(完整word版)层次分析法例题
层次分析法例题
专题:层次剖析法一般情形下,物流体系的评价属于多目标.多判据的体系分解评价.假如仅仅依附评价者的定性剖析和逻辑断定,缺少定量剖析根据来评价体系计划的好坏,显然是十分艰苦的.尤其是物流体系的社会经济评价很难作出准确的定量剖析.层次剖析法(Analytical Hierarchy Process )由美国有名运筹学家萨蒂(T .L .Saaty )于1982年提出,它分解了人们主不雅断定,是一种简明.适用的定性剖析与定量剖析相联合的体系剖析与评价的办法.今朝,该办法在国内已得到普遍的推广运用,普遍运用于能源问题剖析.科技成果评选.地区经济成长计划比较,尤其是投入产出剖析.资本分派.计划选择及评选等方面.它既是一种体系剖析的好办法,也是一种新的.简练的.适用的决议计划办法.◆ 层次剖析法的基起源基础理人们在日常生涯中经常要从一堆同样大小的物品中遴选出最重的物品.这时,一般是运用两两比较的办法来达到目标.假设有n 个物品,其真实重量用w 1,w 2,…w n 暗示.要想知道w 1,w 2,…w n 的值,最简略的就是用秤称出它们的重量,但假如没有秤,可以将几个物品两两比较,得到它们的重量比矩阵A .假如用物品重量向量W =[w 1,w 2,…w n ]T右乘矩阵A ,则有:由上式可知,n 是A 的特点值,W 是A 的特点向量.根据矩阵理论,n 是矩阵A 的独一非零解,也是最大的特点值.这就提醒我们,可以运用求物品重量比断定矩阵的特点向量的办法来求得物品真实的重量向量W.从而肯定最重的物品.将上述n 个物品代表n 个指标(要素),物品的重量向量就暗示各指标(要素)的相对重要性向量,即权重向量;可以经由过程两两身分的比较,树立断定矩阵,再求出其特点向量就可肯定哪个身分最重要.依此类推,假如n 个物品代表n 个计划,按照这种办法,就可以肯定哪个计划最有价值.◆ 运用层次剖析法进行体系评价的重要步调如下:(1)将庞杂问题所涉及的身分分成若干层次,树立多级递阶的层次构造模子(目标层.断定层.计划层).(2)标度及描写.统一层次随意率性两身分进行重要性比较时,对它们的重要性之比做出断定,赐与量化.(3)对同属一层次的各要素以上一级的要素为准则进行两两比较,根据评价尺度肯定其相对重要度,据此构建断定矩阵A .(4)盘算断定矩阵的特点向量,以此肯定各层要素的相对重要度(权重).(5)最后经由过程分解重要度(权重)的盘算,按照最大权重原则,肯定最优计划.★例题:某物流企业须要倾销一台设备,在倾销设备时须要从功效.价钱与可保护性三个角度进行评价,斟酌运用层次剖析法对3个不合品牌的设备进行分解剖析评价和排序,从中选出能实现物流计划总目标的最优设备,效.解题步调:1.标度及描写人们定性区分事物的才能习习用5个属性来暗示,即同样重要.稍微重要.较强重要.强烈重要.绝对重要,当须要较高精度时,可以取两个相邻属性之间的值,如许就得到9个数值,即9个标度.为了便于将比较判断定量化,引入1~9比率标度办法,划定用1.3.5.7.9分离暗示根据经验断定,要素i与要素j比拟:同样重要.稍微重要.较强重要.强烈重要.绝对重要,而2.4.6.8暗示上述两断定级之间的调和值.标度界说(比较身分i与j)1 身分i与j同样重要3 身分i与j稍微重要5 身分i与j较强重要7 身分i与j强烈重要9 身分i与j绝对重要2.4.6.8 两个相邻断定身分的中央值倒数身分i与j比较得断定矩阵a ij,则身分j与i比拟的断定为a ji=1/a ij 注:aij暗示要素i与要素j相对重要度之比,且有下述关系:aij=1/aji ;aii=1; i,j=1,2,…,n显然,比值越大,则要素i的重要度就越高.2.构建断定矩阵A断定矩阵是层次剖析法的根本信息,也是进行权重盘算的重要根据.目标层断定层计划层图设备倾销层次构造图根据构造模子,将图中各身分两两进行断定与比较,构造断定矩阵:即相对于物流体系总目标,断定层各身分相对重要性比较)如表1所示;相对功效,各计划的相对重要性比较)如表2所示; 相对价钱,各计划的相对重要性比较)如表3所示; 相对可保护性,各计划的相对重要性比较)如表4所 示.一般来讲,在AHP 法中盘算断定矩阵的最大特点值与特点向量,必不须要较高的精度,用乞降法或求根法可以盘算特点值的近似值.●乞降法1)将断定矩阵A 按列归一化(即列元素之和为1):b ij = a ij /Σa ij ; 2)将归一化的矩阵按行乞降:c i =Σb ij (i=1,2,3….n );3)将c i 归一化:得到特点向量W =(w 1,w 2,…w n )T,w i =c i /Σc i , W 即为A 的特点向量的近似值;4)求特点向量W 对应的最大特点值: ●求根法1)盘算断定矩阵A每行元素乘积的n次方根i =1,2, …, n)2,=(w1,w2,…wn)T即为A的特点向量的近似值;3)求特点向量W对应的最大特点值:(1).特点向量与一致性磨练①.各行元素的乘积并求其方根,如,,相似地,②③一致性磨练.现实评价中评价者只能对A进行粗略断定,如许有时会犯不一致的错误.如,已断定C1比C2重要,C2比C3较重要,那么,C1应当比C3更重要.假如又断定C1比C3较重要或一致重要,这就犯了逻辑错误.这就须要进行一致性磨练.根据层次法道理,运用A的理论最大特点值λmax与n之差磨练一致性.查同阶平均随机可以接收,不然从新两两进行比较).表5平均随机一致性指标阶数 3 4 5 6 7 8 9 10 11 1213 14 RI(2).相似于第(1)步的盘算进程,.特点向量相似于第(1)步的盘算进程,可以得到矩阵刀:—C的特点根.特点向相似于第(1)步的盘算进程,.特点向量与获得统一层次各要素之间的相对重要度后,就可以自上而下地盘算各级要素对总体的分解重要度.设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度(权重)为v ij ,则三级要素p i 的分解重要度为:计划C 1 计划C 2的重要度(权重)=0.230×0.258+0.648×0.333+0.122×0.066=0.283计划C 3的重要度(权重)=0.230×0.637+0.648×0. 075+0.122×0.785=0.291根据各计划分解重要度的大小,可对计划进行排序.决议计划. 层次总排序如表6所示.由表5可以看出,3且品牌1显著优于其他两种品牌的设备.功课:某配送中间的设计中要对某类物流设备进行决议计划,现初步选定三种设备配套计划,运用层次剖析法对优先斟酌的计划进行排序.解:对设备计划的断定重要可以从设备的功效.成本.保护性三方面进行评价.当然,若何评价功效.保护性等,还会用更细一级的指标来权衡.这里为剖析的轻便,省略了更具体的指标.如许,可树立对设备计划进行比较的层次剖析构造图,如图:根据以往经验和相干查询拜访成果显示:相干指标两两比较的成果。
层次分析法例题详解
层次分析法例题详解
例题:假设一家公司想要改善客户满意度,以下是几项建议:
A. 增加客户服务
B. 提高产品质量
C. 提高客户服务质量
层次分析法:
1.首先,将上述三项建议放入一个表格中,比较它们之间的关系。
建议 | 增加客户服务 | 提高产品质量 | 提高客户服务质量
------|-----------------|------------------|------------------------
关系 | 相关 | 相关 | 直接相关
2.然后,根据上表的关系,将建议分类:
A. 增加客户服务和提高客户服务质量:这两项建议直接相关,可以归为一类,即增加客户服务和提高客户服务质量。
B. 提高产品质量:这一项建议与其他两项建议相关,但不属
于同一类别,可以独立归类。
3.最后,根据分类的结果,提出有效的解决方案:
A. 增加客户服务和提高客户服务质量:可以采取措施增加客
户服务人员的数量,同时提高客户服务质量,如培训客服人员,
提升服务水平。
B. 提高产品质量:可以采取措施改善产品质量,如改进生产流程,提高材料质量,以及实施质量控制等。
层次分析法例题(3)
二、AHP 求解层次分析法(Analytic Hierarchy Process )是一种定量与定性相结合的多目标决策分析法, 将决策者的经验给予量化,这在对目标(因素)结构复杂且缺乏必要数据的情况下较为实用。
(一)、建立递阶层次结构目标层:最优生鲜农产品流通模式。
准则层:方案的影响因素有:c 1自然属性、c 2经济价值、C 3基础设施、c 5政府政策。
方案层:设三个方案分别为:A i 农产品产地一产地批发市场一销地批发市场一消费者、A 2农产品产地一产地批发市场一销地批发市场一农贸市场一消费者、A 3农业合作社一第三方物流企业一超市一消费者(本文假设农产品的生产地和销地不在同一个地区 )。
A 3图3— 1递阶层次结构(二)、构造判断(成对比较)矩阵所谓判断矩阵是以矩阵的形式来表述每一层次中各要素相对其上层要素的相对重要程度。
为目标层:G :最优生鲜农产品流通模式准则层:自然属性经济价值基础设施政府政策方案层:了使各因素之间进行两两比较得到量化的判断矩阵,弓I入1〜9的标度,见表3—1.为了构造判断矩阵,作者对6个专家进行了咨询,根据专家和作者的经验,四个准则下的两两比较矩阵分别为:(三)、层次单排序及其一致性检验层次单排序就是把本层所有要素针对上一层某一要素,排出评比的次序,这种次序以相对的数值大小来表示。
对应于判断矩阵最大特征根入max的特征向量,经归一化(使向量中各元素之和等于1)后记为W。
W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值,这一过程称为层次单排序。
能否确认层次单排序,需要进行一致性检验,所谓一致性检验是指对A确定不一致的允许范围。
由于入连续的依赖于a ij,则入比n大的越多,A 的不一致性越严重。
用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量,其不一致程度越大,引起的判断误差越大。
因而可以用入一n数值的大小来衡量A的不一致程度。
用一致性指标进行检验:CImax nCRCI RI用一致性指标进行检验:CI 工 n。
层次分析法
bn1
bn2 ……
bnn
bij是对于Ak而言,Bi对Bj的相对重要性的数值表示。
Bij通常取1、3、5、7、9及其他们的倒数,其含义为:
尺度
1 3 5 7 9
含义
第i个因素与第j个因素的影响相同 第i个因素比第j个因素的影响稍强 第i个因素比第j个因素的影响强 第i个因素比第j个因素的影响明强 第i个因素比第j个因素的影响绝对地强
层次分析法
一 问题的提出
例1 购物 买钢笔,一般要依据质量、颜色、实用性、价格、
外形等方面的因素选择某一支钢笔。 下馆子,则要依据馆子的饭菜质量、区位条件、档
次、饭菜价格、服务质量等方面因素来选择。
例2 旅游 假期旅游,是去风光秀丽的苏州,还是去迷人的
北戴河,或者是去山水甲天下的桂林,一般会依据景 色、费用、食宿条件、旅途等因素选择去哪个地方。
课题D2
课题可行性B3
难
研财
易
究政
程
周支
度
期持
c3
c4
c5
课题D3
层次分解时注意事项:
如果所选的要素不合理,其含义混淆不清,或 要素间的关系不正确,都会降低AHP法的结果质量, 甚至导致AHP法决策失败。 为保证递阶层次结构的合理性,需注意以下问题: 1、要对问题的影响因素有充分的理解,必要的时 候可以咨询相关的专家; 2、分解简化问题时把握主要因素,不漏不多 3、注意相比较元素之间的强度关系,相差太悬殊 的要素不能在同一层次比较。 4、以上均为完全层次
层次总排序的一致性检验
(1)
(2)
(3)
在(1)式中,CI为层次总排序的一致性指标,CIj为与aj对应 的B层次中判断矩阵的一致性指标;在(2)式中,RI为层次总排 序的随机一致性指标,RIj为与aj对应的B层次中判断矩阵的随 机一致性指标;在(3)式中,CR为层次总排序的随机一致性比例。
层次分析法例题及答案
1.744537635
.5163904
2018
680
626.2267776
605.4918067
20.73497088
646.9617485
31.10245632
678.0642048
709.1666611
740.2691174
771.3715738
802.4740301
年份
一次
672.4387174
704.9863578
737.5339981
年份
一次
二次
at
bt
预测值
C
2011
461
480
480
0
480
0
2012
478
468.6
473.16
-4.56
464.04
-6.84
2013
501
474.24
473.808
0.432
474.672
0.648
2014
548
490.296
2014
446
390.7866667
369.1866667
21.6
412.3866667
32.4
2015
486
423.9146667
402.0234667
21.8912
445.8058667
32.8368
2016
518
461.1658667
437.5089067
23.65696
484.8228267
35.48544
2017
547
495.2663467
472.1633707
关于层次分析法的例题与解
旅游业发展水平评价问题摘要为了研究比较两个旅游城市Q、Y的旅游业发展水平,建立层次分析法]3[数学模型,对两个旅游城市Q、Y的旅游业发展水平进行了评价.首先,通过对题目中的图1、表1进行了分析与讨论,根据层次分析法,建立了目标层A、准则层B和子准则层C、方案层D四个层次,通过同一层目标之间的重要性的两两比较,得出判断矩阵,利用]1[MATLAB编程对每个判断矩阵进行求解.其次,用MATLAB软件算出决策组合向量,再比较决策组合向量的大小,由“决策组合向量最大”为目标,得出城市Y的决策组合向量为0.4325,城市Q组合向量为0.5675.最后,通过城市Q旅游业发展水平与旅游城市Y旅游业发展水平的决策组合向量比较,得出城市Q的旅游业发展水平较高.关键词层次分析法MATLAB旅游业发展水平决策组合向量1.问题重述本文要求分析QY,两个旅游城市旅游业发展水平,并且给出了两个城市各方面因素的对比,如城市规模与密度,经济条件,交通条件,生态环境条件,宣传与监督,旅游规格,空气质量,城市规模,人口密度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP,外贸依存度,市内外交通,人均拥有绿地面积,污水集中处理率,环境噪音,国内外旅游人数,理赔金额,立案数量,A级景点数量,旅行社数量,星级饭店数量.建立数学模型进行求解.2.问题分析本文要求分析QY,两个城市的分析Y,两个旅游城市旅游业发展水平,在对Q中,发现需要考虑因素较多,第一、城市规模与密度,包括城市规模与人口密度.第二、经济条件,包括外贸依存度,人均GDP,人均住房面积,第三产业增加值占GDP比重,税收GDP.第三、交通条件,包括市内外交通.第四,生态环境条件包括空气质量,人均绿地面积,污水处理能力,环境噪音.第五、宣传与监督,包括国内外旅游人数,游客投诉立案件数.第六、旅游规格,包括A级景点个数,旅行社个数,星级饭店个数,这就涉及到层次分析法来估算各个指标的权重,评出最优方案.具体内容如下:(1)本文选择了对QY,两个旅游城市旅游业发展水平有影响的19个指标作为评价要素,指标规定如下:城市规模:城市的人口数量.人口密度:单位面积土地上居住的人口数.是反映某一地区范围内人口疏密程度的指标.人口影响城市规模.人口密度越大城市规模也就越大.人均GDP:即人均国内生产总值.人均城建资金:即用于城市建设的资金总投入.第三产业增加值:增加值率指在一定时期内单位产值的增加值.即第三产业增加值越高越能带动城市经济的发展.税收GDP:税收是国家为实现其职能,凭借政治权力,按照法律规定,通过税收工具强制地、无偿地征收参与国民收入和社会产品的分配和再分配取得财政收入的一种形式.外贸依存度:即城市对于外贸交易的依赖程度.市内交通:即城市市区交通情况.市外交通:即城市郊区交通情况.市内交通与市外交通对于城市交通条件具有同等的重要性.空气质量:即城市总体空气质量情况.空气质量越好对于城市生态环境就越好.人均绿地面积:即反应城市绿化面积以及人口密度的比值关系.污水处理能力:城市污水处理水平.环境噪音:城市环境噪音情况.国内外旅客人数:国内外来旅客一年总人数.人数越多说明宣传与监督就越好.理赔金额:即立案后需要赔付的资金数.立案件数:即在旅游时发生违法事件后公安部立案的件数.A 级景点数量:即A 级景点的个数.A 级景点越多,越能带动旅行社数量以及星级饭店数量,则旅游规格越大.旅行社数量:即旅行社的个数.星级饭店数量:即星级饭店在旅游景点的个数.(2)用层次分析法建立模型,根据判断矩阵,利用MATLAB 软件,算出每个判断矩阵的特征向量W 、最大特征根c 、一次性指标CI ,再结合随机一次性指标,得出每个指标的特征向量.(3)用(2)得出的数据,运用MATLAB 软件算出两个城市的决策组合向量,做比较.3.模型假设1.假设两个城市Q 、Y 的人口流动不大.2.假设两个城市Q 、Y 的各项指标短期内不会发生太大的改变.4.符号说明A : 表示目标层;j B : 表示准则层第j 个指标的名称)6,,2,1( =j ;i C : 表示子准则层第i 个指标的名称()19,,2,1 =i ; q D : 表示方案层第q 个指标的名称()2,1=q ;1w : 表示准则层对目标层的特征向量组成的矩阵; 2w : 表示子准则层对准则层的特征向量组成的矩阵; 3w : 表示方案层对子准则层的特征向量组成的矩阵;CI : 表示一次性指标;CR : 表示随机一次性指标; Z : 表示决策组合向量.5.模型建立与求解5.1 根据层次分析法分析以及题目中的图1可以建立如下表5-1的层次分析结构,并构造两两比较判断矩阵在递阶层次结构中,设上一层元素B 为准则层,所支配的下一层元素为1C ……19C ,要确定元素1C ……n C 对于准则层B 相对的重要性即权重,可分为两种情况:(1)如果1C 2C ……n C 对B 的重要性可定量,其权重可直接确定; (2)如果问题复杂,1C 2C ……n C 对B 的重要性无法直接定量,而是一些定性的,确定权重用两两比较方法.(3)其方法是,对于准则层C ,元素i C 和j C 哪一个更重要,重要多少,按1-9比例标度对重要性程度赋值.表5-2中列出了1-9标度的含义.对于准则B ,n 个元素之间相对重要性的比较得到一个两两比较判断矩阵P =()mxn ij P ,表示其中ij P 表示i P 和j P 对B 的影响之比,显然ij P >0,ij P =ijP 1,ij P =1,由ij P 的特点,P 称为正互反矩阵.通过两两判断矩阵用方根法求出他们的最大特征根和特征向量,求法如下: 1. 判断矩阵每一行元素的乘积,其中ij n1j 1p m =∏=,i =1,2…,n .2. 计算i m 的n 次方根_i w ,_i w =n i m .3. 对向量Tn w w w ⎪⎭⎫ ⎝⎛=__1,...,归一化,即∑==n j ji w 1__i w w ,则Tn w w w ⎪⎭⎫⎝⎛=__1,.为所求的特征向量.4. 计算判断矩阵的最大特征跟max λ,()∑==n1max i iinw pw λ,式中()i pw 表示pw 的第i 个元素.5. 定义⎪⎭⎫ ⎝⎛--=1max n n CI CI λ为矩阵A 的一致性指标,为了确定A 的不一致性程度的容许范围,需要找出衡量A 的一致性指标CI 的标准.引入随机一致性指标RI .平均随机一致性指标RI 是这样得到的;对于固定的n ,随机构造正互反矩阵A ,其中ij a 是从1,2,……9,91......31,21中随机抽取的,这样的A 是最不一致的,取充分大的样子(500个样本)得到A 的最大特征跟的平均值max λ,定义⎪⎭⎫ ⎝⎛--=1max n n RI λ,对于不同的n 得出随机一致性指标RI 的数值如下表5-3表中n =1,2时RI =0,是因为1,2阶的正互反矩阵总是一致阵.令RICICR =,称CR 为一致性比率,当CR <0.1时,本文认为判断矩阵具有满意的一致性,否则就需要调整判断矩阵,使之具有满意的一致性.最后通过计算得出下表5-4(其中n B 表示准则层的特征向量中的第n 个数值,in C 表示指标层的特征向量第n 个准则对第j 个指标的数值)层次总排序一致性检验的方法j n1CI c CI j j ∑==j n 1c RI RI j j ∑==RICI CR =若1.0CR时,所以认为判断矩阵具有满意的一致性,否则就需要调整判断.矩阵,使之具有满意的一致性.5.2根据层次分析法求出各个指标的权重依据题目中的表1分析,对本题做出其中一种假设:(1)经济条件和交通条件重要性相当,生态环境条件最重要,旅游规格、宣传与监督、城市规模与密度依次次之.(2)在城市规模与密度中,城市人口比人口密度重要一点.(3)在经济条件中,第三产业增加值GDP第一重要,其次是人均GDP,税收GDP、外贸依存度、人均城建资金依次次之.(4)在交通条件中,市内交通和市外交通的重要性相当.(5)在生态环境条件中,空气质量第一重要,其次是人均绿地面积,污水处理能力、环境噪音依次次之.(6)在宣传与监督中,国内外旅游人数第一重要,理赔金额、游客投诉立案件数重要性相当.(7)在旅游规格中,A级景点个数第一重要,星级饭店个数、旅行社个数依次次之.(8)对于城市规模,城市Q比城市Y的重要性小一些;对于人口密度,城市Y比城市Q的重要性明显重要;对于人均GDP,城市Q比城市Y的重要性稍重要;对于人均城建资金,城市Q比城市Y的重要性稍微重要;对于第三产业增加值GDP,城市Q比城市Y的重要性小一些;对于税收GDP,城市Q比城市Y的重要性稍小一点;对于外贸依存度,城市Q比城市Y的重要性稍重要;对于市内交通,城市Y比城市Q的重要性稍重要一点;对于市外交通,城市Y比城市Q的重要性比稍重要小一点;归于空气质量,城市Q比城市Y的重要性相当;对于人均绿地面积,城市Y比城市Q的重要性稍重要;对于污水处理能力,城市Y比城市Q的重要性稍重要一些;对于环境噪音,城市Q比城市Y的重要性相当;对于国内外旅游人数,城市Q比城市Y的重要性稍重要;对于理赔金额,城市Q比城市Y的重要性稍重要一些;对于游客投诉立案件数,城市Q比城市Y的重要性稍重要;对于A级景点个数,城市Y比城市Q的重要性稍重要小一些;对于旅行社个数,城市Y比城市Q的重要性稍重要小一些;对于星级饭店个数,城市Q比城市Y的重要性相当.根据上述分析,按1-9比例标度对准则层对目标层、子准层对准则层、目标层对子准则层的重要程度进行赋值,构造准则层对目标层的判断矩阵、子准则层对准则层的判断矩阵、方案层对子准则层的判断矩阵.准则层()6,,2,1 =j B j 对目标层A 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=12312121321141313123412252321114232111431215141411A 利用MATLAB 软件(附录1)求得 最大特征值0719.6m ax =λ特征向量⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=1219.00753.03422.02057.02057.00492.01w一致性检验比率1.00116.0<=CR所以矩阵满足一致性检验.子准则层21,C C 对准则层1B 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=131311B利用MATLAB 软件(附录2)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 子准则层76543,,,,C C C C C 对准则层2B 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=121412312131321431522131511413221412B 利用MATLAB 软件(附录3)求得 最大特征值0681.5m ax =λ特征向量⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=0973.01599.04185.00618.02625.0w一致性检验比率1.00152.0<=CR所以矩阵满足一致性检验.子准则层98,C C 对准则层3B 的判断矩阵⎥⎦⎤⎢⎣⎡=11113B 利用MATLAB 软件(附录4)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 子准则层13121110,,,C C C C 对准则层4B 的判断矩阵⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡=1121311121312212133214B 利用MATLAB 软件(附录5)求得最大特征值0104.4m ax =λ特征向量⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=1409.01409.02628.04554.0w 一致性检验比率1.00038.0<=CR所以矩阵满足一致性检验.子准则层161514,,C C C 对准则层5B 的判断矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1221211212215B 利用MATLAB 软件(附录6)求得最大特征值0536.3m ax =λ特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=3108.01958.04934.0w 一致性检验比率1.00462.0<=CR所以矩阵满足一致性检验.子准则层191817,,C C C 对准则层6B 的判断矩阵⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=1221211312316B 利用MATLAB 软件(附录7)求得最大特征值0092.3m ax =λ特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2970.01634.05396.0w 一致性检验比率1.00079.0<=CR所以矩阵满足一致性检验.方案层对子准则层的判断矩阵 方案层21,D D 对子准则层1C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=122111C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层2C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=155112C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎢⎣=1667.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层3C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=133113C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层4C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=144114C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层5C 的判断矩阵:⎥⎥⎦⎤⎢⎢⎣⎡=122115C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎢⎣=3333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层6C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=133116C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层7C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=141417C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层8C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=155118C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎢⎣=8333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层9C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=122119C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层10C 的判断矩阵⎥⎦⎤⎢⎣⎡=111110C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层11C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1313111C利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=7500.02500.0w因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层12C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1414112C 利用MATLAB 软件(附录8)求得 最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2000.08000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层13C 的判断矩阵⎥⎦⎤⎢⎣⎡=111113C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层14C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331114C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验.2115⎥⎥⎦⎤⎢⎢⎣⎡=1441115C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=8000.02000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层16C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331116C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=2500.07500.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子准则层17C 的判断矩阵⎥⎥⎦⎤⎢⎢⎣⎡=1331117C利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验.2118⎥⎥⎦⎤⎢⎢⎣⎡=1221118C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=6667.03333.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 方案层21,D D 对子19C 的判断矩阵: ⎥⎦⎤⎢⎣⎡=111119C 利用MATLAB 软件(附录8)求得最大特征值2max =λ特征向量为⎥⎦⎤⎢⎣⎡=5000.05000.0w 因为当2=n 时,0=RI ,2阶的正反矩阵总是一致性,所以满足一致性检验. 通过准则层()6,,2,1 =j B j 对目标层A 的判断矩阵、子准则层()19,,2,1 =i C i 对准则层()6,,2,1 =j B j 的判断矩阵得出特征向量,建立层次总表5-5层次总排序一致性检验如下:0073.061==∑=j j j CI B CI65274.0j 61j j ==∑=RI B RI0111.065274.00073.0===RI CI CR 由于1.00111.0<=CR ,所以认为层次总排序的结果具有满意的一致性,因此不需要重新调整判断矩阵的元素取值.5.3 利用MATLAB 进行决策组合向量的运算(附录9)⋅⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡=⋅⋅=Tw w w Z 2970.0001634.0000005396.00000003108.0000001958.0000004934.00000001409.0000001409.0000002628.0000004554.00000005000.0000005000.00000000973.0000001599.0000004185.0000000618.0000002625.00000002500.0000007500.0132⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡5000.05000.06667.03333.06667.03333.02500.07500.08000.02000.02500.07500.05000.05000.02000.08000.07500.02500.05000.05000.06667.03333.01667.08333.08000.02000.02500.07500.06667.03333.02000.08000.02500.07500.08333.01667.03333.06667.0⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡⋅1219.00753.03422.02057.02057.00492.0 Z ⎥⎦⎤⎢⎣⎡=5675.04325.0 比较Z 值大小可知,12Z Z >,表明城市Q 的旅游发展也水平最高,城市Y 的旅游业发展水平次之,所以城市Q 的旅游发展也水平高.6模型的评价优点:(1) 本文选择了计算比较简单的层次分析法,经过计算得到了相应的综合发展旅游业的估计值,为城市旅游业的发展提供了依据.(2) 使用了MATLAB 软件,减少了计算工作量,大大降低了运算的困难.缺点:判断的结果具有一定的主观性,不能比较切实的结合当地的具体情况,做出科学的决策方案.7参考文献[1] 姜启源等,数学建模(第四版)北京:高等教育出版社.2011年[2] 马莉,数学实验与建模,北京:清华大学出版2010年[3] 王莲芬,层次分析法引论,北京:中国人民大学出版社,1990年附录:附录1x=[1 1/4 1/4 1/5 1/2 1/3;4 1 1 1/2 3 2;4 1 1 1/2 3 2;5 2 2 1 4 3;2 1/3 1/3 1/4 1 1/2;3 1/2 1/2 1/3 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-6)/5 %一致性指标CR=CI/1.24 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =6.0719W =0.04920.20570.20570.34220.07530.1219B =0.04670.21410.21410.29180.08810.1452CI =0.0144CR =0.0116C =0.2146附录2:>> x=[1 3;1/3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250附录3:x=[1 4 1/2 2 3;1/4 1 1/5 1/3 1/2;2 5 1 3 4;1/2 3 1/3 1 2;1/3 2 1/4 1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-5)/4 %一致性指标CR=CI/1.12 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =5.0681W =0.26250.06180.41850.15990.0973B =0.27340.05940.36640.18730.1135CI =0.0170CR =0.0152C =0.2698附录4:x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000附录5:x=[1 2 3 3;1/2 1 2 2;1/3 1/2 1 1;1/3 1/2 1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-4)/3 %一致性指标CR=CI/0.90 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =4.0104W =0.45540.26280.14090.1409B =0.43950.27870.14090.1409CI =0.0035CR =0.0038C =0.3131附录6:x=[1 2 2;1/2 1 1/2;1/2 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-3)/2 %一致性指标CR=CI/0.58 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =3.0536W =0.49340.19580.3108B =0.46060.18790.3515CI =0.0268CR =0.0462C =0.3733附录7:x=[1 3 2;1/3 1 1/2;1/2 2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-3)/2 %一致性指标CR=CI/0.58 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =3.0092W =0.53960.16340.2970B =0.51990.16200.3181CI =0.0046CR =0.0079C =0.4015附录8:% 目标层Q,Y对子准则层C1的赋值>> x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C2的赋值x=[1 5;1/5 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.83330.1667B =0.83330.1667CI =CR =NaNC =0.7222End% 目标层Q,Y对子准则层C3的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C4的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.80000.2000B =0.80000.2000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C5的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.66670.3333B =0.66670.3333CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C6的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C7的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.20000.8000B =0.20000.8000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C8的赋值x=[1 5;1/5 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.16670.8333B =0.16670.8333CI =CR =NaNC =0.7222End% 目标层Q,Y对子准则层C9的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C10的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =NaNC =0.5000% 目标层Q,Y对子准则层C11的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.25000.7500B =0.25000.7500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C12的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =W =0.80000.2000B =0.80000.2000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C13的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000% 目标层Q,Y对子准则层C14的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C15的赋值x=[1 4;1/4 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.20000.8000B =0.20000.8000CI =CR =NaNC =0.6800End% 目标层Q,Y对子准则层C16的赋值x=[1 1/3;3 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.75000.2500B =0.75000.2500CI =CR =NaNC =0.6250End% 目标层Q,Y对子准则层C17的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C18的赋值x=[1 2;1/2 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.33330.6667B =0.33330.6667CI =CR =NaNC =0.5556End% 目标层Q,Y对子准则层C19的赋值x=[1 1;1 1];[V,D]=eig(x);%c=max(diag(D)) %最大特征根位置f=find(diag(D)==max(diag(D))); %求lamda(最大特征根)位置----其中:diag 为矩阵对角线上的元素W=V(:,f)/sum(V(:,f)) %归一特征向量B=x/sum(x) %计算权向量CI=(c-2)/1 %一致性指标CR=CI/0 %一致性比率,要小于0.1C=sum(B.*W) %组合权重运算结果:c =2W =0.50000.5000B =0.50000.5000CI =CR =NaNC =0.5000附录9:% 最终组合权向量:x=[0.75 0 0 0 0 0;0.25 0 0 0 0 0;0 0.2625 0 0 0 0;0 0.0618 0 0 0 0;0 0.4185 0 0 0 0;0 0.1599 0 0 0 0;0 0.0973 0 0 0 0;0 0 0.5 0 0 0;0 0 0.5 0 0 0;0 0 0 0.4554 0 0;0 0 0 0.2628 0 0;0 0 0 0.1409 0 0;0 0 0 0.1409 0 0;0 0 0 0 0.4934 0;0 0 0 0 0.1958 0;0 0 0 0 0.3108 0;0 0 0 0 0 0.5396;0 0 0 0 0 0.1634;0 0 0 0 0 0.2970]x =0.7500 0 0 0 0 00.2500 0 0 0 0 00 0.2625 0 0 0 00 0.0618 0 0 0 00 0.4185 0 0 0 00 0.1599 0 0 0 00 0.0973 0 0 0 00 0 0.5000 0 0 00 0 0.5000 0 0 00 0 0 0.4554 0 00 0 0 0.2628 0 00 0 0 0.1409 0 00 0 0 0.1409 0 00 0 0 0 0.4934 00 0 0 0 0.1958 00 0 0 0 0.3108 00 0 0 0 0 0.53960 0 0 0 0 0.16340 0 0 0 0 0.2970y=[0.0492;0.2057;0.2057;0.3422;0.0753;0.1219]y =0.04920.20570.20570.34220.07530.1219z=x*y运算结果:z =0.03690.01230.05400.01270.08610.03290.02000.10290.10290.15580.08990.04820.04820.03720.01470.02340.06580.01990.0362a=[0.3333 0.8333 0.75 0.2 0.3333 0.75 0.2 0.1667 0.3333 0.5 0.25 0.8 0.5 0.75 0.2 0.75 0.3333 0.3333 0.5;0.6667 0.1667 0.25 0.8 0.6667 0.250.8 0.8333 0.6667 0.5 0.75 0.2 0.5 0.25 0.8 0.25 0.6667 0.6667 0.5]a =Columns 1 through 70.3333 0.8333 0.7500 0.2000 0.3333 0.7500 0.20000.6667 0.1667 0.2500 0.8000 0.6667 0.2500 0.8000Columns 8 through 140.1667 0.3333 0.5000 0.2500 0.8000 0.5000 0.75000.8333 0.6667 0.5000 0.7500 0.2000 0.5000 0.2500Columns 15 through 190.2000 0.7500 0.3333 0.3333 0.50000.8000 0.2500 0.6667 0.6667 0.5000c=a*z运算结果:c =0.43250.5675。
(完整版)层次分析法模板例题
CR=CI/RI
3.0536 0.026810788 0.052068882
一致性检验 Awi/Wi 3.1356 CI=(λ-n)/(n-1) 3.1356 3.1356 3.1356 0.067805422
CR=CI/RI 0.131684027
总排序
Σaibin
0.069712 0.096671 0.016757
0.274628908 0.253415711 0.471955382
CR=CI/RI 0.118696 0.118696
总权重
=A14 按行相乘 开n次方 权重Wi
Awi
6
3.0000 1.4422 0.3806
1.1936
4
8.0000 2.0000 0.5279
1.6551
1
0.0417 0.3467 0.0915
0.2869
3.7889
层次总排序计算
四准则ai
经济效益 社会效益 生态效益 技术要求
三方案bin
0.4821 0.1170 0.2178 0.1831
Awi
1/7 0.2857 0.6586 0.1570
0.4988
1/4 0.1250 0.5000 0.1192
0.3786
1
28.0000 3.0366 0.7238
2.2995
4.1952
=A12 1 2 5
=A13 1/2 1 3
准则层对于目标层的判断矩阵及单排序和一致性检验
=A14 按行相乘 开n次方 权重Wi
CIi Rii(与n有关的常
数) CRi
层次总排序一致性检验
0.0884641 0.001847 0.026811 0.067805
(完整word版)层次分析法例题
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示.以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性.1C ,2C ,3C 表示备选的3种品牌的设备.解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。
为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。
目标层判断层方案层 图 设备采购层次结构图注:a ij表示要素i与要素j相对重要度之比,且有下述关系:a ij=1/a ji ;a ii=1;i,j=1,2,…,n显然,比值越大,则要素i的重要度就越高.2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。
根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵BA-(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;●判断矩阵CB-1(相对功能,各方案的相对重要性比较)如表2所示;●判断矩阵CB-2(相对价格,各方案的相对重要性比较)如表3所示;●判断矩阵CB-3(相对可维护性,各方案的相对重要性比较)如表4所示。
表1判断矩阵BA-表2 判断矩阵CB-1表3 判断矩阵2表4判断矩阵C B-33、计算各判断矩阵的特征值、特征向量及一致性检验指标一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值。
层次分析法分析及实例教程完美版共40页
谢谢!
层次分析法分析及实例教程完美版
•
46、寓形宇内复几时,曷不委心任去 留。
•
47、采菊东篱下,悠然见南山。
•
48、啸傲东轩下,聊复得此生。
•
49、勤学如春起之苗,不见其增,日 有所长 。
•
50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
61、奢侈是舒适的,否则就不是奢侈 。——CocoCha nel 62、少而好学,如日出之阳;壮而好学 ,如日 中之光 ;志而 好学, 如炳烛 之光。 ——刘 向 63、三军可夺帅也,匹夫不可夺志也。 ——孔 丘 64、人生就是学校。在那里,与其说好 的教师 是幸福 ,不如 说好的 教师是 不幸。 ——海 贝尔 65、接受挑战,就可以享受胜利的喜悦 。——杰纳勒 尔·乔治·S·巴顿
层次分析法例题.docx
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对 3 个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。
以 A 表示系统的总目标,判断层中B1表示功能,B2表示价格, B3表示可维护性。
C1,C2,C3表示备选的3种品牌的设备。
目A判断功能 B1价格B2性B3方案品1品 C品3C2C采次构解题步骤:1、标度及描述人们定性区分事物的能力习惯用 5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到 9个数值,即 9个标度。
为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素 i 与要素 j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而 2、4、6、8表示上述两判断级之间的折衷值。
度定(比因素 i 与 j )1因素 i 与 j 同重要3因素 i 与 j 稍微重要5因素 i 与 j 重要7因素 i 与 j 烈重要9因素 i 与 j 重要2、 4、 6、 8两个相判断因素的中倒数因素 i 与 j 比得判断矩 a ij,因素 j 与 i 相比的判断 a ji =1/ a ij注: a ij表示要素 i 与要素 j 相重要度之比,且有下述关系:a ij =1/a ji;a ii =1; i , j=1 ,2,⋯, n 然,比越大,要素 i 的重要度就越高。
2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。
根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵 A B( 即相对于物流系统总目标,判断层各因素相对重要性比较 ) 如表 1所示;●判断矩阵 B 1 C ( 相对功能,各方案的相对重要性比较 ) 如表 2 所示;●判断矩阵 B 2 C( 相对价格,各方案的相对重要性比较 ) 如表 3 所示;●判断矩阵 B 3 C( 相对可维护性, 各方案的相对重要性比较 ) 如表 4 所示。
(2024版)层次分析例子(1)
可编辑修改精选全文完整版
正义的、非正义的两类
现代医学还没有真正理解这些疾病
来打网球
求他做事
把书房收拾得干净又整齐
要求他俩准时到报到地点报到
小王爱听音乐剧
缺乏感性的生活经历
不能让黄河的悲剧在长江重演
辽阔的游泳者云集的细沙海滩的景象
在渺无人烟的丛林间披荆斩棘种下果木
禁止携带危险品上车
在美国首都华盛顿的杰弗逊纪念堂屋顶
波澜当代最伟大的诗人和翻译家切斯瓦夫·米沃什
以其震古烁今的哲学伟绩持久地报答母校的培育之恩
一个思想家、艺术家唯一可以做的就是坚持真理和正义
知识分子批判需要清明的理性、知识的底子、专业的水准
在与命运的抗争中彰显人类的向上力量和深邃驳杂的人性魅力的人
对彭德怀元帅一件事情的回忆
把孩子的衣服从箱子里拿出来
生活在持续而严重的饥饿状态中
用大自然赋予人类的乐趣弥补生活中的遗憾往事像潮水一样撞击着我的心扉
建立起充满生机和活力的社会主义经济体制想出了一个好办法
那些关于我们民族历史的教科书
讲演中的一席话说得大家兴奋起来
派人去通知小王马上来报到
写信催妹妹赶快离开杭州回家来
水面上淡淡地笼罩了一层雾气。
层次分析法例题
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。
以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。
1C ,2C ,3C 表示备选的3种品牌的设备。
解题步骤:1、标度及描述人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。
为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。
注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系:a ij =1/a ji ;a ii =1; i ,j=1,2,…,n显然,比值越大,则要素i 的重要度就越高。
目标层判断层方案层 图 设备采购层次结构图2、构建判断矩阵A判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。
根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:●判断矩阵B A -(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;●判断矩阵C B -1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B -2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B -3(相对可维护性,各方案的相对重要性比较)如表4所 示。
1B A -C B -14C B -33、计算各判断矩阵的特征值、特征向量及一致性检验指标一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值。
层次分析法例题(20210228095514)
层次分析法在最优生鮮农尹品流通中的应用C-Z 建立逅阶层次结构 t ]标屋:釆优生鲜农产%浇通核式。
准则屋:方寺的影响因素有:5勺熱為性.C2经济价值.5恋础役旋.。
5政府政策。
为令层:设三个方亲分别为:儿农2卜地一产地枇发市场一销地枇发卞场一请条者・ 生 农产醃产地一严地枇发市场一钠地枇发市场一农賈市场一谄奏者.比农业仝作社一弟三方场流企业一起市一请务者(本丈假设农产%的生产地和箱地不心同一个地区)。
0 3—1迪阶屋次结构C 二人构凌判新(成对比较)矩阵所谓判斯矩阵是以矩阵的形丸来痕述每一屋次中冬要素相对其上窿要素的相对重要程度。
为目标层:准则层:自然属性政府政策方案层:4A 2 A 3为了构凌判斯矩阵.作者对6个专家进行了咨询,根据专家和作者的絞脸,b个准則下的両而比轶矩阵分别为:(三人窿次单排序及其一致性检睑层次单排序就是把本處所冇要素针对上一层素一要素,排出评比的次序,这种次序以相对的数值大小来表承。
对应于判浙矩阵浚丸特征报入max的特征向量.经归一化(使向量中冬元素之和*于1)后乜为WoW 的元素为同一處次因素对于上一星次因素总因素才(1对重要性的排序权值.这一过程称为屋次单排序。
能否确认层次单排序.需要遗行一孜性检验,所谓一致性检验是指对A确主不一孜的允许o由于入连块的依赖于gj ,则入比n大的越多.A 的不一欢性越严重。
用呆大箱征链对应的特征向量作为彼比较因素对上屋亲因素彩响程度的权向量,其不一致程度越大,引起的判斷谋差越大。
因而可以用九一njk值的丸小来衡董A的不一致程度。
}— ll 用一孜性指标进行检睑:67=——o 其中/I 叭 是比较矩阵的呆丸将征值,n 是比较矩n-\阵的阶散。
C7的值越小.判新矩阵越接近于兜全一欢。
及之,判斷矩阵偏青兜全一致的程 度越丸。
(5、层次总排序及其一致性检睑1853・0.603 0.470 0.526 0.667*2.266'A = ' 1/8 1 1/2 1/6列向量归一化, 0.0750.0590.053 0.037按行求和、 0.2241/5 211/3 F0.121 0.118 0」05 0.0740.418〔1/36 3 10.2010.35303160.2221.0920.567'°056 (0)0.104 0.273 • •6?(0) =(0.567,0.056,0.104,0.273)7 同理可计算出判新矩阵1 1/3 1/9'■ 1 3 9'"1 2 9'\ 1/3 1/9, <31 1/8 ,比=< 1/3 1 81/2 17 “ Bq = < 31 1/7 981"9 1/8 1."9 1/7 1.971对应的呆大特征值与特征向量依次为:0.0692⑷ ms\ = 3.083,2⑴4= {0.1550.7761 8 5 3「0.567,2.354 1/8 1 1/2 1/60.056 —0.225 1/521 1/30.1040.422 〔1/3 631丿0.273■1.110丿1 ,2・3540.225 4--L 0.422十 1」10\—一 4 10.567 '0.056 '0.104 0.273)A VV (0)=2⑹唤=0068,0.6400595,0.146 .;2<2)m ax = 3.216, d)(,)2=<0.306 ,以⑶ m^ = 3.O24,0⑴3=< 0.3470.786丿0.0540.058/i (,,max = 3.1 1 1“"1 =用一孜性指标进行检瞼:ci =~nCI~R 7灯一1n 1 2 3 4 5 6 7 8 9 10 11 RI 0 0 0.58 0.90 1.12 1.24 132 1.41 1.45 1.49 1.51 fl;对于判斯矩阵A, X °>max=4.073> RI = 0.90表示A的不一致程度在彖许国,此时可用A的特征佝量代辱权向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
某物流企业需要采购一台设备,在采购设备时需要从功能、价格与可维护性三个角度进行评价,考虑应用层次分析法对3个不同品牌的设备进行综合分析评价和排序,从中选出能实现物流规划总目标的最优设备,其层次结构如下图所示。
以A 表示系统的总目标,判断层中1B 表示功能,2B 表示价格,3B 表示可维护性。
1C ,2C ,3C 表示备选的3种品牌的设备。
解题步骤:
1、标度及描述
人们定性区分事物的能力习惯用5个属性来表示,即同样重要、稍微重要、较强重要、强烈重要、绝对重要,当需要较高精度时,可以取两个相邻属性之间的值,这样就得到9个数值,即9个标度。
为了便于将比较判断定量化,引入1~9比率标度方法,规定用1、3、5、7、9分别表示根据经验判断,要素i 与要素j 相比:同样重要、稍微重要、较强重要、强烈重要、绝对重要,而2、4、6、8表示上述两判断级之间的折衷值。
注:a ij 表示要素i 与要素j 相对重要度之比,且有下述关系:
a ij =1/a ji ;a ii =1; i ,j=1,2,…,n
显然,比值越大,则要素i 的重要度就越高。
2、构建判断矩阵A
目标层
判断层
方案层 图 设备采购层次结构图
判断矩阵是层次分析法的基本信息,也是进行权重计算的重要依据。
根据结构模型,将图中各因素两两进行判断与比较,构造判断矩阵:
●判断矩阵B A -(即相对于物流系统总目标,判断层各因素相对重要性比较)如表1所示;
●判断矩阵C B -1(相对功能,各方案的相对重要性比较)如表2所示; ●判断矩阵C B -2(相对价格,各方案的相对重要性比较)如表3所示; ●判断矩阵C B -3(相对可维护性,各方案的相对重要性比较)如表4所 示。
1B A -
C B -1
4C B -3
3、计算各判断矩阵的特征值、特征向量及一致性检验指标
一般来讲,在AHP 法中计算判断矩阵的最大特征值与特征向量,必不需要较高的精度,用求和法或求根法可以计算特征值的近似值。
●求和法
1)将判断矩阵A 按列归一化(即列元素之和为1):b ij = a ij /Σa ij ; 2)将归一化的矩阵按行求和:c i =Σb ij (i=1,2,3….n );
3)将c i 归一化:得到特征向量W =(w 1,w 2,…w n )T ,w i =c i /Σc i , W 即为A 的特征向量的近似值;
4)求特征向量W 对应的最大特征值:
●求根法
1)计算判断矩阵A 每行元素乘积的n 次方根;n
n
j ij
i a
w ∏==1
(i =1,
2, …, n )
2)将i w 归一化,得到∑==
n
i i
i
i w
w w 1
;W =(w 1,w 2,…w n )T 即为A 的特
征向量的近似值;
3)求特征向量W 对应的最大特征值:
(1)判断矩阵B A -的特征根、特征向量与一致性检验 ①计算矩阵B A -的特征向量。
计算判断矩阵B A -各行元素的乘积i M ,并求其n 次方根,如
3
2
23111=⨯⨯=M ,874.0311==M W ,类似地有,466.2322==M W ,
464.0333==M W 。
对向量T n W W W W ],,,[21 =规范化,有
230
.0464
.0466.2874.0874
.01
1
1=++=
=
∑=n
i i
W
W W 类似地有684.02=W ,122.03=W 。
所求得的特征向量即为:
T W ]122.0,648.0,230.0[=
②计算矩阵B A -的特征根
T
AW ]122.0,648.0,230.0[15/12/151323/11⎥⎥
⎥⎦
⎤
⎢⎢⎢⎣⎡= 69.0122.02648.03
1
230.011=⨯+⨯+⨯=AW
类似地可以得到948.12=AW ,3666.03=AW 。
按照公式计算判断矩阵最大特征根:
004.3122.033666
.0648.03948.1230.0369.0)(1
max =⨯+⨯+⨯==∑=n
i i i nW AW λ
③一致性检验。
实际评价中评价者只能对A 进行粗略判断,这样有时会犯不一致的错误。
如,已判断C 1比C 2重要,C 2比C 3较重要,那么,C 1应该比C 3更重要。
如果又判断C 1比C 3较重要或同等重要,这就犯了逻辑错误。
这就需要进行一致性检验。
根据层次法原理,利用A 的理论最大特征值λmax 与n 之差检验一致性。
一致性指标:
计算002.01
33
004.31max =--=
--=
n n
CI λ<0.1,1.0003.0<==RI CI CR ,查同阶平均随机一致性指标(表5所示)知58.0=RI ,(一般认为CI<0.1、 CR<0.1时,
判断矩阵的一致性可以接受,否则重新两两进行比较)。
5
(2)判断矩阵C B -1的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵C B -1的特征根、特征向量与一致性检验如下:
T W ]637.0,258.0,105.0[=,039.3max =λ,1.0033.0<=CR (3)判断矩阵C B -2的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵刀:—C 的特征根、特征向量与一致性检验如下:
T W ]075.0,333.0,592.0[=,014.3max =λ,1.0012.0<=CR (4)判断矩阵C B -3
的特征根、特征向量与一致性检验
类似于第(1)步的计算过程,可以得到矩阵C B -3
的特征根、特征向量与一致性检验如下:
T W ]785.0,066.0,149.0[=,08.3max =λ,1.0069.0<=CR 4、层次总排序
获得同一层次各要素之间的相对重要度后,就可以自上而下地计算各级要素对总体的综合重要度。
设二级共有m 个要素c 1, c 2,…,c m ,它们对总值的重要度为w 1, w 2,…, w m ;她的下一层次三级有p 1, p 2,…,p n 共n 个要素,令要素p i 对c j 的重要度(权重)为v ij ,则三级要素p i 的综合重要度为:
方案C 1的重要度(权重)=0.230×0.105+0.648×0.529+0.122×0.149=0.426 方案C 2的重要度(权重)=0.230×0.258+0.648×0.333+0.122×0.066=0.283 方案C 3的重要度(权重)=0.230×0.637+0.648×0. 075+0.122×0.785=0.291 依据各方案综合重要度的大小,可对方案进行排序、决策。
层次总排序如表6所示。
表6 层次总排序
5、结论
由表5可以看出,3种品牌设备的优劣顺序为:1C ,3C ,2C ,且品牌1明显优于其他两种品牌的设备。