光纤-导光原理,结构与分类1
光纤结构、波导原理和制造
其中h = 6.63 10-34 J·s为普朗克常数
在光的照射下,金属是否发射电子,仅与光的频率相关,而 与光的亮度和照射时间无关。不同的金属材料要求不同的光 照频率。
2 基本的光学定律和定义
光速 c = 3 108 m/s 波长:l = c/v 当光在媒介中传播时,速度cm = c/n 常见物质的折射率:空气 1.00027;
光纤结构、波导原理和制造
主要内容
回顾光的特性、基本的光学定律和定义
介绍光纤结构、分类、特性和射线光学解 释
圆波导模式及其理论简介* 单模光纤的特性、材料以及制造工艺 光纤的几种成缆方式
光的波动性 1 光的基本特性
- 17世纪意大利格里马蒂和英国胡克 观测到光的衍射现象
- 1690年海牙物理学家惠更斯提出光 的波动性学说
光纤的分类
按传输的模式数目分 • 单模光纤 • 多模光纤
按折射率的变化分 • 阶跃光纤 • 梯度光纤
ITU-T官方定义 • G.651光纤 (渐变型多模光纤) • G.652光纤 (常规单模光纤) • G.653光纤 (色散位移光纤) • G.654光纤 (衰减最小光纤) • G.655光纤 (非零色散位移光纤)
光传播的入射角条件 将s1和s2的值代入相位关系式并简化可以得到:
2pn1d sin mp l
假如只考虑波的电场分量垂直于入射面的情况,那么因发射带
来的相移为:
2arctan
cos2
n22 / n12
s in
代入简化式中可以得到:
tan pn1d
s in
kp
n12
cos2
水 1.33; 玻璃 (SiO2) 1.47; 钻石 2.42; 硅 3.5 折射率大的媒介称为光密媒介,反之称为光疏媒介
光纤导光原理和光纤材料
光纤导光原理和光纤材料光纤是一种能够将光信号进行传输的光学材料,它由一个或者多个折射率较高的纤芯包围一个折射率较低的包层构成。
光纤导光原理是指光线在光纤中的传播方式和原理。
在光纤中,光信号通过不断的反射,遵循折射率不同的原理,使得信号能够在纤芯中一直传输下去。
光纤材料则是指用于制造光纤的材料,其中最常用的材料是二氧化硅和聚合物。
光纤导光原理可以通过几何光学和电磁光学来解释。
几何光学认为光线在光纤中是沿着直线传播的,而反射是由于入射光线角度超过了临界角而发生的,也就是光线在从一个介质中经过一个界面进入另一个介质时,入射角大于一个特定的角度时,就会发生反射。
而电磁光学从波动的角度来解释光线在光纤中的传播,认为光纤中存在着多个传播模式,每个模式对应着不同的传播角度和频率。
通过折射率的不同,可以根据光线的入射角来选择不同的传播模式。
对于光纤材料来说,要求具有较高的透明度、低的损耗和足够的强度。
其中最常用的材料是二氧化硅,它具有优异的物理和化学性质,能够提供较低的损耗、高的透明度和较好的热稳定性。
二氧化硅光纤又分为单模光纤和多模光纤,单模光纤是指只能传输一个模式的光信号,通常用于远距离传输和高速通信。
而多模光纤则可以传输多个模式的光信号,通常用于短距离传输。
除了二氧化硅,聚合物也是一种常用的光纤材料。
聚合物光纤具有低损耗、较高的透明度和可塑性,可以根据需要制造不同尺寸和形状的光纤。
与二氧化硅光纤相比,聚合物光纤通常用于短距离传输和低速通信。
除了二氧化硅和聚合物,还有其他材料如石英、玻璃等也可以用于制造光纤。
这些材料具有不同的特性和用途,可以根据具体的需求选择相应的材料。
光纤导光原理和光纤材料的研究和应用在现代通信和光学技术中起到了重要的作用。
通过研究光纤导光原理,可以优化光纤的设计和制造,提高光纤的传输效率和稳定性。
同时,不断研究新的光纤材料和技术,可以拓展光纤的应用领域,如医学、测量、传感和光学仪器等。
光纤的导光原理
光纤的导光原理
光纤的导光原理是基于全反射现象的。
全反射是光线从光密介质射向光疏介质时发生的现象,当入射角大于临界角时,光线将完全反射回原介质中,不会发生折射。
光纤由一个中心的光导芯和包围其外部的光护套组成。
光导芯通常由高折射率的材料制成,而光护套由低折射率的材料制成。
当光线进入光导芯时,由于光导芯的折射率高于光护套,光线会在界面上发生全反射。
光线在光导芯内部沿着弯曲的路径传输。
这是因为当光线到达光纤弯曲处时,其入射角将超过临界角,从而发生全反射并沿着弯曲的路径继续传播。
因此,光纤能够在弯曲、弯折和弯曲的路径上有效地传输光线。
为了增强光纤的导光效果,光导芯通常被包裹在折射率较低的光护套中。
光护套的主要作用是减小光线发生泄漏和损耗。
通过选择合适的折射率差和尺寸,可以使光线在光导芯和光护套之间形成有效的全反射条件,从而提高光纤的导光效率。
光纤的导光原理使得它们在通信和光学传感器等领域得到了广泛应用。
其高速率、大带宽和抗干扰能力使其成为现代通信系统的理想选择。
同时,光纤的小尺寸和灵活性使其适用于各种环境和应用场景。
光纤结构和基本原理
光纤基本结构及原理2011-08-16 12:042.6.1 光纤通信的概念与基本原理多种多样的通信业务迫切需要建立高速率的信息传输网。
在传输网,特别是骨干网中,高速数字通信的速率已迈向每秒G(109)比特级,正在向T(1012)比特级迈进。
要实现这样高速的数字通信,依靠无线媒质或是以传统电缆为代表的有线媒质均是不可想象的。
这一难题直到光纤作为一种传输媒质被人们发现之后才得以破解。
光纤的潜在容量可达数百T,要比传统电缆的容量至少高出5个数量级。
纵观通信发展史,不难发现,人们一直在不断开拓电磁波的各个频段,把如何利用电磁波作为通信技术的重要研究方向。
在大学物理课程中我们已经学到,光可以看作是可见光波段的电磁波。
因此,开发光波作为通信的载体与介质是很自然的。
在光通信的发展历史中,两大主要的技术难点是光源和传输介质。
在上世纪60年代,美国开发了第一台激光器,相对于其他普通光源,激光器具有亮度高、谱线窄、方向性好的特点,可以产生理想的光载波。
另一方面,激光如果在大气中传播,会受到变幻无常的气候条件的影响。
因此人们设想利用可以导光的玻璃纤维——光纤进行长距离的光波传输。
1970年,美国康宁公司首次研制成功损耗为20dB/1km的石英玻璃光纤,达到了实用水平。
目前实用的光纤直径很小,既柔软又具有相当的强度,是一种理想的传输媒质。
目前,在朗迅(Lucent)、北电(Nortel)、阿尔卡特(Alcatel )、西门子(Siemens)等公司的实验室中,光纤传输技术已经达到数千公里无中继的先进水平。
光纤通信的定义:光纤通信是以光波为载频,光导纤维为传输媒介的一种通信方式。
光纤通信一般在发送方对信息的数字编码进行强度调制,在接收端以直接检波的方式来完成光/电变换。
2.6.2 光纤的工作窗口1.工作窗口的定义光波可以看作是电磁波,不同的光波就会有不同的波长与频率。
我们知道,透明的彩色玻璃之所以有颜色,是因为它只允许一种颜色的光波通过,而其他颜色的光波通过较少。
光纤结构与导光原理
=(c/ )·(n2/n12)
9
光纤通信系统
习题
例1:已知n1=1.5, n2=1.0, 试求其BL。 解: BL<(c/ )·(n2/n12)=0.4(Mb/s).km
例2:已知n1=1.5, =0.002。试求其BL 。 。 解: BL<(c/ )·(n2/n12)=100(Mb/s).km
2020/7/21
光纤的导光原理(射线分析)
2020/7/21
7
光纤通信系统
全反射
❖定义:当入射角增大到某一角度,使折射角 达到90o时,折射光线完全消失,只剩下反射 光线,这种现象叫做全反射。
❖理解:全反射现象是光的折射的特殊现象, 折射光线的能量等于零,光线只按反射路线 传播,且遵循光的反射定律。
❖条件:光线从光密介质射向光疏介质,且入 射角大于或等于临界角。
10
光纤通信系统
渐变光纤的引入
群时延差限制了光纤的传输带宽。 为了减少多模阶跃折射率光纤的脉冲展 宽,人们制造了渐变折射率光纤。渐变 折射率光纤的折射率在纤芯中连续变化。 适当选择折射率的分布形式,可以使不 同入射角的光线有大致相同的光程,从 而大大减小群时延差。
2020/7/21
11
光纤通信系统
渐变光纤的光学特性
光学特性决定于它的折射率分布。渐变型光纤 的折射率分布可以表示为
n(r
)
n1[1 n1 (1
2f (r 2)1/ 2
)]1/2 (r a) n2 (r a)
f(r)=(r/a),是一个描述光纤剖面折射率分布的 函数;a是纤芯半径;r是光纤中任意一点到轴心的 距离。使群时延差减至最小的最佳的在2左右, 称为抛物线分布。
2020/7/21
第二章光纤的结构和种类
r≤a r>a >
a为纤芯半径 ;g为纤芯折射率 为纤芯半径 为纤芯折射率 分布指数; 为相对折射率差。 分布指数;△为相对折射率差。
△是表征纤芯折射率与包层折射率 差的大小的一个物理量, 差的大小的一个物理量,这个物理量直 接影响着光纤的性能。 接影响着光纤的性能。当n1与n2差别极 趋近于n 小(n1趋近于n2),这种光纤称弱导波光 纤。目前应用的通信光纤常为弱导波光 纤。 2 ∆ = (n12 − n 2 )/ 2 n12 弱导波光纤相对折射率差△ 弱导波光纤相对折射率差△可近似为 相对折射率差
∆ ≈ (n1 − n2 )/ n1
不同g值的折射率分布 不同 值的折射率分布 n n1 2 g=1 n2 ∞
n(r)= n 1− 2∆ (r / a ) 1
[
1/2 g 1
]
g=∞时为阶跃光纤 = 时为阶跃光纤 g=2时为平方律折射率 = 时为平方律折射率 分布光纤 g=1时为三角形折射率分布 时为三角形折射率分布
二次涂覆层 一次涂覆层
··
紧套管 松套管
两种多心型芯线结构
1、带状光纤芯线 、 聚酸酯带 光纤涂覆层
裸纤
粘合剂
一个光纤带由几十至数百根光纤组成, 一个光纤带由几十至数百根光纤组成,并且 一个光纤带的接续可以一次完成,以适应大量光 一个光纤带的接续可以一次完成, 纤接续、安装的需要。特别适合用作用户光缆。 纤接续、安装的需要。特别适合用作用户光缆。
4、按光纤的材料分类 根据光纤的组成材料不同,可分为四种。 根据光纤的组成材料不同,可分为四种。 (1)石英玻璃光纤。(最常用) 石英玻璃光纤。 最常用) (2)多组分玻璃光纤(氧化物光纤)。 多组分玻璃光纤(氧化物光纤) (3)石英芯、塑料包层光纤。 石英芯、塑料包层光纤。 (4)塑料光纤。 塑料光纤。
光纤的结构及分类
光纤的结构及分类光纤是由高折射率的核心和低折射率的包层组成的一种传输光信号的特殊导光材料。
其主要结构包括核心、包层和包层外的绝缘覆盖层。
光纤的分类可以根据其传输模式、纤芯直径和波长等不同因素进行划分。
一、光纤的结构1. 核心(Core):光纤的核心是由高折射率的材料组成,其主要作用是传输光信号。
核心的直径通常在5-10微米之间,不同类型的光纤核心材料有不同的特性,如镀金、氧化硅、氮化硅、掺铒光纤等。
2. 包层(Cladding):包层是由低折射率的材料包裹核心的外部层,其主要作用是限制光信号在核心中的传输,避免信号的丢失和衰减。
包层的折射率通常比核心小0.1-0.5个百分点,以保证光信号在核心和包层之间产生全反射并得以传输。
3. 包层外的绝缘覆盖层(Buffer Coating):为了保护光纤不受外界环境的影响,通常在包层外面再包裹一层绝缘覆盖层,用来防止光纤被损坏和保持其稳定的传输性能。
二、光纤的分类1.根据传输模式分:光纤可以分为单模光纤和多模光纤两种。
- 单模光纤(Single-mode Fiber):单模光纤的核心直径较小,一般在8-10微米之间,适用于长距离、高速、高容量的通信传输。
由于其只允许一种光模式通过,并具有低损耗和高带宽等优点,因此在长距离通信系统中得到广泛应用。
- 多模光纤(Multimode Fiber):多模光纤的核心直径较大,一般在50-62.5微米之间,适用于短距离、低速、低容量的数据传输。
由于其允许多个光模式通过,并具有较大的接口尺寸和低制造成本等优点,因此在局域网、数据中心和短距离通信系统中得到广泛应用。
2.根据纤芯直径分:光纤可以分为粗芯光纤和细芯光纤两种。
- 粗芯光纤(大芯径光纤,Large Core Fiber):粗芯光纤的纤芯直径一般大于50微米,适用于低成本、简单安装和短距离通信。
由于其光损耗较大,带宽较小,主要用于家庭网络、CCTV监控等领域。
- 细芯光纤(小芯径光纤,Small Core Fiber):细芯光纤的纤芯直径一般小于50微米,适用于高容量、高速、长距离通信。
光的射线理论及光纤传光分析
Ai
光线传播路径
输出脉冲 Ao
125 mm ~10 mm
n
t
18:41
t
10
按制造光纤的材料来分类:
石英光纤一般由掺杂石英芯和掺杂石英包层组成, 通常用化学 气相沉积法制成。这种光纤有很低的损耗和中等程度的色散, 有阶跃折射率和渐变折射率两种, 适用于长距离、大容量传输。
部向前传播的必要条件, 即使经过弯曲的路由光线也不射出光
纤之外,如图6.1所示。
n2
n1
入射
光纤
出射
图 6.1 光纤导光原理
18:41
3
3. 光纤的结构
光纤(Optical fiber)是由纯石英拉制而成的高度透明的玻璃 丝。横截面很小的双层同心圆柱体,未经涂覆和套塑时称为 裸光纤。
纤 芯 包 层 涂敷层
护套
保护光纤不受水汽的侵 约束光的传输 形成光波导效应蚀和机械擦伤,同时增
加光纤的柔韧性
18:41
4
1) 按光纤折射率剖面分类
按光纤折射率剖面分为:
(1) 阶跃光纤。其纤芯和包层折射率呈台阶型突变。目前, 单模光纤多属此类,最早的多模光纤也属此类。
(2) 渐变光纤。纤芯的折射率分布近似为抛物线型,又称 梯度光纤。目前,多模光纤均为此类。
则只有反射光,而无折射光。θc称为全反射临界角。
18:41
2
2. 光纤导光原理
光纤又称光导纤维,是一种导引光波的波导,它由纤芯和 包层两部分组成,外面再加涂覆层以保护光纤。
纤芯和包层是两种折射率不同的玻璃,设纤芯折射率为n1, 包层折射率为n2, n1>n2。按照几何光学全反射原理,射线在 纤芯和包层的交界面产生全反射,并形成把光闭锁在光纤芯内
第4章光纤导光原理
单模光纤主模式HE11的两种偏振状态
∆σ c = Dc ∆λ ⋅ L ∆σ m = Dm ⋅ L
∆σ p = Dp L
9
非线性光学效应
强光场时,光纤发生非线性极化 P = ε 0 χ (1) ⋅ E + ε 0 χ (2) EE + ε 0 χ (3) EEE + ...
5
塑料光纤
也称为聚合物光纤(Polymer Opt1ca1 Fiber, 缩写 为POF),在FTTH应用中可解决“最后一百米”的问 题,展现了其巨大的市场潜力 塑料光纤作为短距离通信网络的理想传输介质,在 未来家庭智能化、办公自动化、工业控制网络化、 车载机载通信网、军事通信网以及多媒体设备中的 数据传输中具有重要的地位。
6
磁光光纤
根据磁光光纤材料的物态特性不同,磁光光纤包括 磁光玻璃光纤、磁光PCF光纤、磁光晶体光纤等。
θ = VB BL
7
光纤的色散
波导色散和材料色散都是模式的本身色散,也称 模内色散;而单模光纤不存在模式色散,只有材 料色散和波导色散(总称为色度色散) 。 对于多模光纤,既有模式色散,又有模内色散, 但主要以模式色散为主。
⋅
线性极 化项
(2) (3) (4)
二阶非线 性极化项
三阶非线 性极化项
χ χ χ 1 = (2) = (3) = , E0 ~ 1010 V/m χ (1) χ χ E0
光纤通常不显示二阶非线性效应。
原子内部的库仑场
SPM,XPM,FWM,……;可以用非线性折射率表示
n = n0 + ∆nn = n0 + N 2 P Aeff N 2 = 2.2 ~ 3.9 × 10−20 m 2 /W (Silica fiber)
光纤维知识点归纳总结
光纤维知识点归纳总结一、光纤的基本原理光纤传播的基本原理是全反射原理。
光在光纤中的传播是由于光在光密介质与光疏介质之间反射所致。
当光线入射在两种介质交界面上,发生的折射和反射是由折射率决定的。
而光纤通过改变折射率的设计,使得当光线沿着光纤传输时,不会发生漏光,从而保证了光信号的传输。
二、光纤的结构光纤通常由芯、包层和外护套组成。
芯是光纤传输光信号的主体,包层用于约束和保护光信号,外护套则用于保护光纤本身以及增强其机械性能。
光纤的结构设计与材料的选择对光信号的传输性能有着重要的影响。
三、光纤的类型根据光纤芯和包层的折射率,可以将光纤分为单模光纤和多模光纤。
单模光纤是指在光纤芯中只有一条光路,适用于远距离通信和高速数据传输;多模光纤是指光纤芯中存在多条光路,适用于短距离通信和局域网传输。
另外,光纤还可根据其传输性能和应用环境的不同分为标准单模光纤、非标单模光纤、高分子光纤等类型。
四、光纤的传输特性光纤的传输特性主要包括传输损耗、色散、非线性效应等。
传输损耗是指光信号在光纤传输过程中损失的能量,主要包括吸收损耗、散射损耗、泄漏损耗等。
色散是指光信号在光纤中传播速度与光波长有关,从而引起信号失真的现象。
非线性效应是指光信号在光纤中传播过程中出现的非线性光学效应,如光子效应、拉曼效应等。
五、光纤的应用光纤在通信领域被广泛应用,包括长距离传输、城市通信、局域网、光纤传感等。
同时,光纤还在医学、军事、工业、科研等领域也有着重要的应用,如光纤传感器、激光器、光纤放大器等。
光纤作为一种重要的光学传输介质,在信息通信、光电子技术、生物医学、制造技术等众多领域都有着重要的应用价值。
通过了解光纤的基本原理、结构、类型、传输特性和应用,我们可以更深入地理解光纤技术的发展和应用前景。
希望本文对大家有所帮助,欢迎指正补充。
光纤光缆的结构与分类
光纤光缆的结构与分类光纤光缆是使用光导纤维传输光信号的通信线缆。
它由多种材料和结构组成,根据用途的不同,可以分成多种不同的类型。
下面将详细介绍光纤光缆的结构和分类。
1. 纤芯(Core):纤芯是光信号在光纤中传输的核心部分,通常由高折射率的材料(如石英)组成。
纤芯的直径决定了光纤的传输性能,通常有50微米(μm)和62.5微米两种规格。
2. 包层(Cladding):包层是包裹在纤芯外部的一层低折射率材料,通常由石英或塑料制成。
包层的作用是使光信号在纤芯内部反射,防止信号能量的损失。
3. 套层(Coating):套层是包裹在包层外的一层保护材料,通常由聚合物制成。
套层的主要作用是保护光纤免受机械和环境的损害。
4. 强化材料(Strength member):强化材料是纤芯、包层和套层的支撑结构,通常由玻璃或塑料制成。
强化材料的作用是增加光缆的强度和耐张力。
5. 护套(Jacket):护套是位于光缆外部的一层保护材料,通常由聚合物制成。
护套的作用是保护光缆免受外部环境的侵害,如湿度、温度和化学腐蚀等。
1. 单模光纤(Single-mode fiber):单模光纤的纤芯直径较小,通常为9微米(μm),光信号只能沿着一个路径传输。
由于传输距离较长且传播损耗较低,单模光纤常用于远距离通信和长距离数据传输。
2. 多模光纤(Multi-mode fiber):多模光纤的纤芯直径较大,通常有50微米(μm)和62.5微米两种规格。
光信号可以沿着多个路径传输,但传输距离较短且传播损耗较高。
多模光纤常用于局域网(LAN)和短距离数据传输。
3. 双芯光纤(Dual-core fiber):双芯光纤是一种特殊的光纤结构,具有两个纤芯,可以同时传输两个独立的信号。
双芯光纤常用于家庭网络和有线电视传输等应用。
4.光缆结构分类:根据光缆的结构和用途的不同,光缆可以分为室内光缆、室外光缆、敷设光缆、桥架光缆、井道光缆等。
室内光缆常用于局域网和数据中心等室内通信网络;室外光缆常用于长距离通信线路和城市光纤骨干网;敷设光缆常用于光缆敷设任务;桥架光缆常用于桥梁和铁路等特殊环境下的通信;井道光缆常用于建筑物内的光缆敷设。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
光纤的导光原理
光的反射与折射示意图
光的全反射示意图
n2
2
1
3
n1
n2
0
①②
n1 n2
4
阶跃光纤的导光原理示意图
阶跃型光纤折射率是沿径向呈阶跃分布,在轴向呈均匀 n2是包层折射率, n1是纤芯折射率。假设图中的阶跃 分布, 型光纤为理想的圆柱体,光线若垂直于光纤端面入射,并 与光纤轴线重合,或平行,这时光线将沿纤芯轴线方向向 前传播。若光线以某一角度入射到光纤端面时,光线进入 纤芯会发生折射。当光线到达纤芯与包层的界面上时,发 生全反射或折射现象。 若要使光线在光纤中实现长距离传输,必须使光线 在纤芯与包层的界面上发生全反射,即入射角大于临界角 。由前面分析已知光纤的临界角为 n2 c arcsin( ) n1
多模传输的模式数
• 对于阶跃型光纤,光纤中的传输模式数为
V2 Ns 2
• 对于渐变型光纤,光纤中的传输模式数为
V2 Ns 4
截止波长
• 截止波长是单模光纤特有的参数,是对应于第 一高阶模的归一化截止频率 Vc 2.405 时的 波长。即 2a
V
c
n1
2 2.405
故
2an1 2 c 2.405
阶跃型光纤中模式色散示意图
图中,沿光纤轴线传播的光线①传播路径最短,经过长度为L的 光纤传播时延t1最小,等于
Ln1 Ln1 t1 = C C
光纤中路径最长的是以端面临界角入射的光线②,它所产生的时 延t2是最大时延,等于:
L / sin 0 t2 = C / n1
Ln1 C sin 0
传播常数β
• 传播常数 β 是描述光纤中各模式传输特性的 一个参数,光纤中各模式的传输或截止都可以 由该参数决定。 • 光纤通信中信息就是由传导模传送的 。传导 模的传播常数是限制在到之间的,即 k0 n1 <β< k0 n2 。 • 当β> k0 n2时,包层中的电磁场不再衰减,而成 为振荡函数,这时传导模已不能集中于光纤纤 芯中传播,此时的模式称为辐射模,即传导模 截止。 2 • 当β= k0 n 时,传导模处于临界截止状态,光线 在纤芯和包层的界面掠射。
单模光纤(SMF) 按光纤传输模式数划分 多模光纤(MMF )
光纤的纤芯折射率剖面分布
2b 2b 2a 2b 2a 2c 2a
n
n
n n1
n1
n2 0 a (a)阶跃光纤 b r
n1
n2 0 a b (b) 渐变光纤 r 0 a (c)W型光纤 n3
n2
c b r
阶跃型光纤( SIF):纤芯折射率呈均匀分布,纤芯和 包层相对折射率差Δ 为1%~2%。 渐变型光纤( GIF):纤芯折射率呈非均匀分布,在轴 心处最大,而在光纤横截面内沿半径方向逐渐减小,在纤 芯与包层的界面上降至包层折射率n2。 W型光纤(双包层光纤):在纤芯与包层之间设有一折 射率低于包层的缓冲层,使包层折射率介于纤芯和缓冲层 之间。可以实现在1.3~1.6μ m之间色散变化很小的色散 平坦光纤或把零色散波长移到1.55μ m的色散位移光纤。
归一化传播常数β /k0与归一化频率V的关系曲线
n1
HE11 TE01 β /k0 EH11
HE31 HE41 TM01 n2 0 1 2 HE21 3 EH21 TM02 4 5 6 HE22
HE12
TE01
V
2a
c
n1
2
单模传输条件
当 0 < V < 2.405 时 , 光纤中除 HE11模以外,其余 主模(或基模) 模式均截止,此时可实现单模传 输。
光纤的光学参数
• 相对折射率差Δ
• 数值孔径 NA
相对折射率差Δ
对于阶跃型光纤,假设是 n2 包层折射率,n1 是纤芯折 射率,且 n1> n2 ,n1 和 n2 的差值大小直接影响光纤的性 能。故引入相对折射率差Δ 表示其相差程度。
n1 n2 2n1
2 2 2
n1 ≈ n 2 对于通信光纤, ,上式简化成为
• 模式色散 • 材料色散 • 波导色散
模式色散
模式色散是由于光纤不同模式 在同一波长下传播速度不同,使 传播时延不同而产生的色散。只 有多模光纤才存在模式色散,它 主要取决于光纤的折射率分布。
阶跃型光纤的模式色散
在阶跃型光纤中,当光线端面的入射角小于端面 临界角时,将在纤芯中形成全反射。若每条光 线代表一种模式,则不同入射角的光线代表不 同的模式,不同入射角的光线,在光纤中的传 播路径不同,而由于纤芯折射率均匀分布,纤 芯中不同路径的光线的传播速度相同,均为, 因此不同路径的光线到达输出端的时延不同, 从而产生脉冲展宽,形成模式色散。
套层 一次涂覆层 纤芯 包层
套层
一次涂覆层
包层
划分 石英系列光纤(以SiO2为主要材料) 多组分光纤(材料由多组成分组成) 液芯光纤(纤芯呈液态) 塑料光纤(以塑料为材料) 阶跃型光纤(SIF) 渐变型光纤(GIF) W型光纤
光纤种类
按光纤纤芯折射率分布划分
光纤的色散特性
色散的定义
光纤的色散是在光纤中传输的光信号, 随传输距离增加,由于不同成分的光传 输时延不同引起的脉冲展宽的物理效应。 色散主要影响系统的传输容量,也对中 继距离有影响。色散的大小常用时延差 表示,时延差是光脉冲中不同模式或不 同波长成分传输同样距离而产生的时间 差。
二、色散的种类
ITU-T建议的光纤分类
• G.651 光纤 : 渐变多模光纤,工作波长为 1.31 μ m 和 1.55 μ m,在 1.31μ m处光纤有最小色散,而在1.55μ m处光纤有最小损耗,主 要用于计算机局域网或接入网。 • G.652光纤:常规单模光纤,也称为非色散位移光纤,其零色散波 长为1.31μ m,在1.55μ m处有最小损耗,是目前应用最广的光纤。 • G.653光纤:色散位移光纤,在1.55μ m处实现最低损耗与零色散 波长一致,但由于在1.55μ m处存在四波混频等非线性效应,阻碍 了其应用。 • G.654光纤:性能最佳单模光纤,在1.55μ m处具有极低损耗(大 约0.18dB/km)且弯曲性能好。。 • G.655光纤:非零色散位移单模光纤,在1.55μ m~1.65μ m处色散 值为0.1~6.0ps/(nm.km),用以平衡四波混频等非线性效应, 适用于高速(10Gb/s以上)、大容量、DWDM系统。
NA sin 0 n1 n2
2 2
由于
n1
2
n2
2
2
2n1
,上式简化成为
NA n1 2
可见,光纤的数值孔径与纤芯与包层直径无关,只与两者的相 对折射率差有关。若纤芯和包层的折射率差越大, NA 值就越大, 即光纤的集光能力就越强。 对于阶跃型光纤,由于纤芯折射率均匀分布,纤芯端面各点的 数值孔径都相同,即各点收光能力相同。对于渐变型光纤,纤芯折 射率分布不均匀,光线在其端面不同点入射,光纤的收光能力不同 ,因此渐变型光纤数值孔径定义为:
光纤—结构与分类、导光原理 、色散
光纤的结构
• 纤芯位于光纤中心,直径 2a为 5 ~ 75 μ m, 作用是传输 光波。 • 包层位于纤芯外层,直径2b 为 100~150 μ m,作用是将 光波限制在纤芯中。 • 纤芯和包层即组成裸光纤,两者采用高纯度二氧化硅 ( SiO2)制成,但为了使光波在纤芯中传送,应对材 料进行不同掺杂,使包层材料折射率 n2 比纤芯材料折 射率n1小,即光纤导光的条件是n1>n2。 • 一次涂敷层是为了保护裸纤而在其表面涂上的聚氨基 甲酸乙脂或硅酮树脂层,厚度一般为 30~150μ m。 • 套层又称二次涂覆或被覆层,多采用聚乙烯塑料或聚 丙烯塑料、尼龙等材料。经过二次涂敷的裸光纤称为 光纤芯线。
渐变光纤的导光原理示意图
为了分析渐变型光纤中光的传播,将纤芯划分成若干同轴的 薄层 ,假设各层内折射率均匀分布,而每层折射率从里到外逐渐 减小,即有 n11> n12>n13 > n14>…。 若光以一定的入射角从轴心处第一层射向与第二层的交界面时,由 于是从光密介质射向光疏介质,折射接角大于入射角,光线将折射 进第二层射向与第三层的交界面,并再次发生折射进入第三层,依 次第推,由于光线都是从光密介质射向光疏介质,入射角将随折射 次数增大。当在某一界面处(图中是在第三层和第四层的界面上) ,入射角大于临界角时,光线将出现全反射,方向不再朝向包层而 是朝向轴心。之后光线是从光疏介质射向光密介质,入射角逐渐减 小,直至穿过轴心后,光线又出现从光密介质射向光疏介质,重复 上述折射过程。因此,当纤芯分层数无限多,其厚度趋于零时,渐 变型光纤纤芯折射率呈连续变化,光线在其中的传播轨迹不再是折 线,而是一条近似于正弦型的曲线。
所以阶跃型光纤中不同的模式的最大时延差Δ t为:
Ln1 Ln1 L n1 Ln1 t t 2 t1 ( 1) C sin 0 C C n2 C
渐变型光纤的模式色散
渐变型光纤中光线的传播路径是近似于正弦形曲线,其中正弦幅 度大的光线传播距离长,而正弦幅度小的光线传输路程短,但由于 渐变型光纤纤芯折射率分布在轴心处最大并沿径向逐渐减小,所以 正弦幅度最大的光线由于离轴心远,折射率小而传播速率高,而正 弦幅度最小的光线由于离轴心近,折射率大而传播速率低,结果在 到达输出端时相互之间的时延差近似为零,从而使渐变型多模光纤 的模式色散较小。 一般渐变型多模光纤的每公里长度上的最大时延差为
光纤的归一化频率
• 归一化频率是为表征光纤中所能传播的模式数 目多少而引入的一个特征参数。 • 其定义为:
V 2a
n1 n2
2
2
k 0 an1
2
• 其中,a ——是光纤的纤芯半径; ——是光纤的工作波长; • • n1和 n2 ——分别是光纤的纤芯和包层折射率; k0——真空中的波数; • ——光纤的相对折射率差。 •