两角和差正余弦公式的证明..

合集下载

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程

三角函数两角和差公式证明过程一、两角和的余弦公式cos(A + B)=cos Acos B-sin Asin B的证明。

1. 利用单位圆证明(几何法)- 在单位圆x^2+y^2 = 1上,设角A、B的终边分别与单位圆交于点P_1(cos A,sin A)和P_2(cos B,sin B)。

- 则→OP_1=(cos A,sin A),→OP_2=(cos B,sin B)。

- 角A + B的终边与单位圆交于点P。

- 根据向量的数量积定义,→OP_1·→OP_2=|→OP_1||→OP_2|cos(A - B),因为|→OP_1|=|→OP_2| = 1,所以→OP_1·→OP_2=cos(A - B)。

- 又因为→OP_1·→OP_2=cos Acos B+sin Asin B,所以cos(A - B)=cos AcosB+sin Asin B。

- 令B=-B,则cos(A + B)=cos Acos(-B)+sin Asin(-B)。

- 由于cos(-B)=cos B,sin(-B)=-sin B,所以cos(A + B)=cos Acos B-sin Asin B。

2. 利用复数证明(代数法)- 设z_1=cos A + isin A,z_2=cos B + isin B。

- 根据复数乘法法则z_1z_2=(cos A + isin A)(cos B + isin B)- 展开得z_1z_2=cos Acos B-sin Asin B+i(sin Acos B+cos Asin B)。

- 另一方面,根据复数的三角形式乘法z_1z_2=cos(A + B)+isin(A + B)。

- 比较实部可得cos(A + B)=cos Acos B-sin Asin B。

二、两角和的正弦公式sin(A + B)=sin Acos B+cos Asin B的证明。

1. 利用两角和的余弦公式推导。

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照

两角和与差的余弦公式的五种推导方式之对照第一种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp其中,adj表示邻边的长度,hyp表示斜边的长度。

现在考虑两个角度的和,即θ1+θ2、根据余弦函数的定义,我们可以得到:cos(θ1 + θ2) = adj1/hyp1现在我们将θ1和θ2分别表示为它们的余弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2将这两个式子相加,得到:cosθ1 + cosθ2 = (adj1 + adj2) / (hyp1 + hyp2)这就是两角和的余弦公式。

第二种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道余弦函数的复合角公式,即:cos(θ1 + θ2) = cosθ1⋅cosθ2 - sinθ1⋅sinθ2现在我们将θ1和θ2表示为它们的余弦函数和正弦函数:cosθ1 = adj1/hyp1cosθ2 = adj2/hyp2sinθ1 = opp1/hyp1sinθ2 = opp2/hyp2将这些式子代入复合角公式中,得到:cos(θ1 + θ2) = (adj1/hyp1)⋅(adj2/hyp2) -(opp1/hyp1)⋅(opp2/hyp2)= (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅hyp2)这就是第二种推导方式。

第三种推导方式:我们知道余弦函数的定义为:cosθ = adj/hyp我们还知道正弦函数的平方与余弦函数的平方之和等于1,即:sin²θ + cos²θ = 1现在我们考虑θ1和θ2的和,即(θ1+θ2)。

我们可以得到:cos(θ1 + θ2) = adj1+2/hyp1+2现在我们将θ1+2表示为(θ1+θ2)的余弦函数和正弦函数:cos(θ1 + θ2) = adj1+2/hyp1+2= (adj1⋅cosθ2 - opp1⋅sinθ2) / (hyp1⋅cosθ2 + hyp2⋅sinθ2) = (adj1⋅adj2 - opp1⋅opp2) / (hyp1⋅ hyp2)这就是第三种推导方式。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式是指在给定两个角的情况下,通过公式计算它们的和或差的三角函数值的关系式。

这些公式在解决三角函数的实际问题和简化计算中起着重要的作用。

本文将介绍两角和与差的三角函数公式的基本知识点,包括公式的推导、证明和应用。

一、两角和与差的三角函数公式的推导1.两角和的公式对于两个角A和B,其正弦、余弦和正切的和公式如下:sin(A+B) = sinAcosB + cosAsinBcos(A+B) = cosAcosB - sinAsinBtan(A+B) = (tanA + tanB) / (1 - tanAtanB)这些公式可以通过将和角的正弦、余弦和正切分别展开为各自的和差形式,然后进行合并得到。

以正弦和公式为例,我们可以化简如下:sin(A+B) = sinAcosB + cosAsinB由正弦的和差公式可得:sin(A+B) = sinAcosB + cosAsinB= (sinAcosB + cosAsinB)(cosAcosB – sinAsinB)/(cosAcosB –sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cosAcosB – sinAsinB)= sinAcosBcosAcosB – sinAsinBcosAcosB + cosAsinBcosAcosB –cosAsinBsinAsinB/(cos^2A - sin^2B)= sinAcos^2B - sinAsin^2B + cos^2AsinB - cosBsinA/(cos^2A - sin^2B)= sinA(cos^2B - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)/(cos^2A - sin^2B)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)= sinA(1 - sin^2B) + cosA(sinBcosA - cosBsinA)2.两角差的公式对于两个角A和B,其正弦、余弦和正切的差公式如下:sin(A-B) = sinAcosB - cosAsinBcos(A-B) = cosAcosB + sinAsinBtan(A-B) = (tanA - tanB) / (1 + tanAtanB)同样,这些公式也可以通过将差角的正弦、余弦和正切展开为各自的差和比值形式,然后进行合并得到。

两角差余弦公式的推导

两角差余弦公式的推导

两角差余弦公式的推导两角差余弦公式的推导两角差余弦公式,又称“和-差公式”,是三角函数中常用的公式。

它由余弦定理推导而来,式子如下:cos(A-B)=cosAcosB+sinAsinB这个公式有很多应用,例如在高中物理课上,用来计算反射角、折射角等。

推导两角差余弦公式,我们需要使用到余弦定理,可以把它写成如下形式:a²=b²+c²-2bc·cos A其中b、c为两边的长度,A为两边所成的夹角。

先把余弦定理代入进去:a²=b²+c²-2bc·cos A=b²+c²-2bc·(cos Bcos C+sin Bsin C)现在我们把B和C角分别替换成 B=A-B 和 C=A+B:a²=b²+c²-2bc·(cos (A-B)cos (A+B)+sin (A-B)sin (A+B))此时,可以根据正弦定理和余弦定理将其化简:a²=(b+c)²-(b-c)²-2bc·[cos (A-B)cos (A+B)+sin (A-B)sin (A+B)]a²=(b+c)²-(b-c)²-2bc·[cos (A-B)(cos Acos B+sin Asin B)+sin (A-B)(cos Asin B-sin Acos B)]a²=(b+c)²-(b-c)²-2bc·[cos (A-B)cos Acos B-cos (A-B)sin Asin B+sin (A-B)cos Asin B+sin (A-B)sin Acos B]最后,将 cos (A-B) 和 sin (A-B) 的因子都拉到一边:a²=(b+c)²-(b-c)²-2bc·[cos (A-B)(cos Acos B+sin Asin B)]a²=(b+c)²-(b-c)²-2bc·[sin (A-B)(cos Asin B-sin Acos B)]将上式两边同乘2bc,得:2bc·a²=2bc·(b+c)²-2bc·(b-c)²-2bc·[cos (A-B)(cos Acos B+sin Asin B)]2bc·a²=2bc·(b+c)²-2bc·(b-c)²-2bc·[sin (A-B)(cos Asin B-sin Acos B)]此时,我们可以把左右两边的系数都拉到一边:2bc·[cos (A-B)(cos Acos B+sin AsinB)]=2bc·[(b+c)²-(b-c)²-a²]2bc·[sin (A-B)(cos Asin B-sin AcosB)]=2bc·[(b+c)²-(b-c)²-a²]我们将上面的两式简单化简:cos (A-B)(cos Acos B+sin Asin B)= (b+c)²-(b-c)²-a²sin (A-B)(cos Asin B-sin Acos B)=(b+c)²-(b-c)²-a²最后,将上面的系数1拉出来:cos (A-B)=cosAcosB+sinAsinBsin (A-B)=cosAsinB-sinAcosB以上就是两角差余弦公式的推导过程,由此可见,两角差余弦公式是由余弦定理推导而来的,在解决三角函数问题时,非常有用。

两角和与差的正弦余弦和正切公式推导过程

两角和与差的正弦余弦和正切公式推导过程

两角和与差的正弦余弦和正切公式推导过程首先,我们假设有两个角α和β,它们的和为α+β,差为α-β。

我们将利用这两个和与差来推导公式。

1.两角和的正弦公式的推导:首先,根据三角恒等式sin(α+β) = sinαcosβ+cosαsinβ,我们可以将α+β的正弦表示为两个正弦的和的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的正弦再次表示为两个正弦的和的形式。

即,sin(α+β) = sinαcosβ+ cosαsinβ = sinαcos(-β) + cosαsin(-β)。

这样,我们可以得到:sin(α+β) = sinαcosβ + cosαsinβ = sinαcos(-β) +cosαsin(-β)。

2.两角和的余弦公式的推导:首先,根据三角恒等式cos(α+β) = cosαcosβ - sinαsinβ,我们可以将α+β的余弦表示为两个余弦的和的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α+(-β)的余弦再次表示为两个余弦的和的形式。

即,cos(α+β) = cosαcosβ- sinαsinβ = cosαcos(-β) - sinαsin(-β)。

这样,我们可以得到:cos(α+β) = cosαcosβ - sinαsinβ = cosαcos(-β) -sinαsin(-β)。

3.两角差的正弦公式的推导:首先,根据三角恒等式sin(α-β) = sinαcos(-β) - cosαsin(-β),我们可以将α-β的正弦表示为两个正弦的差的形式。

然后,利用三角恒等式可以写出cos(-β)=cosβ,sin(-β)= -sinβ,我们可以将α-(-β)的正弦再次表示为两个正弦的差的形式。

即,sin(α-β) = sinαcos(-β) - cosαsin(-β) = sinαcosβ + cosαsinβ。

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点

两角和与差的三角函数公式知识点两角和与差的三角函数公式属于高中数学的重要内容,主要通过利用三角函数的性质,研究两个角的和与差的三角函数值之间的关系。

在解决三角方程、证明恒等式等问题时,这些公式的应用非常广泛。

本文将从公式的定义、推导及应用方面进行详细解析。

一、两角和的三角函数公式1.余弦和公式:cos(A+B) = cosAcosB - sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

我们知道,其对应的三条直角边分别是x、x'、x"和y、y'、y",根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个内角之和应该等于180°,即有:∠POR+∠POQ+∠QOR=180°∠A+∠B+∠(A+B)=180°2A+B=180°将以上结果代入三角函数的定义中,我们可以得到:cos(A+B) = x" = x'x - y'y = cosAcosB - sinAsinB2.正弦和公式:sin(A+B) = sinAcosB + cosAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A+B。

同样,根据三角函数的定义,我们可以得到如下关系:x = cosA,y = sinAx' = cosB,y' = sinBx" = cos(A+B),y" = sin(A+B)那么,点P、Q和R的连线所对应的三角形的三个边长之和应该等于2,即有:PR+PQ+QR=2∠POR+∠POQ+∠QOR=360°∠A+∠B+∠(A+B)=360°2A+B=360°将以上结果代入三角函数的定义中,我们可以得到:sin(A+B) = y" = xy' + yx' = sinAcosB + cosAsinB二、两角差的三角函数公式1.余弦差公式:cos(A-B) = cosAcosB + sinAsinB推导过程:设点P(x,y)在单位圆上与x轴正半轴的夹角为A,点Q(x',y')在单位圆上与x轴正半轴的夹角为B,点R(x",y")在单位圆上与x轴正半轴的夹角为A-B。

两角和与差的正弦、余弦和正切公式

两角和与差的正弦、余弦和正切公式

§4.3 两角和与差的正弦、余弦和正切公式 考试要求 1.会推导两角差的余弦公式.2.会用两角差的余弦公式推导出两角差的正弦、正切公式.3.掌握两角和与差的正弦、余弦、正切公式,并会简单应用. 知识梳理1.两角和与差的余弦、正弦、正切公式(1)公式C (α-β):cos(α-β)=cos αcos β+sin αsin β; (2)公式C (α+β):cos(α+β)=cos αcos β-sin αsin β;(3)公式S (α-β):sin(α-β)=sin αcos β-cos αsin β;(4)公式S (α+β):sin(α+β)=sin αcos β+cos αsin β;(5)公式T (α-β):tan(α-β)=tan α-tan β1+tan αtan β; (6)公式T (α+β):tan(α+β)=tan α+tan β1-tan αtan β. 2.辅助角公式a sin α+b cos α=a 2+b 2sin(α+φ),其中sin φ=b a 2+b 2,cos φ=a a 2+b 2. 知识拓展两角和与差的公式的常用变形:(1)sin αsin β+cos(α+β)=cos αcos β.(2)cos αsin β+sin(α-β)=sin αcos β.(3)tan α±tan β=tan(α±β)(1∓tan αtan β).tan αtan β=1-tan α+tan βtan (α+β)=tan α-tan βtan (α-β)-1. 思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)存在实数α,β,使等式sin(α+β)=sin α+sin β成立.( √ )(2)在锐角△ABC 中,sin A sin B 和cos A cos B 大小不确定.( × )(3)公式tan(α+β)=tan α+tan β1-tan αtan β可以变形为tan α+tan β=tan(α+β)(1-tan αtan β),且对任意角α,β都成立.( × )(4)32sin α+12cos α=sin ⎝⎛⎭⎫α+π3.( × ) 教材改编题1.若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4等于( ) A .-210 B.210C .-7210 D.7210答案 C解析 ∵α是第三象限角,∴sin α=-1-cos 2α=-35, ∴sin ⎝⎛⎭⎫α+π4=sin αcos π4+cos αsin π4=-35×22+⎝⎛⎭⎫-45×22=-7210. 2.计算:sin 108°cos 42°-cos 72°sin 42°= . 答案 12解析 原式=sin(180°-72°)cos 42°-cos 72°sin 42°=sin 72°cos 42°-cos 72°sin 42°=sin(72°-42°)=sin 30°=12. 3.若tan α=13,tan(α+β)=12,则tan β= . 答案 17解析 tan β=tan[(α+β)-α]=tan (α+β)-tan α1+tan (α+β)tan α=12-131+12×13=17.题型一 两角和与差的三角函数公式例1 (1)(2022·包头模拟)已知cos α+cos ⎝⎛⎭⎫α-π3=1,则cos ⎝⎛⎭⎫α-π6等于() A.13 B.12C.22D.33 答案 D解析 ∵cos α+cos ⎝⎛⎭⎫α-π3=1,∴cos α+12cos α+32sin α=32cos α+32sin α=3⎝⎛⎭⎫32cos α+12sin α=3cos ⎝⎛⎭⎫α-π6=1,∴cos ⎝⎛⎭⎫α-π6=33.(2)化简:①sin x +3cos x = .答案 2sin ⎝⎛⎭⎫x +π3解析 sin x +3cos x =2⎝⎛⎭⎫12sin x +32cos x=2sin ⎝⎛⎭⎫x +π3. ②24sin ⎝⎛⎭⎫π4-x +64cos ⎝⎛⎭⎫π4-x = .答案 22sin ⎝⎛⎭⎫7π12-x解析 原式=22⎣⎡⎦⎤12sin ⎝⎛⎭⎫π4-x +32cos ⎝⎛⎭⎫π4-x=22sin ⎝⎛⎭⎫π4-x +π3 =22sin ⎝⎛⎭⎫7π12-x . 教师备选1.(2020·全国Ⅲ)已知sin θ+sin ⎝⎛⎭⎫θ+π3=1,则sin ⎝⎛⎭⎫θ+π6等于( ) A.12 B.33 C.23 D.22答案 B解析 因为sin θ+sin ⎝⎛⎭⎫θ+π3 =sin ⎝⎛⎭⎫θ+π6-π6+sin ⎝⎛⎭⎫θ+π6+π6 =sin ⎝⎛⎭⎫θ+π6cos π6-cos ⎝⎛⎭⎫θ+π6sin π6+sin ⎝⎛⎭⎫θ+π6cos π6+cos ⎝⎛⎭⎫θ+π6sin π6=2sin ⎝⎛⎭⎫θ+π6cos π6=3sin ⎝⎛⎭⎫θ+π6=1. 所以sin ⎝⎛⎭⎫θ+π6=33. 2.已知sin α=35,α∈⎝⎛⎭⎫π2,π,tan(π-β)=12,则tan(α-β)的值为( ) A .-211 B.211 C.112 D .-112答案 A解析 ∵α∈⎝⎛⎭⎫π2,π,∴cos α=-45,tan α=-34, 又tan(π-β)=12, ∴tan β=-12, ∴tan(α-β)=tan α-tan β1+tan α·tan β=-34+121+⎝⎛⎭⎫-34×⎝⎛⎭⎫-12=-211. 思维升华 两角和与差的三角函数公式可看作是诱导公式的推广,可用α,β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.跟踪训练1 (1)函数y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4的最小值为( ) A. 2B .-2C .- 2 D. 3答案 C解析 y =sin ⎝⎛⎭⎫2x +π4+sin ⎝⎛⎭⎫2x -π4 =sin 2x cos π4+cos 2x sin π4+sin 2x cos π4-cos 2x sin π4=2sin 2x . ∴y 的最小值为- 2.(2)已知cos ⎝⎛⎭⎫α+π6=3cos α,tan β=33,则tan(α+β)= . 答案 -33 解析 因为cos ⎝⎛⎭⎫α+π6=32cos α-12sin α=3cos α,所以-sin α=3cos α,故tan α=-3, 所以tan(α+β)=tan α+tan β1-tan αtan β=-3+331+3×33 =-2332=-33.题型二 两角和与差的三角函数公式的逆用与变形例2 (1)(多选)已知α,β,γ∈⎝⎛⎭⎫0,π2,sin α+sin γ=sin β,cos β+cos γ=cos α,则下列说法正确的是( ) A .cos(β-α)=12B .cos(β-α)=13C .β-α=-π3D .β-α=π3答案 AD解析 由题意知,sin γ=sin β-sin α,cos γ=cos α-cos β,将两式分别平方后相加,得1=(sin β-sin α)2+(cos α-cos β)2=2-2(sin βsin α+cos βcos α),∴cos(β-α)=12,即选项A 正确,B 错误;∵γ∈⎝⎛⎭⎫0,π2,∴sin γ=sin β-sin α>0,∴β>α,而α,β∈⎝⎛⎭⎫0,π2,∴0<β-α<π2,∴β-α=π3,即选项D 正确,C 错误.(2)在△ABC 中,C =120°,tan A +tan B =233,则tan A tan B 的值为( )A.14 B.13C.12 D.53答案 B解析 ∵C =120°,∴tan C =- 3.∵A +B =π-C ,∴tan(A +B )=-tan C .∴tan(A +B )=3,tan A +tan B =3(1-tan A tan B ),又∵tan A +tan B =233,∴tan A tan B =13.延伸探究 若将本例(2)的条件改为tan A tan B =tan A +tan B +1,则C 等于() A .45° B .135°C .150°D .30°答案 A解析 在△ABC 中,因为tan A tan B =tan A +tan B +1, 所以tan(A +B )=tan A +tan B1-tan A tan B =-1=-tan C , 所以tan C =1,所以C =45°.教师备选1.若α+β=-3π4,则(1+tan α)(1+tan β)= . 答案 2解析 tan ⎝⎛⎭⎫-3π4=tan(α+β)=tan α+tan β1-tan αtan β=1,所以1-tan αtan β=tan α+tan β, 所以1+tan α+tan β+tan αtan β=2,即(1+tan α)·(1+tan β)=2.2.已知sin α+cos β=1,cos α+sin β=0,则sin(α+β)= .答案 -12解析 ∵sin α+cos β=1,①cos α+sin β=0,②∴①2+②2得1+2(sin αcos β+cos αsin β)+1=1,∴sin αcos β+cos αsin β=-12, ∴sin(α+β)=-12. 思维升华 运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形.公式的逆用和变形应用更能开拓思路,增强从正向思维向逆向思维转化的能力. 跟踪训练2 (1)设a =cos 50°cos 127°+cos 40°cos 37°,b =22(sin 56°-cos 56°),c =1-tan 239°1+tan 239°,则a ,b ,c 的大小关系是( )A .a >b >cB .b >a >cC .c >a >bD .a >c >b答案 D 解析 由两角和与差的正、余弦公式及诱导公式,可得a =cos 50°cos 127°+cos 40°cos 37°=cos 50°cos 127°+sin 50°sin 127°=cos(50°-127°)=cos(-77°)=cos 77°=sin 13°,b =22(sin 56°-cos 56°) =22sin 56°-22cos 56° =sin(56°-45°)=sin 11°,c =1-tan 239°1+tan 239°=1-sin 239°cos 239°1+sin 239°cos 239°=cos 239°-sin 239°=cos 78°=sin 12°.因为函数y =sin x 在x ∈⎣⎡⎦⎤0,π2上单调递增, 所以sin 13°>sin 12°>sin 11°,所以a >c >b .(2)(1+tan 20°)(1+tan 21°)(1+tan 24°)(1+tan 25°)= .答案 4解析 (1+tan 20°)(1+tan 25°)=1+tan 20°+tan 25°+tan 20°tan 25°=1+tan(20°+25°)(1-tan 20°tan 25°)+tan 20°tan 25°=2,同理可得(1+tan 21°)(1+tan 24°)=2,所以原式=4. 题型三 角的变换问题例3 (1)已知α,β∈⎝⎛⎭⎫π3,5π6,若sin ⎝⎛⎭⎫α+π6=45,cos ⎝⎛⎭⎫β-5π6=513,则sin(α-β)的值为( ) A.1665B.3365C.5665D.6365答案 A解析 由题意可得α+π6∈⎝⎛⎭⎫π2,π, β-5π6∈⎝⎛⎭⎫-π2,0, 所以cos ⎝⎛⎭⎫α+π6=-35, sin ⎝⎛⎭⎫β-5π6=-1213, 所以sin(α-β)=-sin ⎣⎡⎦⎤⎝⎛⎭⎫α+π6-⎝⎛⎭⎫β-5π6 =-45×513+⎝⎛⎭⎫-35×⎝⎛⎭⎫-1213 =1665. (2)(2022·青岛模拟)若tan(α+2β)=2,tan β=-3,则tan(α+β)= ,tan α= .答案 -1 12解析 ∵tan(α+2β)=2,tan β=-3,∴tan(α+β)=tan(α+2β-β)=tan (α+2β)-tan β1+tan (α+2β)tan β=2-(-3)1+2×(-3) =-1.tan α=tan(α+β-β)=-1-(-3)1+(-1)×(-3)=12.教师备选(2022·华中师范大学第一附属中学月考)已知α,β为锐角,tan α=43,cos(α+β)=-55. (1)求cos 2α的值;(2)求tan(α-β)的值.解 (1)因为tan α=43, tan α=sin αcos α, 所以sin α=43cos α. 因为sin 2α+cos 2α=1,所以cos 2α=925, 因此,cos 2α=2cos 2α-1=-725. (2)因为α,β为锐角,所以α+β∈(0,π).又因为cos(α+β)=-55, 所以sin(α+β)=1-cos 2(α+β)=255, 因此tan(α+β)=-2. 因为tan α=43, 所以tan 2α=2tan α1-tan 2α=-247, 因此,tan(α-β)=tan[2α-(α+β)]=tan 2α-tan (α+β)1+tan 2αtan (α+β) =-211. 思维升华 常用的拆角、配角技巧:2α=(α+β)+(α-β);α=(α+β)-β=(α-β)+β;β=α+β2-α-β2=(α+2β)-(α+β);α-β=(α-γ)+(γ-β);15°=45°-30°;π4+α=π2-⎝⎛⎭⎫π4-α等.跟踪训练3 (1)已知sin α=55,sin(α-β)=-1010,α,β均为锐角,则β= . 答案 π4 解析 因为α,β均为锐角, 所以-π2<α-β<π2. 又sin(α-β)=-1010, 所以cos(α-β)=31010. 又sin α=55, 所以cos α=255, 所以sin β=sin[α-(α-β)]=sin αcos(α-β)-cos αsin(α-β)=55×31010-255×⎝⎛⎭⎫-1010=22. 所以β=π4. (2)已知0<α<π2<β<π,tan α=43,cos(β-α)=210,则sin α= ,cos β= . 答案 45 -22解析 因为0<α<π2,且tan α=43, 所以sin α=45,cos α=35, 由0<α<π2<β<π, 则0<β-α<π,又因为cos(β-α)=210, 则sin(β-α)=7210, 所以cos β=cos[(β-α)+α]=cos(β-α)cos α-sin(β-α)sin α =210×35-7210×45=-22. 课时精练1.(2022·北京模拟)tan 105°等于( )A .2- 3B .-2- 3C.3-2 D .- 3答案 B解析 tan 105°=tan(60°+45°)=tan 60°+tan 45°1-tan 60°·tan 45°=3+11-3=(3+1)2(1-3)(1+3)=4+23-2=-2- 3.2.已知点P (x ,22)是角α终边上一点,且cos α=-13,则cos ⎝⎛⎭⎫π6+α等于() A .-3+226 B.3+226C.3-226D.22-36答案 A解析 因为点P (x ,22)是角α终边上一点,则有cos α=x x 2+(22)2=x x 2+8,而cos α=-13,于是得x x 2+8=-13,解得x =-1,则sin α=22x 2+8=223,因此,cos ⎝⎛⎭⎫π6+α=cos π6cos α-sin π6sin α=32×⎝⎛⎭⎫-13-12×223=-3+226,所以cos ⎝⎛⎭⎫π6+α=-3+226.3.sin 10°1-3tan 10°等于( )A .1 B.14C.12 D.32 答案 B解析 sin 10°1-3tan 10°=sin 10°cos 10°cos 10°-3sin 10° =2sin 10°cos 10°4⎝⎛⎭⎫12cos 10°-32sin 10°=sin 20°4sin (30°-10°)=14.4.已知锐角α,β满足sin α=55,cos β=31010,则α+β等于() A.3π4 B.π4或3π4C.π4 D .2k π+π4(k ∈Z )答案 C解析 由sin α=55,cos β=31010, 且α,β为锐角,可知cos α=255,sin β=1010, 故cos(α+β)=cos αcos β-sin αsin β =255×31010-55×1010 =22, 又0<α+β<π,故α+β=π4. 5.(多选)下列四个选项中,化简正确的是( )A .cos(-15°)=6-24B .cos 15°cos 105°+sin 15°sin 105°=cos(15°-105°)=0C .cos(α-35°)cos(25°+α)+sin(α-35°)sin(25°+α)=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12D .sin 14°cos 16°+sin 76°cos 74°=12答案 BCD解析 对于A ,方法一 原式=cos(30°-45°)=cos 30°·cos 45°+sin 30°sin 45°=32×22+12×22=6+24. 方法二 原式=cos 15°=cos(45°-30°)=cos 45°cos 30°+sin 45°sin 30°=22×32+22×12=6+24,A 错误. 对于B ,原式=cos(15°-105°)=cos(-90°)=cos 90°=0,B 正确.对于C ,原式=cos[(α-35°)-(25°+α)]=cos(-60°)=cos 60°=12,C 正确.对于D ,原式=cos 76°cos 16°+sin 76°sin 16°=cos(76°-16°)=cos 60°=12,D 正确. 6.(多选)已知cos(α+β)=-55,cos 2α=-513,其中α,β为锐角,以下判断正确的是( ) A .sin 2α=1213B .cos(α-β)=19565C .cos αcos β=8565D .tan αtan β=118答案 AC解析 因为cos(α+β)=-55, cos 2α=-513,其中α,β为锐角, 所以sin 2α=1-cos 22α=1213,故A 正确; 因为sin(α+β)=255, 所以cos(α-β)=cos [2α-(α+β)]=cos 2αcos(α+β)+sin 2αsin(α+β)=⎝⎛⎭⎫-513×⎝⎛⎭⎫-55+1213×255=29565,故B 错误; cos αcos β=12[cos(α+β)+cos(α-β)] =12⎝⎛⎭⎫-55+29565=8565, 故C 正确;sin αsin β=12[cos(α-β)-cos(α+β)] =12⎣⎡⎦⎤29565-⎝⎛⎭⎫-55=21565, 所以tan αtan β=218,故D 错误. 7.化简:sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)= .答案 sin(α+γ)解析 sin(α+β)cos(γ-β)-cos(β+α)sin(β-γ)=sin(α+β)cos(β-γ)-cos(α+β)sin(β-γ)=sin[(α+β)-(β-γ)]=sin(α+γ).8.已知α,β∈⎝⎛⎭⎫3π4,π,sin(α+β)=-35,sin ⎝⎛⎭⎫β-π4=1213,则cos ⎝⎛⎭⎫α+π4= . 答案 -5665解析 因为α,β∈⎝⎛⎭⎫3π4,π,所以3π2<α+β<2π, π2<β-π4<3π4, 因为sin(α+β)=-35, sin ⎝⎛⎭⎫β-π4=1213, 所以cos(α+β)=45, cos ⎝⎛⎭⎫β-π4=-513, 所以cos ⎝⎛⎭⎫α+π4 =cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos(α+β)cos ⎝⎛⎭⎫β-π4+sin(α+β)sin ⎝⎛⎭⎫β-π4 =45×⎝⎛⎭⎫-513+⎝⎛⎭⎫-35×1213=-5665. 9.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值. 解 ∵0<β<π2<α<π, ∴-π4<α2-β<π2, π4<α-β2<π, ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β=53,sin ⎝⎛⎭⎫α-β2=1-cos 2⎝⎛⎭⎫α-β2=459, ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =⎝⎛⎭⎫-19×53+459×23=7527, ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729. 10.已知α,β均为锐角,且sin α=35,tan(α-β)=-13. (1)求sin(α-β)的值;(2)求cos β的值.解 (1)∵α,β∈⎝⎛⎭⎫0,π2,∴-π2<α-β<π2. 又∵tan(α-β)=-13<0, ∴-π2<α-β<0. ∴sin(α-β)=-1010. (2)由(1)可得,cos(α-β)=31010. ∵α为锐角,且sin α=35,∴cos α=45. ∴cos β=cos [α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=45×31010+35×⎝⎛⎭⎫-1010=91050.11.已知cos ⎝⎛⎭⎫π2-α=2cos(π-α),则tan ⎝⎛⎭⎫π4+α等于( ) A .-3 B.13C .-13D .3答案 C解析 由cos ⎝⎛⎭⎫π2-α=2cos(π-α)得sin α=-2cos α,即tan α=-2,∴tan ⎝⎛⎭⎫π4+α=tan π4+tan α1-tan π4tan α =1-21-1×(-2)=-13. 12.(多选)下列结论正确的是( )A .sin(α-β)sin(β-γ)-cos(α-β)cos(γ-β)=-cos(α-γ)B .315sin x +35cos x =35sin ⎝⎛⎭⎫x +π6 C .f (x )=sin x 2+cos x 2的最大值为2 D .tan 12°+tan 33°+tan 12°tan 33°=1答案 AD解析 对于A ,左边=-[cos(α-β)cos(β-γ)-sin(α-β)·sin(β-γ)]=-cos[(α-β)+(β-γ)]=-cos(α-γ),故A 正确;对于B , 315sin x +35cos x =65⎝⎛⎭⎫32sin x +12cos x =65sin ⎝⎛⎭⎫x +π6,故B 错误; 对于C ,f (x )=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 所以f (x )的最大值为2,故C 错误;对于D ,tan 12°+tan 33°+tan 12°tan 33°=tan(12°+33°)·(1-tan 12°tan 33°)+tan 12°tan 33°=1,故D 正确.13.已知方程x 2+3ax +3a +1=0(a >1)的两根分别为tan α,tan β,且α,β∈⎝⎛⎭⎫-π2,π2,则α+β= .答案 -3π4解析 依题意有⎩⎪⎨⎪⎧ tan α+tan β=-3a ,tan α·tan β=3a +1, 所以tan(α+β)=tan α+tan β1-tan α·tan β =-3a 1-(3a +1)=1. 又⎩⎪⎨⎪⎧tan α+tan β<0,tan α·tan β>0, 所以tan α<0且tan β<0,所以-π2<α<0且-π2<β<0, 即-π<α+β<0,结合tan(α+β)=1,得α+β=-3π4. 14.(2022·阜阳模拟)设α,β∈[0,π],且满足sin αcos β-cos αsin β=1,则sin(2α-β)+sin(α-2β)的取值范围为 .答案 [-1,1]解析 由sin αcos β-cos αsin β=1,得sin(α-β)=1,又α,β∈[0,π],∴-π≤α-β≤π,∴α-β=π2, ∴⎩⎪⎨⎪⎧0≤α≤π,0≤β=α-π2≤π,即π2≤α≤π, ∴sin(2α-β)+sin(α-2β)=sin ⎝⎛⎭⎫2α-α+π2+sin(α-2α+π) =cos α+sin α=2sin ⎝⎛⎭⎫α+π4. ∵π2≤α≤π, ∴3π4≤α+π4≤5π4, ∴-1≤2sin ⎝⎛⎭⎫α+π4≤1,即sin(2α-β)+sin(α-2β)的取值范围为[-1,1].15.(2022·河北五校联考)已知x ,y ∈⎝⎛⎭⎫0,π2,sin(x +y )=2sin(x -y ),则x -y 的最大值为( ) A.π3 B.π6 C.π4 D.π8 答案 B解析 由sin(x +y )=2sin(x -y )得sin x cos y +cos x sin y=2sin x cos y -2cos x sin y ,则tan x =3tan y ,所以tan(x -y )=tan x -tan y 1+tan x tan y=2tan y 1+3tan 2y =21tan y+3tan y ≤33, 当且仅当tan y =33时等号成立, 由于f (x )=tan x 在x ∈⎝⎛⎭⎫0,π2上单调递增, 又x ,y ∈⎝⎛⎭⎫0,π2, 则x -y 的最大值为π6. 16.如图,在平面直角坐标系Oxy 中,顶点在坐标原点,以x 轴非负半轴为始边的锐角α与钝角β的终边与单位圆O 分别交于A ,B 两点,x 轴的非负半轴与单位圆O 交于点M ,已知S △OAM=55,点B 的纵坐标是210.(1)求cos(α-β)的值;(2)求2α-β的值.解 (1)由题意知,|OA |=|OM |=1,因为S △OAM =12|OA |·|OM |sin α=55, 所以sin α=255, 又α为锐角,所以cos α=55. 因为点B 是钝角β的终边与单位圆O 的交点,且点B 的纵坐标是210, 所以sin β=210,cos β=-7210, 所以cos(α-β)=cos αcos β+sin αsin β=55×⎝⎛⎭⎫-7210+255×210=-1010. (2)因为sin α=255,cos α=55, cos(α-β)=-1010, sin(α-β)=sin αcos β-cos αsin β=255×⎝⎛⎭⎫-7210-55×210=-31010, 所以sin(2α-β)=sin[α+(α-β)]=sin αcos(α-β)+cos αsin(α-β)=-22, 因为α为锐角,sin α=255>22, 所以α∈⎝⎛⎭⎫π4,π2,所以2α∈⎝⎛⎭⎫π2,π, 又β∈⎝⎛⎭⎫π2,π, 所以2α-β∈⎝⎛⎭⎫-π2,π2,所以2α-β=-π4.。

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法

两角和与差的余弦公式的六种推导方法沈阳市教育研究院王恩宾两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β.过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β的正弦、余弦的线段来表示OM.过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB+CP =OA cosα+AP sinα=cosβcosα+sinβsinα.综上所述,.说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解.但这种推导方法对于如何能够得到解题思路,存在一定的困难.此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推广问题.方法二:应用三角形全等、两点间的距离公式推导差角公式的方法设P1(x1,y1),P2(x2,y2),则有|P1P2 |= .在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、.∵,且,∴,∴,∴,∴,∴,.说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点,建立起等式关系,通过将等式的化简、变形就可以得到符合要求的和角与差角的三角公式.在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.方法三:应用余弦定理、两点间的距离公式推导差角公式的方法设,则.在△OPQ中,∵,∴,∴.说明:此题的解题思路和构想都是容易实现的. 因为要求两角和与差的三角函数,所以构造出和角和差角是必须实现的. 构造出的和角或差角的余弦函数又需要和这两个角的三角函数建立起等式关系,因此借助于余弦定理、两点间的距离公式建立起等式关系容易出现,因此此种方法是推导两角和与差的余弦的比较容易理解的一种方法. 但此种方法必须是在学习完余弦定理的前提下才能使用,因此此种方法在必修四中又无法使用. 另外也同样需要考虑三点在一条直线上的情况.方法四:应用三角形面积公式推导推导差角公式的方法设α、β是两个任意角,把α、β两个角的一条边拼在一起,顶点为O,过B点作OB 的垂线,交α另一边于A,交β另一边于C,则有S△OAC=S△OAB+S△OBC..根据三角形面积公式,有,∴.∵,,,∴,∵,∴sin(α+β)=sinαcosβ+sinβcosα.根据此式和诱导公式,可继续证出其它和角公式及差角公式.(1)sin(α-β)=sin[α+(-β)]=sinαcos(-β)+sin(-β)cosα=sinαcosβ-sinβcosα;(2)cos(α+β)=sin[90-(α+β)]=sin[(90-α)-β]=sin(90-α)cosβ-sinβcos(90-α)=cosαcosβ-sinαsinβ;(3)cos(α-β)=cos[α+(-β)]=cosαcos(-β)-sinαsin(-β)=cosαcosβ+sinαsinβ.说明:此种推导方法通过三角形的面积的和巧妙的将两角和的三角函数与各个角的三角函数和联系在一起,体现了数形结合的特点. 缺点是公式还是在两个角为锐角的情况下进行的证明,因此同样需要将角的范围进行拓展.(五)应用数量积推导余弦的差角公式在平面直角坐标系xOy内,作单位圆O,以Ox为始边作角α,β,它们的终边与单位圆的交点为A,B,则=(cosα,sinα),=(cosβ,sinβ).由向量数量积的概念,有.由向量的数量积的坐标表示,有.于是,有.说明:应用数量积推导余弦的差角公式无论是构造两个角的差,还是得到每个角的三角函数值都是容易实现的,而且从向量的数量积的定义和坐标运算两种形式求向量的数量积将二者之间结合起来,充分体现了向量在数学中的桥梁作用.附方法六:等积法推导余弦的差角公式广东佛山袁锦前如图:在△ABC中,AD⊥BC于D,BE⊥AC于E,设∠DAC=α,∠ABD=β,求:cos(α-β)解:在△ABD中,BD=c·cosβ,AD=b·cosα在△ACD中,CD= b c·sinα,AD= c·sinβ11cos cos sin sin 22ABD ACDSSbc bc αβαβ∴+=+ ()1cos cos sin sin 2bc αβαβ=+ …………………………..○1 又∵2BAD πβ∠=-()c sin =c sin 22BE ππβααβ⎡⎤⎛⎫⎡⎤∴=⋅-+⋅--⎪⎢⎥⎢⎥⎝⎭⎣⎦⎣⎦()c cos αβ=⋅-()11cos 22ABCSAC BE bc αβ∴=⋅=- …………………………………………○2 由○1○2可得: ()cos =cos cos sin sin αβαβαβ-+。

两角和与差的余弦、正弦、正切公式

两角和与差的余弦、正弦、正切公式
由β=α- ,得cosβ=cos =cosαcos +sinαsin
= × + × = = .∵0<β< ,所以β= .
变式3.(1)已知tanα=2,tanβ=3,且α,β都是锐角,求α+β;
(2)已知α,β均为锐角,sinα= ,cosβ= ,求α-β.
解析:(1)tan = = =-1.
∵α,β都是锐角,∴0<α+β<π,由上式知α+β= .
课堂练习:
练习1:cos(450+300)=
练习2:cos200cos700-sin200sin700=
练习3: 练习4:
1.下列式子中,正确的个数为()
①sin =sinα-sinβ;②cos =cosα-cosβ;
③sin =sinαcosβ-cosαsinβ;④cos =cosαcosβ+sinαsinβ.
解析:(1)原式=sin 14°cos 16°+cos 14°sin 16°=sin =sin 30°= .
(2)原式=sinxcos +cosxsin +2sinxcos -2cosxsin - cos cosx- sin sinx=3sinxcos -cosxsin - cos cosx- sin sinx= sinx- cosx
=- × + × =- ,故得-sin =- ,即sin = .
变式2.化简求值:
(1)sin 75°;(2)sin 15°;
(3)若α,β均为锐角,sinα= ,sin(α+β)= ,求cosβ.
解析:(1)原式=sin =sin 45°cos 30°+cos 45°sin 30°= × + × = .
课题
两角和与差的余弦、正弦、正切公式
1.注意到 ,由公式C(α+β).,可以推出:

两角和与差正弦公式与余弦公式

两角和与差正弦公式与余弦公式

两角和与差正弦公式与余弦公式正弦公式:对于任意三角形ABC,设a为边BC的长度,b为边AC的长度,c为边AB的长度,A为∠BAC的度数,B为∠ABC的度数,C为∠ACB的度数。

则有以下正弦公式:sin(A) = a / csin(B) = b / csin(C) = a / b其中,sin(A)表示∠A的正弦值,以此类推。

这个公式表明,一个角的正弦值和其对边的比例是相等的。

余弦公式:对于任意三角形ABC,设a为边BC的长度,b为边AC的长度,c为边AB的长度,A为∠BAC的度数,B为∠ABC的度数,C为∠ACB的度数。

则有以下余弦公式:cos(A) = (b^2 + c^2 - a^2) / (2bc)cos(B) = (a^2 + c^2 - b^2) / (2ac)cos(C) = (a^2 + b^2 - c^2) / (2ab)其中,cos(A)表示∠A的余弦值,以此类推。

这个公式表明,一个角的余弦值和其两边的长度的平方差的比例是相等的。

两角和正弦公式:sin(A + B) = sin(A)cos(B) + cos(A)sin(B)两角差正弦公式:sin(A - B) = sin(A)cos(B) - cos(A)sin(B)这两个公式表明,两个角的和或差的正弦值等于各自正弦值的乘积与余弦值的乘积之和或差。

两角和余弦公式:cos(A + B) = cos(A)cos(B) - sin(A)sin(B)两角差余弦公式:cos(A - B) = cos(A)cos(B) + sin(A)sin(B)这两个公式表明,两个角的和或差的余弦值等于各自余弦值的乘积与正弦值的乘积之差或和。

利用这些公式,我们可以解决与三角函数相关的问题,如计算三角形的各个角度、边长,以及解三角方程等。

两角及差正余弦公式的证明

两角及差正余弦公式的证明

两角及差正余弦公式的证明两角和差正余弦公式的证明:我们知道,任意角的正弦、余弦等三角函数都可以通过单位圆的定义得到。

所以,为了证明两角和差正余弦公式,我们先来考察它们在单位圆上的几何意义。

一、两角和公式的几何意义:设在单位圆上有点A和点B,OA和OB分别为半径。

假设点A对应的角为θ1,点B对应的角为θ2,那么点P是单位圆上点A和点B对应的角的和,即θ1+θ2、我们要研究的是点P的坐标。

首先,我们可以将圆心O作为直角坐标系的原点,点A和点B所在的直线即为直角坐标系的x轴。

我们知道,点A和点B的坐标分别可以表示为:A(x1, y1) = (cosθ1, sinθ1)B(x2, y2) = (cosθ2, sinθ2)点P的坐标为(x, y) = (cos(θ1 + θ2), sin(θ1 + θ2))。

我们需要推导出点P的坐标。

为此,我们利用三角恒等式:cos(α + β) = cosαcosβ - sinαsinβsin(α + β) = sinαcosβ + cosαsinβ我们令α=θ1,β=θ2,代入上面的恒等式,得到:cos(θ1 + θ2) = cosθ1cosθ2 - sinθ1sinθ2sin(θ1 + θ2) = sinθ1cosθ2 + cosθ1sinθ2即点P的坐标为:P(x, y) = (cosθ1cosθ2 - sinθ1sinθ2, sinθ1cosθ2 +cosθ1sinθ2)可以看出,点P的坐标与三角函数的和公式是完全对应的。

这就证明了两角和公式的几何意义,也就是说,两个角的正余弦的和等于一个新角的正余弦。

二、两角差公式的几何意义:在上面的单位圆中,点A和点B表示的角分别为θ1和θ2,设点Q 为点A和点B对应的角的差,即θ1-θ2、我们要研究的是点Q的坐标。

同样地,我们可以得到点Q的坐标为(x, y) = (cos(θ1 - θ2), sin(θ1 - θ2))。

仿照上面的方法,我们利用三角恒等式:cos(α - β) = cosαcosβ + sinαsinβsin(α - β) = sinαcosβ - cosαsinβ令α=θ1,β=θ2,代入上面的恒等式,得到:cos(θ1 - θ2) = cosθ1cosθ2 + sinθ1sinθ2sin(θ1 - θ2) = sinθ1cosθ2 - cosθ1sinθ2即点Q的坐标为:Q(x, y) = (cosθ1cosθ2 + sinθ1sinθ2, sinθ1cosθ2 -cosθ1sinθ2)可以看出,点Q的坐标与三角函数的差公式是完全对应的。

两角和与差的正弦、余弦和正切公式高一数学必修第一册)

两角和与差的正弦、余弦和正切公式高一数学必修第一册)

=−

��

例 题 探 究 1
利用公式给角求值
例1 计算:(1)cos(-15°);(2)cos15°cos105°+sin15°sin105°.
跟 踪 训 练 1
利用公式给角求值
求下列各式的值:(1) cos75°cos15°-sin75°sin195°;
6°−15°9°
(2)
程中可以根据需要灵活地进行拆角或凑角.常
见角的变换有:
跟 踪 训 练 2
整体法给值求值问题
3
已知, ∈ ( , ),( +
4

求( + )的值.
4
) =
3
− ,(
5


)
4
=
12

13
课堂小结
两角差的余弦公式:
cos(α-β) = cosα cosβ + sinα sinβ

例 题 探 究 2
例2 已知 ∈
整体法给值求值问题

(0, ),(
2
+

)
4
=
5
,则的值为________
5
【方法技巧】整体法给值求值问题
1.已知某些角的三角函数值,求另外一些角的
三角函数值时,要注意观察已知角与所求表达
式中角的关系,即拆角与凑角.
2.由于和、差角与单角是相对的,因此解题过
2
2
2
0 1 sin sin ;
(2)cos( ) cos cos sin sin
1 cos 0 sin
cos .
例题探究
例2 已知 =

两角和与差的正弦、余弦和正切

两角和与差的正弦、余弦和正切

§4.5 两角和与差的正弦、余弦和正切1.cos(α-β)=cos αcos β+sin αsin β (Cα-β)cos(α+β)= (Cα+β)sin(α-β)= (Sα-β)sin(α+β)= (Sα+β)tan(α-β)= (Tα-β)tan(α+β)= (Tα+β)前面4个公式对任意的α,β都成立,而后面两个公式成立的条件是α≠kπ+,β≠kπ+,k∈Z,且α+β≠kπ+(Tα+β需满足),α-β≠kπ+(Tα-β需满足)k∈Z时成立,否则是不成立的.当tan α、tan β或tan(α±β)的值不存在时,不能使用公式Tα±β处理有关问题,应改用诱导公式或其它方法来解.2.二倍角公式sin 2α=______________;cos 2α=________________=____________=______________;tan 2α=______________.3.在准确熟练地记住公式的基础上,要灵活运用公式解决问题:如公式的正用、逆用和变形用等.如Tα±β可变形为:tan α±tan β=______________________,tan αtan β=________________=________________.4.函数f(α)=a cos α+b sin α(a,b为常数),可以化为f(α)=______________或f(α)=________________,其中φ可由a,b的值唯一确定.[难点正本 疑点清源]1.正确理解并掌握和、差角公式间的关系理解并掌握和、差角公式间的关系对掌握公式十分有效.如cos(α-β)=cos αcos β+sin αsin β可用向量推导,cos(α+β)只需转化为cos[α-(-β)]利用上述公式和诱导公式即可.2.辩证地看待和角与差角为了灵活应用和、差角公式,可以对角进行适当的拆分变换:已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换.如α=(α+β)-β=(α-β)+β,2α=(α+β)+(α-β),2α=(β+α)-(β-α),α+β=2·,=-等.1.化简:sin 200°cos 140°-cos 160°sin 40°=________________________________.2.已知sin(α+β)=,sin(α-β)=-,则的值为________.3.函数f(x)=2sin x(sin x+cos x)的单调增区间为______________________.4.设sin(+θ)=,则sin 2θ等于 ( )A.-B.-C.D.5.若sin=,则cos的值为 ( )A. B.- C. D.-题型一 三角函数式的化简求值问题例1 (1)化简: (0<θ<π);(2)求值:-sin 10°.探究提高 (1)三角函数式的化简要遵循“三看”原则,一看角,二看名,三看式子结构与特征.(2)对于给角求值问题,往往所给角都是非特殊角,解决这类问题的基本思路有:①化为特殊角的三角函数值;②化为正、负相消的项,消去求值;③化分子、分母出现公约数进行约分求值.(1)化简:·;(2)求值:[2sin 50°+sin 10°(1+tan 10°)]·.题型二 三角函数的给角求值与给值求角问题例2 (1)已知0<β<<α<π,且cos=-,sin=,求cos(α+β)的值;(2)已知α,β∈(0,π),且tan(α-β)=,tan β=-,求2α-β的值.探究提高 (1)注意变角-=,可先求cos 或sin 的值.(2)先由tan α=tan[(α-β)+β],求tan α的值,再求tan 2α的值,这种方法的优点是可确定2α的取值范围.(3)通过求角的某种三角函数值来求角,在选取函数时,遵照以下原则:①已知正切函数值,选正切函数;②已知正、余弦函数值,选正弦或余弦函数;若角的范围是,选正、余弦皆可;若角的范围是(0,π),选余弦较好;若角的范围为,选正弦较好.(4)解这类问题的一般步骤为:①求角的某一个三角函数值;②确定角的范围;③根据角的范围写出所求的角.(2011·广东)已知函数f(x)=2sin,x∈R.(1)求f的值;(2)设α,β∈,f=,f(3β+2π)=,求cos(α+β)的值.题型三 三角变换的简单应用例3 已知f(x)=sin2x-2sin·sin.(1)若tan α=2,求f(α)的值;(2)若x∈,求f(x)的取值范围.探究提高 (1)将f(x)化简是解题的关键,本题中巧妙运用“1”的代换技巧,将sin 2α,cos 2α化为正切tan α,为第(1)问铺平道路.(2)把形如y=a sin x+b cos x化为y=sin(x+φ),可进一步研究函数的周期、单调性、最值与对称性.(2010·天津)已知函数f(x)=2sin x cos x+2cos2x-1(x∈R).(1)求函数f(x)的最小正周期及在区间[0,]上的最大值和最小值;(2)若f(x0)=,x0∈[,],求cos 2x0的值. 6.构造辅助角逆用和角公式解题试题:(14分)已知函数f(x)=2cos x cos-sin2x+sin x cos x.(1)求f(x)的最小正周期;(2)当α∈[0,π]时,若f(α)=1,求α的值.审题视角 (1)在f(x)的表达式中,有平方、有乘积,而且还表现为有不同角,所以要考虑到化同角、降幂等转化方法.(2)当f(x)=a sin x +b cos x的形式时,可考虑辅助角公式.规范解答解 (1)因为f(x)=2cos x cos-sin2x+sin x cos x=cos2x+sin x cos x-sin2x+sin x cos x [4分]=cos 2x+sin 2x=2sin,所以最小正周期T=π. [8分] (2)由f(α)=1,得2sin=1,又α∈[0,π],所以2α+∈, [12分]所以2α+=或2α+=,故α=或α=. [14分]第一步:将f(x)化为a sin x+b cos x的形式.第二步:构造:f(x)=(sin x·+cos x·).第三步:和角公式逆用f(x)=sin(x+φ)(其中φ为辅助角).第四步:利用f(x)=sin(x+φ)研究三角函数的性质.第五步:反思回顾.查看关键点、易错点和解题规范.批阅笔记 (1)在本题的解法中,运用了二倍角的正、余弦公式,还引入了辅助角,技巧性较强.值得强调的是:辅助角公式a sin α+b cos α=sin(α+φ)(其中tan φ=),或a sin α+b cos α= cos(α-φ) (其中tan φ=),在历年高考中使用频率是相当高的,几乎年年使用到、考查到,应特别加以关注.(2)本题的易错点是想不到引入辅助角或引入错误.在定义域大于周期的区间上求最值时,辅助角的值一般不用具体确定.方法与技巧1.巧用公式变形:和差角公式变形:tan x±tan y=tan(x±y)·(1∓tan x·tan y);倍角公式变形:降幂公式cos2α=,sin2α=;配方变形:1±sin α=2,1+cos α=2cos2,1-cos α=2sin2.2.利用辅助角公式求最值、单调区间、周期.y=a sin α+b cos α=sin(α+φ)(其中tan φ=)有:≥|y|.3.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成同名、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.4.已知和角函数值,求单角或和角的三角函数值的技巧:把已知条件的和角进行加减或二倍角后再加减,观察是不是常数角,只要是常数角,就可以从此入手,给这个等式两边求某一函数值,可使所求的复杂问题简单化.5.熟悉三角公式的整体结构,灵活变换.本节要重视公式的推导,既要熟悉三角公式的代数结构,更要掌握公式中角和函数名称的特征,要体会公式间的联系,掌握常见的公式变形,倍角公式应用是重点,涉及倍角或半角的都可以利用倍角公式及其变形.失误与防范1.运用公式时要注意审查公式成立的条件,要注意和、差、倍角的相对性,要注意升次、降次的灵活运用,要注意“1”的各种变通.2.在(0,π)范围内,sin(α+β)=所对应的角α+β不是唯一的.3.在三角求值时,往往要估计角的范围后再求值.§4.5 两角和与差的正弦、余弦和正切(时间:60分钟)A组 专项基础训练题组一、选择题1.已知sin α=,则cos(π-2α)等于 ( )A.-B.-C.D.2.(2011·福建)若α∈,且sin2α+cos 2α=,则tan α的值等于( )A. B. C. D.3.(2011·浙江)若0<α<,-<β<0,cos=,cos=,则cos等于 ( )A. B.- C. D.-二、填空题4.(2011·江苏)已知tan=2,则的值为____________.5.函数f(x)=2cos2x+sin 2x的最小值是____________.6.sin α=,cos β=,其中α,β∈,则α+β=____________.三、解答题7.已知A、B均为钝角且sin A=,sin B=,求A+B的值.8.已知函数f(x)=cos+2sin·sin,求函数f(x)在区间上的最大值与最小值.B组 专项能力提升题组一、选择题1.已知锐角α满足cos 2α=cos,则sin 2α等于 ( )A. B.- C. D.-2.若将函数y=A cos·sin (A>0,ω>0)的图象向左平移个单位后得到的图象关于原点对称,则ω的值可能为 ( )A.2B.3C.4D.53.已知tan(α+β)=,tan=,那么tan等于 ( )A. B. C. D.二、填空题4.化简:sin2x+2sin x cos x+3cos2x=____________.5.=____________.6.已知cos=,α∈,则=____________.三、解答题7.已知cos α=,cos(α-β)=,且0<β<α<,(1)求tan 2α的值;(2)求β.8.设函数f(x)=cos+sin2x.(1)求函数f(x)的最大值;(2)设A,B,C为△ABC的三个内角,若cos B=,f=-,且C为锐角,求sin A.答案要点梳理1.cos αcos β-sin αsin β sin αcos β-cos αsin β sin αcos β+cos αsin β 2.2sin αcos α cos2α-sin2α 2cos2α-11-2sin2α 3.tan(α±β)(1∓tan αtan β) 1--14. sin(α+φ) cos(α-φ)基础自测1. 2. 3. (k∈Z)4.A5.D题型分类·深度剖析例1 解 (1)原式===.因为0<θ<π,所以0<<,所以cos >0,所以原式=-cos θ.(2)原式=-sin 10°=-sin 10°·=-sin 10°·.=-2cos 10°=====.变式训练1 (1) (2)例2 解 (1)∵0<β<<α<π,∴-<-β<,<α-<π,∴cos==,sin==,∴cos =cos=coscos+sin·sin=×+×=,∴cos(α+β)=2cos2-1=2×-1=-.(2)∵tan α=tan[(α-β)+β]===>0,∴0<α<,又∵tan 2α===>0,∴0<2α<,∴tan(2α-β)===1.∵tan β=-<0,∴<β<π,-π<2α-β<0,∴2α-β=-.变式训练2 (1) (2)例3 解 (1)f(x)=(sin2x+sin x cos x)+2sin·cos =+sin 2x+sin=+(sin 2x-cos 2x)+cos 2x=(sin 2x+cos 2x)+.由tan α=2,得sin 2α===.cos 2α===-.所以,f(α)=(sin 2α+cos 2α)+=.(2)由(1)得f(x)=(sin 2x+cos 2x)+=sin+.由x∈,得≤2x+≤π.∴-≤sin≤1,0≤f(x)≤,所以f(x)的取值范围是.变式训练3 (1)最小正周期为π,最大值为2,最小值为-1(2)课时规范训练A组1.B2.D3.C4.5.1-6.7.8.解 由题意,得f(x)=cos+2sin·sin=cos 2x+sin 2x+(sin x-cos x)(sin x+cos x)=cos 2x+sin 2x+sin2x-cos2x=cos 2x+sin 2x-cos 2x=sin,又x∈,所以2x-∈.又f(x)=sin在区间上单调递增,在区间上单调递减,所以当x=时,f(x)取得最大值1.又f=-<f=,所以当x=-时,f(x)取得最小值-.故函数f(x)在区间上的最大值与最小值分别为1与-. B组1.A2.D3.C4.sin+25.-46.7.解 (1)由cos α=,0<α<,得sin α===,∴tan α==×=4.于是tan 2α===-.(2)由0<β<α<,得0<α-β<.又∵cos(α-β)=,∴sin(α-β)===.由β=α-(α-β),得cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=×+×=.∴β=.8.解 (1)f(x)=cos 2x cos -sin 2x sin +=cos 2x-sin 2x+-cos 2x=-sin 2x.所以,当2x=-+2kπ,k∈Z,即x=-+kπ (k∈Z)时,f(x)取得最大值,f(x)max=.(2)由f=-,即-sin C=-,解得sin C=,又C为锐角,所以C=.由cos B=求得sin B=.因此sin A=sin[π-(B+C)]=sin(B+C)=sin B cos C+cos B sin C=×+×=.。

两角和与差的正弦、余弦和正切公式(含解析)

两角和与差的正弦、余弦和正切公式(含解析)

归纳与技巧:两角和与差的正弦、余弦和正切公式基础知识归纳1.两角和与差的正弦、余弦、正切公式 (1)C (α-β):cos(α-β)=cos_αcos_β+sin_αsin_β; (2)C (α+β):cos(α+β)=cos_αcos_β-sin_αsin_β; (3)S (α+β):sin(α+β)=sin_αcos_β+cos_αsin_β; (4)S (α-β):sin(α-β)=sin_αcos_β-cos_αsin_β; (5)T (α+β):tan(α+β)=tan α+tan β1-tan αtan β;(6)T (α-β):tan(α-β)=tan α-tan β1+tan αtan β.2.二倍角的正弦、余弦、正切公式 (1)S 2α:sin 2α=2sin_αcos_α;(2)C 2α:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α; (3)T 2α:tan 2α=2tan α1-tan 2α.3.常用的公式变形(1)tan α±tan β=tan(α±β)(1∓tan αtan β); (2)cos 2α=1+cos 2α2,sin 2α=1-cos 2α2;(3)1+sin 2α=(sin α+cos α)2, 1-sin 2α=(sin α-cos α)2, sin α±cos α=2sin ⎝⎛⎭⎫α±π4.基础题必做1. 若tan α=3,则sin 2αcos 2α的值等于( )A .2B .3C .4D .6解析:选Dsin 2αcos 2α=2sin αcos αcos 2α=2tan α=2×3=6. 2.sin 68°sin 67°-sin 23°cos 68°的值为( )A .-22B.22C.32D .1解析:选B 原式=sin 68°cos 23°-cos 68°sin 23°=sin(68°-23°)=sin 45°=22. 3.已知sin α=23,则cos(π-2α)等于( )A .-53 B .-19C.19D.53解析:选B cos(π-2α)=-cos 2α=-(1-2sin 2α)=2sin 2α-1=2×49-1=-19.4.(教材习题改编)若cos α=-45,α是第三象限角,则sin ⎝⎛⎭⎫α+π4=________ 解析:由已知条件sin α=-1-cos 2α=-35,sin ⎝⎛⎭⎫α+π4=22sin α+22cos α=-7210. 答案:-72105.若tan ⎝⎛⎭⎫α+π4=25,则tan α=________. 解析:tan ⎝⎛⎭⎫α+π4=tan α+11-tan α=25, 即5tan α+5=2-2tan α. 则7tan α=-3,故tan α=-37.答案:-37解题方法归纳1.两角和与差的三角函数公式的理解:(1)正弦公式概括为“正余,余正符号同”.“符号同”指的是前面是两角和,则后面中间为“+”号;前面是两角差,则后面中间为“-”号.(2)余弦公式概括为“余余,正正符号异”.(3)二倍角公式实际就是由两角和公式中令β=α所得.特别地,对于余弦:cos 2α=cos 2α-sin 2α=2cos 2α-1=1-2sin 2α,这三个公式各有用处,同等重要,特别是逆用即为“降幂公式”,在考题中常有体现.2.重视三角函数的“三变”:“三变”是指“变角、变名、变式”;变角为:对角的分拆要尽可能化成已知角、同角、特殊角;变名:尽可能减少函数名称;变式:对式子变形一般要尽可能有理化、整式化、降低次数等.在解决求值、化简、证明问题时,一般是观察角度、函数名、所求(或所证明)问题的整体形式中的差异,再选择适当的三角公式恒等变形.三角函数公式的应用 典题导入[例1] 已知函数f (x )=2sin ⎝⎛⎭⎫13x -π6,x ∈R . (1)求f ⎝⎛⎭⎫5π4的值;(2)设α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65,求cos(α+β)的值. [自主解答] (1)∵f (x )=2sin ⎝⎛⎭⎫13x -π6, ∴f ⎝⎛⎭⎫5π4=2sin ⎝⎛⎭⎫5π12-π6=2sin π4= 2. (2)∵α,β∈⎣⎡⎦⎤0,π2,f ⎝⎛⎭⎫3α+π2=1013,f (3β+2π)=65, ∴2sin α=1013,2sin ⎝⎛⎭⎫β+π2=65. 即sin α=513,cos β=35.∴cos α=1213,sin β=45.∴cos(α+β)=cos αcos β-sin αsin β =1213×35-513×45=1665.解题方法归纳两角和与差的三角函数公式可看作是诱导公式的推广,可用α、β的三角函数表示α±β的三角函数,在使用两角和与差的三角函数公式时,特别要注意角与角之间的关系,完成统一角和角与角转换的目的.以题试法1.(1)已知sin α=35,α∈⎝⎛⎭⎫π2,π,则cos 2α2sin ⎝⎛⎭⎫α+π4=________.(2) 已知α为锐角,cos α=55,则tan ⎝⎛⎭⎫π4+2α=( ) A .-3 B .-17C .-43D .-7 解析:(1)cos 2α2sin ⎝⎛⎭⎫α+π4=cos 2α-sin 2α2⎝⎛⎭⎫22sin α+22cos α=cos α-sin α,∵sin α=35,α∈⎝⎛⎭⎫π2,π,∴cos α=-45. ∴原式=-75.(2)依题意得,sin α=255,故tan α=2,tan 2α=2×21-4=-43,所以tan ⎝⎛⎭⎫π4+2α=1-431+43=-17. 答案:(1)-75 (2)B三角函数公式的逆用与变形应用典题导入[例2] 已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值. [自主解答] (1)∵f (x )=2cos 2x2-3sin x =1+cos x -3sin x =1+2cos ⎝⎛⎭⎫x +π3,∴周期T =2π,f (x )的值域为[-1,3].(2)∵f ⎝⎛⎭⎫α-π3=13,∴1+2cos α=13,即cos α=-13. ∵α为第二象限角,∴sin α=223. ∴cos 2α1+cos 2α-sin 2α=cos 2α-sin 2α2cos 2α-2sin αcos α =cos α+sin α2cos α=-13+223-23=1-222.解题方法归纳运用两角和与差的三角函数公式时,不但要熟练、准确,而且要熟悉公式的逆用及变形,如tan α+tan β=tan(α+β)·(1-tan αtan β)和二倍角的余弦公式的多种变形等.以题试法2.(1) 已知sin ⎝⎛⎭⎫α+π6+cos α=435,则sin ⎝⎛⎭⎫α+π3的值为( ) A.45 B.35 C.32D.35(2)若α+β=3π4,则(1-tan α)(1-tan β)的值是________.解析:(1)由条件得32sin α+32cos α=435, 即12sin α+32cos α=45. ∴sin ⎝⎛⎭⎫α+π3=45. (2)-1=tan 3π4=tan(α+β)=tan α+tan β1-tan αtan β,∴tan αtan β-1=tan α+tan β. ∴1-tan α-tan β+tan αtan β=2,即(1-tan α)(1-tan β)=2. 答案:(1)A (2)2角 的 变 换 典题导入[例3] (1) 若sin α+cos αsin α-cos α=3,tan(α-β)=2,则tan(β-2α)=________.(2) 设α为锐角,若cos ⎝⎛⎭⎫α+π6=45,则sin ⎝⎛⎭⎫2α+π12的值为________. [自主解答] (1)由条件知sin α+cos αsin α-cos α=tan α+1tan α-1=3,则tan α=2.故tan(β-2α)=tan [(β-α)-α] =tan (β-α)-tan α1+tan (β-α)tan α=-2-21+(-2)×2=43.(2)因为α为锐角,cos ⎝⎛⎭⎫α+π6=45, 所以sin ⎝⎛⎭⎫α+π6=35,sin 2⎝⎛⎭⎫α+π6=2425, cos 2⎝⎛⎭⎫α+π6=725, 所以sin ⎝⎛⎭⎫2α+π12=sin ⎣⎡⎦⎤2⎝⎛⎭⎫α+π6-π4 =2425×22-725×22=17250. [答案] (1)43 (2)17250解题方法归纳1.当“已知角”有两个时,一般把“所求角”表示为两个“已知角”的和或差的形式; 2.当“已知角”有一个时,此时应着眼于“所求角”与“已知角”的和或差的关系,然后应用诱导公式把“所求角”变成“已知角”.3.常见的配角技巧: α=2·α2;α=(α+β)-β;α=β-(β-α); α=12[(α+β)+(α-β)];β=12[(α+β)-(α-β)]; π4+α=π2-⎝⎛⎭⎫π4-α;α=π4-⎝⎛⎭⎫π4-α.以题试法3.设tan ()α+β=25,tan ⎝⎛⎭⎫β-π4=14,则tan ⎝⎛⎭⎫α+π4=( ) A.1318 B.1322 C.322D.16解析:选C tan ⎝⎛⎭⎫α+π4=tan ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =tan (α+β)-tan ⎝⎛⎭⎫β-π41+tan (α+β)tan ⎝⎛⎭⎫β-π4=322.1. 设tan α,tan β是方程x 2-3x +2=0的两根,则tan (α+β)的值为( ) A .-3 B .-1 C .1D .3解析:选A 由题意可知tan α+tan β=3,tan α·tan β=2, tan(α+β)=tan α+tan β1-tan αtan β=-3.2. 已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ) A .-233B .±233C .-1D .±1解析:选C cos x +cos ⎝⎛⎭⎫x -π3=cos x +12cos x +32sin x =32cos x +32sin x =3⎝⎛⎭⎫32cos x +12sin x =3cos ⎝⎛⎭⎫x -π6=-1. 3. 已知α满足sin α=12,那么sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α的值为( ) A.14 B .-14C.12D .-12解析:选A 依题意得,sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-α=sin ⎝⎛⎭⎫π4+α·cos ⎝⎛⎭⎫π4+α=12sin ⎝⎛⎭⎫π2+2α=12cos 2α=12(1-2sin 2α)=14.4.已知函数f (x )=x 3+bx 的图象在点A (1,f (1))处的切线的斜率为4,则函数g (x )=3sin 2x +b cos 2x 的最大值和最小正周期为( )A .1,πB .2,π C.2,2πD.3,2π解析:选B 由题意得f ′(x )=3x 2+b , f ′(1)=3+b =4,b =1. 所以g (x )=3sin 2x +b cos 2x =3sin 2x +cos 2x =2sin ⎝⎛⎭⎫2x +π6, 故函数的最大值为2,最小正周期为π. 5. 设α、β都是锐角,且cos α=55,sin ()α+β=35,则cos β=( ) A.2525B.255C.2525或255D.55或525 解析:选A 依题意得sin α=1-cos 2α=255, cos(α+β)=±1-sin 2(α+β)=±45.又α、β均为锐角,因此0<α<α+β<π, cos α>cos(α+β),注意到45>55>-45,所以cos(α+β)=-45.cos β=cos[(α+β)-α]=cos(α+β)cos α+sin(α+β)sin α=-45×55+35×255=2525.6.已知α为第二象限角,sin α+cos α=33,则cos 2α=( ) A .-53B .-59C.59D.53解析:选A 将sin α+cos α=33两边平方,可得1+sin 2α=13,sin 2α=-23,所以(-sin α+cos α)2=1-sin 2α=53.因为α是第二象限角,所以sin α>0,cos α<0,所以-sin α+cos α=-153,所以cos 2α=(-sin α+cos α)·(cos α+sin α)=-53. 7. 满足sin π5sin x +cos 4π5cos x =12的锐角x =________.解析:由已知可得 cos 4π5cos x +sin 4π5sin x =12,即cos ⎝⎛⎭⎫4π5-x =12,又x 是锐角,所以4π5-x =π3,即x =7π15.答案:7π158.化简2tan (45°-α)1-tan 2(45°-α)·sin αcos αcos 2α-sin 2α=________. 解析:原式=tan(90°-2α)·12sin 2αcos 2α=sin (90°-2α)cos (90°-2α)·12sin 2αcos 2α =cos 2αsin 2α·12sin 2αcos 2α=12. 答案:129. 已知角α,β的顶点在坐标原点,始边与x 轴的正半轴重合,α,β∈(0,π),角β的终边与单位圆交点的横坐标是-13,角α+β的终边与单位圆交点的纵坐标是45,则cos α=________.解析:依题设及三角函数的定义得: cos β=-13,sin(α+β)=45.又∵0<β<π,∴π2<β<π,π2<α+β<π,sin β=223,cos(α+β)=-35.∴cos α=cos[(α+β)-β] =cos(α+β)cos β+sin(α+β)sin β =-35×⎝⎛⎭⎫-13+45×223 =3+8215.答案:3+821510.已知α∈⎝⎛⎭⎫0,π2,tan α=12,求tan 2α和sin ⎝⎛⎭⎫2α+π3的值. 解:∵tan α=12,∴tan 2α=2tan α1-tan 2α=2×121-14=43,且sin αcos α=12,即cos α=2sin α, 又sin 2α+cos 2α=1, ∴5sin 2α=1,而α∈⎝⎛⎭⎫0,π2, ∴sin α=55,cos α=255. ∴sin 2α=2sin αcos α=2×55×255=45, cos 2α=cos 2α-sin 2α=45-15=35,∴sin ⎝⎛⎭⎫2α+π3=sin 2αcos π3+cos 2αsin π3=45×12+35×32=4+3310. 11.已知:0<α<π2<β<π,cos ⎝⎛⎭⎫β-π4=45. (1)求sin 2β的值; (2)求cos ⎝⎛⎭⎫α+π4的值.解:(1)法一:∵cos ⎝⎛⎭⎫β-π4=cos π4cos β+sin β=22cos β+22sin β=13, ∴cos β+sin β=23,∴1+sin 2β=29,∴sin 2β=-79. 法二:sin 2β=cos ⎝⎛⎭⎫π2-2β=2cos 2⎝⎛⎭⎫β-π4-1=-79. (2)∵0<α<π2<β<π, ∴π4<β<-π4<34π,π2<α+β<3π2, ∴sin ⎝⎛⎭⎫β-π4>0,cos (α+β)<0. ∵cos ⎝⎛⎭⎫β-π4=13,sin (α+β)=45, ∴sin ⎝⎛⎭⎫β-π4=223,cos (α+β)=-35. ∴cos ⎝⎛⎭⎫α+π4=cos ⎣⎡⎦⎤(α+β)-⎝⎛⎭⎫β-π4 =cos (α+β)cos ⎝⎛⎭⎫β-π4 =-35×13+45×223=82-315. 12. 函数f(x)=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2,x ∈R . (1)求f (x )的最小正周期;(2)若f (α)=2105,α∈⎝⎛⎭⎫0,π2,求tan ⎝⎛⎭⎫α+π4的值. 解:(1)f (x )=cos ⎝⎛⎭⎫-x 2+sin ⎝⎛⎭⎫π-x 2=sin x 2+cos x 2=2sin ⎝⎛⎭⎫x 2+π4, 故f (x )的最小正周期T =2π12=4π. (2)由f (α)=2105,得sin α2+cos α2=2105, 则⎝⎛⎭⎫sin α2+cos α22=⎝⎛⎭⎫21052, 即1+sin α=85,解得sin α=35,又α∈⎝⎛⎭⎫0,π2,则cos α=1-sin 2α= 1-925=45, 故tan α=sin αcos α=34, 所以tan ⎝⎛⎭⎫α+π4=tan α+tan π41-tan αtan π4=34+11-34=7.1.若tan α=lg(10a ),tan β=lg ⎝⎛⎭⎫1a ,且α+β=π4,则实数a 的值为( ) A .1B.110 C .1或110 D .1或10解析:选C tan(α+β)=1⇒tan α+tan β1-tan αtan β=lg (10a )+lg ⎝⎛⎭⎫1a 1-lg (10a )·lg ⎝⎛⎭⎫1a =1⇒lg 2a +lg a =0, 所以lg a =0或lg a =-1,即a =1或110. 2.化简sin 2⎝⎛⎭⎫α-π6+sin 2⎝⎛⎭⎫α+π6-sin 2α的结果是________. 解析:原式=1-cos ⎝⎛⎭⎫2α-π32+1-cos ⎝⎛⎭⎫2α+π32-sin 2α =1-12⎣⎡⎦⎤cos ⎝⎛⎭⎫2α-π3+cos ⎝⎛⎭⎫2α+π3-sin 2α =1-cos 2α·cos π3-sin 2α=1-cos 2α2-1-cos 2α2=12. 答案:123.已知sin α+cos α=355,α∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35,β∈⎝⎛⎭⎫π4,π2. (1)求sin 2α和tan 2α的值;(2)求cos(α+2β)的值.解:(1)由题意得(sin α+cos α)2=95, 即1+sin 2α=95,∴sin 2α=45.又2α∈⎝⎛⎭⎫0,π2,∴cos 2α=1-sin 22α=35, ∴tan 2α=sin 2αcos 2α=43. (2)∵β∈⎝⎛⎭⎫π4,π2,β-π4∈⎝⎛⎭⎫0,π4,sin ⎝⎛⎭⎫β-π4=35, ∴cos ⎝⎛⎭⎫β-π4=45, 于是sin 2⎝⎛⎭⎫β-π4=2sin ⎝⎛⎭⎫β-π4cos ⎝⎛⎭⎫β-π4=2425. 又sin 2⎝⎛⎭⎫β-π4=-cos 2β, ∴cos 2β=-2425, 又∵2β∈⎝⎛⎭⎫π2,π,∴sin 2β=725, 又∵cos 2α=1+cos 2α2=45⎝⎛⎭⎫α∈⎝⎛⎭⎫0,π4, ∴cos α=255,sin α=55. ∴cos(α+2β)=cos αcos 2β-sin αsin 2β=255 ×⎝⎛⎭⎫-2425-55×725=-11525.1. 已知函数f (x )=3sin 2x +sin x cos x ,x ∈⎣⎡⎦⎤π2,π.(1)求f (x )的零点;(2)求f (x )的最大值和最小值.解:(1)令f (x )=0,得sin x ·(3sin x +cos x )=0, 所以sin x =0或tan x =-33. 由sin x =0,x ∈⎣⎡⎦⎤π2,π,得x =π;由tan x =-33,x ∈⎣⎡⎦⎤π2,π,得x =5π6. 综上,函数f (x )的零点为5π6,π.(2)f (x )=32(1-cos 2x )+12sin 2x =sin ⎝⎛⎭⎫2x -π3+32. 因为x ∈⎣⎡⎦⎤π2,π,所以2x -π3∈⎣⎡⎦⎤2π3,5π3. 所以当2x -π3=2π3,即x =π2时,f (x )的最大值为3; 当2x -π3=3π2,即x =11π12时,f (x )的最小值为-1+32. 2.已知0<β<π2<α<π,且cos ⎝⎛⎭⎫α-β2=-19,sin ⎝⎛⎭⎫α2-β=23,求cos(α+β)的值; 解:∵0<β<π2<α<π, ∴-π4<α2-β<π2,π4<α-β2<π. ∴cos ⎝⎛⎭⎫α2-β=1-sin 2⎝⎛⎭⎫α2-β = 1-⎝⎛⎭⎫232=53,sin ⎝⎛⎭⎫α-β2= 1-cos 2⎝⎛⎭⎫α-β2 = 1-⎝⎛⎭⎫-192=459. ∴cos α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫α-β2-⎝⎛⎭⎫α2-β =cos ⎝⎛⎭⎫α-β2cos ⎝⎛⎭⎫α2-β+sin ⎝⎛⎭⎫α-β2sin ⎝⎛⎭⎫α2-β =-19×53+459×23=7527. ∴cos(α+β)=2cos 2α+β2-1=2×49×5729-1=-239729.。

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式

两角和差的正弦余弦正切公式两角和差的正弦、余弦、正切公式是解决三角函数的运算中的常用工具。

它们可以通过已知两个角的三角函数值来求解它们的和或差的三角函数值。

这些公式在数学、物理、工程等领域中都有广泛的应用。

下面将详细介绍这些公式,以及它们的推导和应用。

1.两角和差的正弦公式sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)其中A和B为任意两个角。

为了推导这个公式,我们可以使用三角函数的和差角公式:sin(A ± B) = sin(A)cos(B) ± cos(A)sin(B)cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)通过观察可以发现,两角和差的正弦公式可以通过将cos(A ± B)公式正负号变化得到。

2.两角和差的余弦公式cos(A ± B) = cos(A)cos(B) ∓ sin(A)sin(B)其中A和B为任意两个角。

可以看到,这个公式可以通过将sin(A ± B)的公式正负号变化得到。

3.两角和差的正切公式tan(A ± B) = (tan(A) ± tan(B))/(1 ∓ tan(A)tan(B))其中A和B为任意两个角。

这个公式可以通过两角和差的正弦公式和余弦公式相除得到。

使用公式sin(A)/cos(A) = tan(A)和cos(A)cos(B) -sin(A)sin(B)=cos(A+B)得到。

这些公式在解决三角函数运算中有着广泛的应用。

例如,我们可以将它们用于证明或求解三角恒等式。

以下是一些常见的应用示例:1.求两个特定角的正弦、余弦或正切值的和或差的问题。

例如,已知sin(A) = 0.6,cos(B) = 0.8,求sin(A+B)的值。

根据两角和差的正弦公式,我们可以有:sin(A+B) = sin(A)cos(B) + cos(A)sin(B)= 0.6*0.8 + cos(A)*sin(B)如果我们已经知道了cos(A)和sin(B)的值,就可以计算出sin(A+B)的值。

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式

两角和与差的正弦、余弦、正切公式
两角和与差的正弦余弦正切公式:sin(α±β)=sinα·cosβ±cosα·sinβ,
cos(α+β)=cosα·cosβ-sinα·sinβ,tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)。

1、两角和(差)公式包括两角和差的正弦公式、两角和差的余弦公式、两角和差的正切公式。

两角和与差的公式是三角函数恒等变形的基础,其他三角函数公式都是在此公式基础上变形得到的。

正弦公式是描述正弦定理的相关公式,而正弦定理是三角学中的一个基本定理,它指出:在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

几何意义上,正弦公式即为正弦定理。

2、先利用单位圆(向量)推到两角和与差的余弦公式,再利用诱导公式推导正弦公式,最后利用同角三角函数的基本关系推到正切公式。

3、正弦和差公式始终是sin与cos相乘; 余弦和差公式始终是cos与cos相乘,sin与sin相乘,两角和与差的正弦公式:正=正余余正符号同两角和与差的余弦公式:余=余余正正符号异。

两角和与差的正弦余弦公式

两角和与差的正弦余弦公式

两角和与差的正弦余弦公式两角和公式:设角A和角B是两个任意角,我们要求它们的正弦和余弦。

首先,根据三角函数的定义,角A的正弦和余弦分别为sinA和cosA,角B的正弦和余弦分别为sinB和cosB。

现在我们来求两个角的和,设C=A+B,则C的正弦和余弦分别为sinC和cosC。

根据三角函数的和差化积公式,我们有:sinC = sin(A+B) = sinA * cosB + cosA * sinBcosC = cos(A+B) = cosA * cosB - sinA * sinB这就是两角和的正弦和余弦公式。

两角差公式:设角A和角B是两个任意角,我们要求它们的正弦和余弦。

首先,根据三角函数的定义,角A的正弦和余弦分别为sinA和cosA,角B的正弦和余弦分别为sinB和cosB。

现在我们来求两个角的差,设C=A-B,则C的正弦和余弦分别为sinC和cosC。

同样根据三角函数的和差化积公式,我们有:sinC = sin(A-B) = sinA * cosB - cosA * sinBcosC = cos(A-B) = cosA * cosB + sinA * sinB这就是两角差的正弦和余弦公式。

总结:sin(A+B) = sinA * cosB + cosA * sinBcos(A+B) = cosA * cosB - sinA * sinBsin(A-B) = sinA * cosB - cosA * sinBcos(A-B) = cosA * cosB + sinA * sinB这些公式在解决各种三角函数问题时十分有用。

通过这些公式,我们可以将一个复杂的三角函数问题转化为简单的代数运算问题来求解。

例如,我们可以利用两角和公式来证明sin60°* cos30° +cos60°* sin30° = sin90°,通过代入sin60°=1/2、cos30°=√3/2、cos60°=1/2、sin30°=1/2和sin90°=1,可以发现等式成立,这说明两角和公式在这个例子中是正确的。

两角和差正余弦公式的证明

两角和差正余弦公式的证明

两角和差正余弦公式的证明两角和差的正余弦公式是三角函数中非常重要的公式之一、下面将证明这个公式。

假设有两个角A和B,我们要证明两角和的正余弦公式:1.两角和的正弦公式:sin(A + B) = sinA * cosB + cosA * sinB2.两角和的余弦公式:cos(A + B) = cosA * cosB - sinA * sinB证明两角和的正弦公式:根据正弦函数的定义,我们有:sinA = y1 / r1 ,sinB = y2 / r2其中y1和y2分别为角A和B的对边长度,r1和r2分别为角A和B 的斜边长度。

由三角形的性质可知,两角和C=A+B,对应的三角形的对边为y=y1+y2,斜边为r=r1+r2根据正弦函数的定义,sin(A + B) = y / r。

将y和r的表达式代入,我们得到:sin(A + B) = (y1 + y2) / (r1 + r2)将分子进行展开,我们有:sin(A + B) = y1 / (r1 + r2) + y2 / (r1 + r2)由于 r1 / (r1 + r2) = cosB ,r2 / (r1 + r2) = cosA ,根据三角函数的定义,我们可以将上式写成:sin(A + B) = y1 / r1 * cosB + y2 / r2 * cosA即:sin(A + B) = sinA * cosB + cosA * sinB因此,两角和的正弦公式得证。

证明两角和的余弦公式:根据余弦函数的定义,我们有:cosA = x1 / r1 ,cosB = x2 / r2其中x1和x2分别为角A和B的邻边长度,r1和r2分别为角A和B 的斜边长度。

对于两角和C=A+B,对应的三角形的邻边为x=x1+x2,斜边为r=r1+r2根据余弦函数的定义,cos(A + B) = x / r。

将x和r的表达式代入,我们得到:cos(A + B) = (x1 + x2) / (r1 + r2)将分子进行展开,我们有:cos(A + B) = x1 / (r1 + r2) + x2 / (r1 + r2)由于 x1 / (r1 + r2) = cosA ,x2 / (r1 + r2) = cosB ,根据三角函数的定义,我们可以将上式写成:cos(A + B) = cosA * cosB + sinA * sinB即:cos(A + B) = cosA * cosB - sinA * sinB因此,两角和的余弦公式得证。

两角和差正余弦公式的证明

两角和差正余弦公式的证明

(方法1)如图所示,在直角坐标系妨中作单位圆O ,并作角起,"和一“,使 角优的始边为。

T ,交[0于点A ,终边交L "于点B ;角0始边为(旳,终边交两角和差正余弦公式的证明两角和差的正余弦公式是三角学中很重要的一组公式。

法进行探讨。

F 面我们就它们的推导证明方 由角d , 0的三角函数值表示 的正弦或余弦值,这正是两角和差的正余弦公 式的功能。

换言之,要推导两角和差的正余弦公式 ,就是希望能得到一个等式或方程 将CLIS ((T t 小或GMa F ”)与(I , P 的三角函数联系起来。

根据诱导公式,由角0的三角函数可以得到 0的三角函数。

因此,由和角公式容 易得到对应的差角公式,也可以由差角公式得到对应的和角公式。

又因为 即原角的余弦等于其余角的正弦 据此,可以实现正弦公式和余弦 公式的相互推导。

因此,只要解决这组公式中的一个,其余的公式将很容易得到。

(一)在单位圆的框架下推导和差角余弦公式 注意到单位圆比较容易表示 SlH 和 α±0 ,而且角的终边与单位圆的交点坐标可 以用三角函数值表示,因此,我们可以用单位圆来构造联系 “呦I 列与CE ,E 的三角 函数值的等式。

1.和角余弦公式角 "始边为(ZL ,终边交[0于点。

从而点A, B, C和D的坐标分别为XiL(IO, B(C(K亿dace) ,C(攻α+E f⅛a(cc+∕5) ,Q伽霸-dn∕J) O由两点间距离公式得Q =(CDS(α+∕J)-l)3+≡Λ2(tt+∕5 = 2-2cαs(α+/!);BD I =(C os∕l-OTsα)2+(-⅛ι∕J-anα)2= 2-2(CDSaelK/J-si∩csh∕J) O 注意到& 跖,因此c□sσtos^ SinaEin0 o注记:这是教材上给出的经典证法。

它借助单位圆的框架,利用平面内两点间距离公式表达两条相等线段,从而得到我们所要的等式。

两角和与差的三角函数公式的证明

两角和与差的三角函数公式的证明

两角和与差的三角函数公式的证明.doc两角和与差的三角函数公式证明(1)正弦余弦定理将△ABC投影到x轴,得出△ABC的正弦余弦定理:a^2=b^2+c^2-2bc*cosA(2)正弦余弦反比定理正弦余弦反比定理:sinA/a=sinB/b=sinC/c(3)根据正弦余弦定理、正弦余弦反比定理,可以得出:a^2=b^2+c^2-2bc*cosA即:a^2=(b*sinA)*(b*sinA)+(c*sinA)*(c*sinA)-2bc*cosA由正弦余弦反比定理可知:b*sinA=c*sinB即:a^2=(c*sinA)*(c*sinB)+(c*sinA)*(c*sinB)-2bc*cosA化简得:a^2=2c^2*sinA*sinB-2bc*cosA(4)根据正弦余弦定理、正弦余弦反比定理,可以得出:b^2=a^2+c^2-2ac*cosB即:b^2=(a*sinB)*(a*sinB)+(c*sinB)*(c*sinB)-2ac*cosB由正弦余弦反比定理可知:a*sinB=c*sinC即:b^2=(c*sinB)*(c*sinC)+(c*sinB)*(c*sinC)-2ac*cosB化简得:b^2=2c^2*sinB*sinC-2ac*cosB(5)两角和与差的三角函数公式将(3)式和(4)式相加得:a^2+b^2=2c^2*[sinA*sinB+sinB*sinC]-2(bc*cosA+ac*cosB)根据正弦余弦反比定理,有:a*sinA=b*sinB=c*sinC即:a^2+b^2=2c^2*[sinA*sinB+sinB*sinC]-2c^2*[cosA+cosB]化简得:a^2+b^2=2c^2*[sinA+sinB+sinC-(cosA+cosB)]即:sin(A+B+C)=sinA+sinB+sinC-cosA-cosB又因为:sin(A-B-C)=sinA-sinB-sinC+cosA-cosB所以,两角和与差的三角函数公式为:sin(A+B+C)=sin(A-B-C)=sinA+sinB+sinC-cosA-cosB。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

两角和差正余弦公式的证明
北京四中数学组皇甫力超
论文摘要:
本文对两角和差的正余弦公式的推导进行了探讨。

在单位圆的框架下 , 我们得到了和角余弦公式 ( 方法 1) 与差角余弦公式 ( 方法 2)。

在三角形的框架下 , 我们得到了和角正弦公式 ( 方法 3 ~11 ) 与差角正弦公式 ( 方法 12,13)。

关键词:
两角和差的正余弦公式
正文:
两角和差的正余弦公式是三角学中很重要的一组公式。

下面我们就它们的推导证明方法进行探讨。

由角, 的三角函数值表示的正弦或余弦值 , 这正是两角和差的正余弦公式的功能。

换言之 , 要推导两角和差的正余弦公式 , 就是希望能得到一个等式或方程 , 将或与, 的三角函数联系起来。

根据诱导公式 , 由角的三角函数可以得到的三角函数。

因此 , 由和角公式容易得到对应的差角公式, 也可以由差角公式得到对应的和角公式。

又因为
, 即原角的余弦等于其余角的正弦 , 据此 , 可以实现正弦公式和余弦公式的相互推导。

因此 , 只要解决这组公式中的一个 , 其余的公式将很容易得到。

(一) 在单位圆的框架下推导和差角余弦公式
注意到单位圆比较容易表示, 和, 而且角的终边与单位圆的交点坐标可以用三角函数值表示 , 因此 , 我们可以用单位圆来构造联系与, 的三角函数值的等式。

1. 和角余弦公式
(方法 1) 如图所示, 在直角坐标系中作单位圆, 并作角, 和, 使角的始边为, 交于点A, 终边交于点B;角始边为, 终边交
于点C;角始边为, 终边交于点。

从而点A, B, C和D的坐标分别为, ,,。

由两点间距离公式得
;。

注意到, 因此。

注记:这是教材上给出的经典证法。

它借助单位圆的框架 , 利用平面内两点间距离公式表达两条相等线段, 从而得到我们所要的等式。

注意, 公式中的和为任意角。

2. 差角余弦公式
仍然在单位圆的框架下 , 用平面内两点间距离公式和余弦定理表达同一线段, 也可以得到我们希望的三角等式。

这就是
(方法2) 如图所示, 在坐标系中作单位圆, 并作角和, 使角和
的始边均为, 交于点C, 角终边交于点A,角终边交于点。

从而点A, B的坐标为,。

由两点间距离公式得。

由余弦定理得。

从而有。

注记:方法 2 中用到了余弦定理 , 它依赖于是三角形的内角。

因此, 还需要补充讨论角和的终边共线, 以及大于的情形。

容易验证 , 公式在以上情形中依然成立。

在上边的证明中 , 用余弦定理计算的过程也可以用勾股定理来进行。

(二) 在三角形的框架下推导和差角正弦公式
除了在单位圆的框架下推导和差角的余弦公式 , 还可以在三角形中构造和角或差角来证明和差角的正弦公式。

1. 和角正弦公式 (一)
(方法3) 如图所示, 为的边上的高 , 为边上的高。

设, , , 则。

从而有
, ,
,。

因此,。

注意到,
从而有
, 整理可得。

注记:在方法 3 中 , 用和与底角, 相关的三角函数, 从两个角度来表示边上高, 从而得到所希望的等式关系。

这一证明所用的图形是基于钝角三角形的 , 对基于直角或锐角三角形的情形 , 证明过程类似。

利用方法 3 中的图形 , 我们用类似于恒等变形的方式 , 可以得到下面的
(方法 4) 如图所示, 为的边上的高 , 为边上的高。

设, , 则。

注意到, 则有,即。

从而有。

利用正弦定理和射影定理 , 将得到下面这个非常简洁的证法。

注意证明利用的图形框架与方法 3,4 所用的图形框架是相同的。

(方法 5) 如图所示 , 为的边上的高。

设, , 则有,。

由正弦定理可得
,
其中d为的外接圆直径。

由得
,
从而有。

2. 和角正弦公式 ( 二 )
方法 3,4 和 5 利用的图形框架是将角, 放在三角形的两个底角上。

如果将这两个角的和作为三角形的一个内角 , 将会有下面的几种证法 ( 方法 6~11)。

(方法 6) 如图所示 , 作于D, 交外接圆于E, 连和。

设, , 则, ,。

设的外接圆直径为d, 则有,
,,。

所以有。

注意到, 从而。

(方法 7) 如图所示 , 为的边上的高 , 为边上的高。

设, , 则。

设, 则
, , ,,。


从而。

整理可得。

(方法 8) 如图所示 , 作于D, 过D作于F, 于G。

设,, 则,设, 从而,,,。

所以。

注意到, 则有。

注记:我们用两种不同的方法计算, 得到了和角的正弦公式。

如果我们用两种方法来计算, 则可以得到和角的余弦公式。

由上图可得
,
,
从而有。

注意到 , 从而可得。

方法 6,7 和 8 都是用角, 的三角函数从两个角度表示图形中的同一线段 , 从而构造出我们所希望的等式关系。

(方法9 ) 如图所示, 设为的边上的高。

设, ,, , 从而有
方法 9 利用面积关系构造三角恒等式。

下面这两个证法的思路则有所不同。

(方法 10) 如图所示 , 设为的外接圆直径d, 长度为d。

设, , 则, 从而
注记:这一证明用到了托勒密定理:若和是圆内接四边形的对角线 , 则有。

(方法 11) 如图所示 , 为的边上的高。

设, , 则。

设, 则
方法 10 和 11 将某一线段作为基本量 , 利用与角, 相关的三角函数表示其它线段 , 再通过联系这些线段的几何定理 ( 托勒密定理或正弦定理 ), 构造出我们希望的等式关系。

3. 差角正弦公式
仍然还是在三角形中 , 我们可以在三角形的内角里构造出差角来。

方法 12 和 13 便
是用这种想法来证明的。

(方法 12) 如图所示 ,。

设, , 记, 作于E, 则, , 从而有
(方法 13) 如图所示 , 为的外接圆直径 , 长度为 d。

设, , 则, 。

从而
方法 12 和 13 的基本思路仍然是用两种不同方法计算同一线段 , 借此来构造等式关系。

很显然 , 在这十二种证法中 , 方法 1 和 2 更具普遍性。

换言之 , 这两种方法中出现的角, 是任意角。

而其余方法中 , 角和则有一定的限制 , 它们都是三角形的内角 ( 甚至都是锐角 )。

因此 , 对于方法 3~13, 我们需要将我们的结果推广到角和是任意角的情形。

具体而言 , 我们要证明:如果公式对任意成立 , 则对任意角也成立。

容易验证 , 角和中至少有一个是轴上角 ( 即终边在坐标轴上的角 ), 我们的公式是成立的。

下面证明 , 角和都是象限角 ( 即终边在坐标系的某一象限中的角 ) 时 , 我们的公式也成立。

不妨设为第二象限角 , 为第三象限角 , 从而有
从而
同理可证, 公式对于象限角和的其它组合方式都成立。

因此 , 我们可以将方法
3~13 推导的公式推广到角, 是任意角的情形。

两角和差的正余弦公式是三角学中很基本的一组公式。

其推导证明对指导学生进行探究性学习很有帮助。

从上文中可以看到 , 这一探究过程可分为四个步骤:
(1) 明确推导证明的目标:构造联系和三角函数与或的等式或方程;
(2) 简化课题:四个公式只要解决一个 , 其余的都可由它推出;
(3) 解决问题:利用单位圆或三角形作为联系和三角函数与或
的工具 , 寻找我们希望的等式关系;
(4) 完善解决问题的方法:考察方法是否有普遍性。

如果普遍性有欠缺 , 可考虑将其化归为已解决的情形 , 必要时还要进行分类讨论。

参考文献:
1.谷丹:全面数学教育观与知识形成过程的教学——三个教学个案及分析 , 《开放的视野 , 务实的努力》, 中央民族大学出版社 ,2006 年 3 月第 27 ~32 页。

2.人民教育出版社中学数学室:全日制普通高级中学教科书 << 数学 ( 第一册下 )>>( 必修 ), 人民教育出版社 ,2003 年 12 月第 34 ~ 35 页。

相关文档
最新文档