例分析法:分析实际问题中的指数幂应用3. 练习法:巩固所学知识1.5 教学过程1. 引入:通过实际问题引入指数幂的概念2. 讲解:讲解指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的指数幂应用4. 练习:布置相关练习题,巩固所学知识第二章:分数指数幂2.1 教学目标1. 理解分数指数幂的概念2. 掌握分数指数幂的性质3. 学会运用分数指数幂解决问题2.2 教学内容1. 分数指数幂的定义与例子2. 分数指数幂的性质3. 分数指数幂的应用2.3 教学重点与难点1. 重点:分数指数幂的概念与性质2. 难点:分数指数幂的应用2.4 教学方法与手段1. 讲授法:讲解分数指数幂的定义与性质2. 案例分析法:分析实际问题中的分数指数幂应用3. 练习法:巩固所学知识2.5 教学过程1. 引入:通过实际问题引入分数指数幂的概念2. 讲解:讲解分数指数幂的定义与性质,举例说明3. 案例分析:分析实际问题中的分数指数幂应用4. 练习:布置相关练习题,巩固所学知识第三章:指数幂的运算3.1 教学目标1. 掌握指数幂的运算法则2. 学会运用指数幂的运算法则进行计算3. 理解指数幂运算的规律3.2 教学内容1. 指数幂的运算法则2. 指数幂运算的规律3. 指数幂运算的应用3.3 教学重点与难点1. 重点:指数幂的运算法则2. 难点:指数幂运算的应用3.4 教学方法与手段1. 讲授法:讲解指数幂的运算法则2. 案例分析法:分析实际问题中的指数幂运算应用3. 练习法:巩固所学知识3.5 教学过程1. 引入:通过实际问题引入指数幂的运算2. 讲解:讲解指数幂的运算法则,举例说明3. 案例分析:分析实际问题中的指数幂运算应用4. 练习:布置相关练习题,巩固所学知识第四章:指数函数4.1 教学目标1. 理解指数函数的概念2. 掌握指数函数的性质3. 学会运用指数函数解决问题4.2 教学内容1. 指数函数的定义与例子2. 指数函数的性质3. 指数函数的应用4.3 教学重点与难点1. 重点:指数函数的概念与性质2. 难点:指数函数的应用4.4 教学方法与手段1. 讲授法:讲解指数函数的定义与性质2. 案例分析法:分析实际问题中的指数函数应用3. 练习法:巩固所学知识4.5 教学过程1. 引入:通过实际问题引入指数函数的概念2. 讲解:讲解指数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的指数函数应用4. 练习:布置相关练习题,巩固所学知识第五章:对数与对数函数5.1 教学目标1. 理解对数的概念2. 掌握对数的性质3. 学会运用对数解决问题5.2 教学内容1. 对数的定义与例子2. 对数的性质3. 对数函数的应用5.3 教学重点与难点1. 重点:对数的概念与性质2. 难点:第六章:对数函数的性质与应用6.1 教学目标1. 理解对数函数的概念2. 掌握对数函数的性质3. 学会运用对数函数解决问题6.2 教学内容1. 对数函数的定义与例子2. 对数函数的性质3. 对数函数的应用6.3 教学重点与难点1. 重点:对数函数的概念与性质2. 难点:对数函数的应用6.4 教学方法与手段1. 讲授法:讲解对数函数的定义与性质2. 案例分析法:分析实际问题中的对数函数应用3. 练习法:巩固所学知识6.5 教学过程1. 引入:通过实际问题引入对数函数的概念2. 讲解:讲解对数函数的定义与性质,举例说明3. 案例分析:分析实际问题中的对数函数应用4. 练习:布置相关练习题,巩固所学知识第七章:指数与对数互化7.1 教学目标1. 理解指数与对数互化的原理2. 掌握指数与对数互化的方法3. 学会运用指数与对数互化解决问题7.2 教学内容1. 指数与对数的互化关系2. 指数与对数互化的方法3. 指数与对数互化的应用7.3 教学重点与难点1. 重点:指数与对数互化的原理与方法2. 难点:指数与对数互化的应用7.4 教学方法与手段1. 讲授法:讲解指数与对数互化的原理与方法2. 案例分析法:分析实际问题中的指数与对数互化应用3. 练习法:巩固所学知识7.5 教学过程1. 引入:通过实际问题引入指数与对数互化的概念2. 讲解:讲解指数与对数互化的原理与方法,举例说明3. 案例分析:分析实际问题中的指数与对数互化应用4. 练习:布置相关练习题,巩固所学知识第八章:指数与对数在实际问题中的应用8.1 教学目标1. 理解指数与对数在实际问题中的应用2. 掌握指数与对数在实际问题中的解题方法3. 学会运用指数与对数解决实际问题8.2 教学内容1. 指数与对数在实际问题中的应用实例2. 指数与对数在实际问题中的解题方法3. 指数与对数在实际问题中的应用案例分析8.3 教学重点与难点1. 重点:指数与对数在实际问题中的应用2. 难点:指数与对数在实际问题中的解题方法8.4 教学方法与手段1. 讲授法:讲解指数与对数在实际问题中的应用实例2. 案例分析法:分析实际问题中的指数与对数应用案例3. 练习法:巩固所学知识8.5 教学过程1. 引入:通过实际问题引入指数与对数在实际问题中的应用2. 讲解:讲解指数与对数在实际问题中的应用实例,举例说明3. 案例分析:分析实际问题中的指数与对数应用案例4. 练习:布置相关练习题,巩固所学知识第九章:复习与拓展9.1 教学目标1. 巩固本模块所学知识2. 提高学生的数学思维能力3. 培养学生解决实际问题的能力9.2 教学内容1. 复习本模块的主要知识点和技能2. 拓展与本模块相关的数学知识3. 分析与解决实际问题9.3 教学重点与难点1. 重点:巩固本模块所学知识2. 难点:拓展与本模块相关的数学知识9.4 教学方法与手段2. 案例分析法:分析与解决实际问题3. 练习法:巩固所学知识9.5 教学过程2. 讲解:讲解与本模块相关的数学知识,举例说明3. 案例分析:分析与解决实际问题4. 练习:布置相关练习题,巩固所学知识第十章:评价与反馈10.1 教学目标1.重点和难点解析第一章:指数幂的概念与性质重点和难点解析:本章节的重点是指数幂的概念与性质,难点是指数幂的应用。
中职数学基础模块上册《实数指数幂及其运算法则》word教案
中职数学基础模块上册《实数指数幂及其运算法则》word教案教案目录:一、教学目标1.1 知识与技能目标1.2 过程与方法目标1.3 情感态度与价值观目标二、教学内容2.1 实数指数幂的定义与性质2.2 运算法则2.3 指数幂的应用三、教学重点与难点3.1 教学重点3.2 教学难点四、教学方法与手段4.1 教学方法4.2 教学手段五、教学过程5.1 导入新课5.2 知识讲解5.3 例题解析5.4 课堂练习5.5 总结与拓展教案一、教学目标1.1 知识与技能目标通过本节课的学习,使学生掌握实数指数幂的定义与性质,能够运用运算法则进行简单的计算。
1.2 过程与方法目标通过自主学习、合作探讨的方式,培养学生分析问题、解决问题的能力。
1.3 情感态度与价值观目标激发学生对数学的学习兴趣,培养学生的逻辑思维能力。
二、教学内容2.1 实数指数幂的定义与性质实数指数幂是指以实数为底数的指数幂,例如:2^3、3^4等。
2.2 运算法则同底数幂相乘,底数不变,指数相加;同底数幂相除,底数不变,指数相减;幂的乘方,底数不变,指数相乘;积的乘方,等于每个因式的乘方再相乘。
2.3 指数幂的应用指数幂在实际生活中有广泛的应用,如计算利息、折扣等。
三、教学重点与难点3.1 教学重点实数指数幂的定义与性质,运算法则的应用。
3.2 教学难点指数幂的运算法则的理解与运用。
四、教学方法与手段4.1 教学方法采用问题驱动法、案例教学法、小组合作学习法等。
4.2 教学手段利用多媒体课件、教学挂图、实物模型等辅助教学。
五、教学过程5.1 导入新课通过复习实数的基本概念,引出实数指数幂的概念。
5.2 知识讲解讲解实数指数幂的定义与性质,运算法则的推导与解释。
5.3 例题解析举例说明实数指数幂的运算法则的应用,引导学生进行思考。
5.4 课堂练习布置一些相关的练习题,让学生巩固所学知识。
5.5 总结与拓展对本节课的内容进行总结,提出一些拓展问题,激发学生的学习兴趣。
中职数学有理数指数幂
例2 求值
1 4 81
2 81的4四次方根
3.1、分数指数幂
a a a a 4 12 4
34
3
12
4
a a a a 3 15 3
53
5
15 3
a a 3 15
15 3
2.3、例题解析
例2 求值
1 4 81
2 81的4四次方根
2 36 49
2
2
25 3 103 1000 8125 2353
ab
a b n
n
n
一、正整数指数幂的运算法则
3.
ab
a b n
n
n
积的乘方等于乘方的积
一、正整数指数幂的运算法则
4
33 3 3 2
81 9 9
2
42
6
22 2 2 2
64 4
16
4
62
m
a mn a a n
一、正整数指数幂的运算法则
4.
am an
am n
同底数幂相除,底数不变,指数相减
1.2、零指数和负整数指数幂
2 22 4 1
24 16 22
2 2 ห้องสมุดไป่ตู้ 2
3 33
33
27 27
1
3 3 3 0
2 22 4 1 1
24 16 4 22
2 2 4 2
1
33 3 4
3 81
1 27
1
33
31 4
3
a0 1 a 0
an
1
an a
0,n N
1.3例题解析
例1.计算:
8
0;
3 2
指数幂的运算法则公式
指数幂的运算法则公式
指数幂的运算法则包括乘法、除法、幂的乘方、积的乘方、分式乘方等。
具体如下:
1. 同底数幂相乘,底数不变,指数相加。
即 (m,n都是有理数)。
2. 幂的乘方,底数不变,指数相乘。
即 (m,n都是有理数)。
3. 积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。
即
= · (n是有理数)。
4. 分式乘方,分子分母各自乘方。
即(b≠0)。
5. 同底数幂相除,底数不变,指数相减。
即(a≠0,m,n都是有理数)。
6. 任何不等于零的数的零次幂都等于1。
即(a≠0)。
7. 任何不等于零的数的-p(p是正整数)次幂,等于这个数的p次幂的倒数。
即(a≠0,p是正整数)。
对于混合运算,应先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算。
以上信息仅供参考,如有需要,建议查阅数学书籍或咨询数学专家。
中职数学基础模块上册《实数指数幂及其运算法则》word教案
中职数学基础模块上册《实数指数幂及其运算法则》Word教案一、教学目标1. 知识与技能:(1)理解实数指数幂的概念;(2)掌握实数指数幂的运算法则;(3)能够运用实数指数幂及其运算法则解决实际问题。
2. 过程与方法:(1)通过观察、分析、归纳实数指数幂的运算法则;(2)培养学生的逻辑思维能力和运算能力。
3. 情感、态度与价值观:(1)培养学生对数学的兴趣和自信心;(2)培养学生合作交流、积极探索的精神。
二、教学重点与难点1. 教学重点:实数指数幂的概念,实数指数幂的运算法则。
2. 教学难点:实数指数幂的运算法则的应用。
三、教学方法1. 情境创设:通过生活实例引入实数指数幂的概念;2. 自主探究:引导学生观察、分析、归纳实数指数幂的运算法则;3. 合作交流:分组讨论,共同解决问题;4. 巩固练习:设计相关练习题,巩固所学知识。
四、教学过程1. 导入新课:(1)复习相关知识点,如幂的定义;(2)通过生活实例引入实数指数幂的概念。
2. 自主探究:(1)观察实数指数幂的运算法则;(2)分析、归纳实数指数幂的运算法则。
3. 合作交流:(1)分组讨论,共同解决问题;(2)分享各自的学习心得和方法。
4. 巩固练习:(1)设计相关练习题;(2)学生独立完成,教师点评、讲解。
5. 课堂小结:(2)强调实数指数幂在实际问题中的应用。
五、课后作业1. 复习实数指数幂的概念和运算法则;2. 完成课后练习题;六、教学策略1. 实例引导:通过具体的实例,让学生理解实数指数幂的实际意义和应用。
2. 问题驱动:提出问题,激发学生的思考,引导学生主动探究实数指数幂的运算法则。
3. 互助合作:鼓励学生之间的合作,共同解决问题,提高学生的团队协作能力。
4. 实践操作:让学生通过实际操作,加深对实数指数幂及其运算法则的理解。
七、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 课后作业:检查学生完成的课后作业,评估学生对实数指数幂及其运算法则的掌握程度。
实数指数幂及其运算法则
(5) ( 3 5)3 5;
(6) ( 4 81)4 81;
(7) 3 (8)3 8.
整数指数幂有那些运算法则?
(1) a m a n a mn (m, n Z)
(2) (am )n amn(m, n Z)
(3) (ab)n anbn (m, n Z)
3.三个公式
(1)
n
n a a;
(2) n an a;
(3) n an | a | .
4.如果xn=a,那么
n a , n为奇数,
x
n
aபைடு நூலகம்
,
n为偶数,a ≥ 0,
不存在, n为偶数,a 0.
5.正数的正分数指数幂的意义:
m
a n n am (a 0, m, n N, 且n 1)
§4.1.2 实数指数幂及运 算
1.n次方根定义 一般地,如果 xn =a,则称 x为a的n次方根.
2.n次方根的性质
(1) 奇次方根有以下性质:
正数的奇次方根是正数. 负数的奇次方根是负数. 零的奇次方根是零. (2)偶次方根有以下性质: 正数的偶次方根有两个且是相反数, 负数没有偶次方根, 零的偶次方根是零.
6.正数的负分数指数幂的意义:
m
an
1
m
an
1 n am
(a 0, m, n N ,且n 1)
7.规定0的正分数指数幂为0,0的负分数指数 幂没有意义.
下列说法中正确的序号是_(_4_)__(_5_)_____. (1)16的四次方根是2;(6)(7)
(2)正数的n次方根有两个; (3)a的n次方根就 n a