数据结构实验——分类二叉树和堆排序

数据结构实验——分类二叉树和堆排序
数据结构实验——分类二叉树和堆排序

数据结构《实验3》实验报告

附源程序

#include

#include

#define MaxSize 10

typedef struct

{

int Num;

float score1;

float score2;

float score3;

}Student;//储存学生信息,依次为学号,语文成绩,数学成绩,英语成绩typedef struct

{

float total;//学生总分

Student * p;

}HeapNode;

//

typedef struct BinaryTreeNode

{

HeapNode data;

BinaryTreeNode * LChild;

BinaryTreeNode * RChild;

}BinaryTreeNode;

//分类二叉树的结点

int HeapSize=9;

void Displayarray(HeapNode a[])//输出堆排序的结果

{

int i;

for(i=1;i<10;i++)

printf(" 学号%d 总分%f\n",a[i].p->Num,a[i].total);

printf("\n");

}

void Menu_name()

//作者信息

{

printf("\n\n\n\n\n\n\n");

printf("

*************************************************\n");

printf(" 堆排序和分类二叉树的查找\n\n");

printf(" 制作: \n 学号0909050108\n");

printf(" 班级: \n");

printf(" 指导老师: \n");

printf("

**************************************************\n");

printf("\n\n\n\t\t");

}

void MaxHeapInit (HeapNode a[], int size)

{// 对数组a 中的数据初始化为一个最大堆

HeapNode *heap=a; //数组a用Heap指向

HeapSize=size; //数组中数据元素个数存放到HeapSize for (int i = HeapSize/2; i >= 1; i--) //从最后一个结点的根开始,直到第一个结点

{

heap[0] = heap[i]; // 将子树根结点值复制到工作空间heap[0]中

int son = 2*i; // son的双亲结点是heap[0]的目标位

置,

// son首先指向i的左孩子

while (son <= HeapSize)

{// 找左右孩子中较大结点

if (son < HeapSize && heap[son].total < heap[son +1].total)

son ++;

// son < HeapSize时,存在右孩子,如左孩子小于右孩子,son指向右孩子

if (heap[0].total>= heap[son].total) // 大孩子再与工作空间中结点值再比较

break; //工作空间中值大,找到heap[0]的目标位置

heap[son /2] = heap[son]; // 将大孩子上移至双亲位置

son*= 2; // son下移一层到上移的结点(大孩子)位置

}

heap[son /2] = heap[0]; //heap[0]存放到目标位置}

}

//最大堆中删除顶结点,并放入x中返回算法

bool MaxHeapDelete (HeapNode a[], HeapNode &x)

{

HeapNode *heap = a;

if (HeapSize == 0)

return false; // 堆空

x = heap[1]; // 最大结点存放到x

heap[0] = heap[HeapSize--]; // 最后一个结点存放到heap[0],调整堆中元素的个数

int i = 1, son = 2*i;

while (son <= HeapSize)

{

if (son < HeapSize && heap[son] .total< heap[son+1].total)

son++;

if (heap[0].total >= heap[son].total)

break;

heap[i] = heap[son]; // 孩子上移

i = son; // 下移根结点指针,继续比较

son = son * 2;

}

heap[i] = heap[0];

return true;

}

void HeapSort(HeapNode a[], int n)

{// 利用堆对a[1:n] 数组中的数据排序

HeapNode *heap=a;

MaxHeapInit(heap, n); // Heap初始化为最大堆

HeapNode x;

int m=1;

for (int i = n-1; i >= 1; i--)

{

MaxHeapDelete (heap,x);

printf(" 第%d堆排序结果\n",m);

m++;

Displayarray(a);

system("pause");

system("cls");

heap[i+1] = x;

}

}

BinaryTreeNode *SortBinaryTreeInsert (BinaryTreeNode *&BT, HeapNode &x) {//求如果不重复出现,则插入结点x

BinaryTreeNode *p;

BinaryTreeNode *parent = NULL; //指向p的双亲

p=BT;

while (p)

{

parent = p;

if (x.total < p->data.total)

p=p->LChild;

else

if (x.total > p->data.total)

p = p->RChild;

else

return p; //重复出现,即相等值结点出现

}

// 找到插入点,为x申请一个空间填入其值,并将该结点连接至parent BinaryTreeNode *q = new BinaryTreeNode;

q ->data = x;

q->LChild=NULL;

q->RChild=NULL;

if (BT)

{// 原树非空

if (x.total < parent ->data.total)

parent ->LChild = q;

else

parent ->RChild = q;

}

else // 插入到空树中

BT = q;

return BT;

}

int SortBinaryTreeSearch (BinaryTreeNode *BT, HeapNode &x, float &SearchKey)

{//求查找关键字为SearchKey的结点值x

BinaryTreeNode *p = BT;

while (p)

if (SearchKeydata.total)

p = p->LChild;

else

if (SearchKey>p->data.total)

p = p->RChild;

else

{

x = p->data;

return 1;

}

return 0;

}

void main()

{

HeapNode a[10];

Student student[10];

HeapNode x;

float key;

Student *p;

BinaryTreeNode *BT;

int re;

int m=20010000;

Menu_name();

for(int i=0;i<=10;i++)

{

student[i].Num=i;

a[i].p=&student[i];

}

student[0].score1=0;

student[0].score2=0;

student[0].score3=0;

student[1].score1=85;

student[1].score2=88;

student[1].score3=97;

student[2].score1=92.5;

student[2].score2=91;

student[2].score3=95;

student[3].score1=95;

student[3].score2=98;

student[3].score3=99;

student[4].score1=85;

student[4].score2=87;

student[4].score3=96.5;

student[5].score1=96;

student[5].score2=93;

student[5].score3=100;

student[6].score1=72;

student[6].score2=76;

student[6].score3=70.5;

student[7].score1=65;

student[7].score2=53;

student[7].score3=53;

student[8].score1=88;

student[8].score2=94;

student[8].score3=90.5;

student[9].score1=96.5;

student[9].score2=83;

student[9].score3=65;//输入学生信息printf(" 堆排序操作\n\n");

for( i=0;i<=10;i++)

{

student[i].Num=m;

a[i].p=&student[i];

a[i].total=student[i].score1+student[i].score2+student[i].score3;

m++;

}//构造堆树

printf(" 未排序前的堆结点信息\n");

Displayarray(a);

system("pause");

system("cls");

int keep=HeapSize;

HeapSort(a,HeapSize);

printf("\n 堆排序结果:\n");

Displayarray(a);

printf("\n");

system("pause");

BT=NULL;

printf(" 分类二叉树的操作\n");

for(i=1;i<10;i++)

{

SortBinaryTreeInsert(BT,a[i]);//构造分类二叉树

}

for(;;)

{

printf(" 请输入您要查找的学生的总分,输入0结束查找");

scanf("%f",&key);

if(key)

{

re=SortBinaryTreeSearch(BT,x,key);

if(re)

{

p=x.p;

printf(" 学号%d\n语文成绩%f\n英语成绩%f\n数学成绩%f\n",p->Num,p->score1,p->score2,p->score3);

}

else

printf(" 没有找到要查找的学生信息\n");

}

else

exit(0);

}

}

数据结构课程实验指导书

数据结构实验指导书 一、实验目的 《数据结构》是计算机学科一门重要的专业基础课程,也是计算机学科的一门核心课程。本课程较为系统地论述了软件设计中常用的数据结构以及相应的存储结构与实现算法,并做了相应的性能分析和比较,课程内容丰富,理论系统。本课程的学习将为后续课程的学习以及软件设计水平的提高打下良好的基础。 由于以下原因,使得掌握这门课程具有较大的难度: 1)理论艰深,方法灵活,给学习带来困难; 2)内容丰富,涉及的知识较多,学习有一定的难度; 3)侧重于知识的实际应用,要求学生有较好的思维以及较强的分析和解决问题的能力,因而加大了学习的难度; 根据《数据结构》课程本身的特性,通过实验实践内容的训练,突出构造性思维训练的特征,目的是提高学生分析问题,组织数据及设计大型软件的能力。 课程上机实验的目的,不仅仅是验证教材和讲课的内容,检查自己所编的程序是否正确,课程安排的上机实验的目的可以概括为如下几个方面: (1)加深对课堂讲授内容的理解 实验是对学生的一种全面综合训练。是与课堂听讲、自学和练习相辅相成的必不可少的一个教学环节。通常,实验题中的问题比平时的习题复杂得多,也更接近实际。实验着眼于原理与应用的结合点,使学生学会如何把书上学到的知识用于解决实际问题,培养软件工作所需要的动手能力;另一方面,能使书上的知识变" 活" ,起到深化理解和灵活掌握教学内容的目的。 不少学生在解答习题尤其是算法设计时,觉得无从下手。实验中的内容和教科书的内容是密切相关的,解决题目要求所需的各种技术大多可从教科书中找到,只不过其出

现的形式呈多样化,因此需要仔细体会,在反复实践的过程中才能掌握。 (2) 培养学生软件设计的综合能力 平时的练习较偏重于如何编写功能单一的" 小" 算法,而实验题是软件设计的综合训练,包括问题分析、总体结构设计、用户界面设计、程序设计基本技能和技巧,多人合作,以至一整套软件工作规范的训练和科学作风的培养。 通过实验使学生不仅能够深化理解教学内容,进一步提高灵活运用数据结构、算法和程序设计技术的能力,而且可以在需求分析、总体结构设计、算法设计、程序设计、上机操作及程序调试等基本技能方面受到综合训练。实验着眼于原理与应用的结合点,使学生学会如何把书本上和课堂上学到的知识用于解决实际问题,从而培养计算机软件工作所需要的动手能力。 (3) 熟悉程序开发环境,学习上机调试程序一个程序从编辑,编译,连接到运行,都要在一定的外部操作环境下才能进行。所谓" 环境" 就是所用的计算机系统硬件,软件条件,只有学会使用这些环境,才能进行 程序开发工作。通过上机实验,熟练地掌握程序的开发环境,为以后真正编写计算机程序解决实际问题打下基础。同时,在今后遇到其它开发环境时就会触类旁通,很快掌握新系统的使用。 完成程序的编写,决不意味着万事大吉。你认为万无一失的程序,实际上机运行时可能不断出现麻烦。如编译程序检测出一大堆语法错误。有时程序本身不存在语法错误,也能够顺利运行,但是运行结果显然是错误的。开发环境所提供的编译系统无法发现这种程序逻辑错误,只能靠自己的上机经验分析判断错误所在。程序的调试是一个技巧性很强的工作,尽快掌握程序调试方法是非常重要的。分析问题,选择算法,编好程序,只能说完成一半工作,另一半工作就是调试程序,运行程序并得到正确结果。 二、实验要求 常用的软件开发方法,是将软件开发过程划分为分析、设计、实现和维护四个阶段。虽然数据结构课程中的实验题目的远不如从实际问题中的复杂程度度高,但为了培养一个软件工作者所应具备的科学工作的方法和作风,也应遵循以下五个步骤来完成实验题目: 1) 问题分析和任务定义 在进行设计之前,首先应该充分地分析和理解问题,明确问题要求做什么?限制条件是什么。本步骤强调的是做什么?而不是怎么做。对问题的描述应避开算法和所涉及的数据类型,而是对所需完成的任务作出明确的回答。例如:输入数据的类型、值的范围以及输入的

堆 排 序 算 法

堆排序——C#实现 一算法描述 堆排序(Heap Sort)是利用一种被称作二叉堆的数据结构进行排序的排序算法。 二叉堆在内部维护一个数组,可被看成一棵近似的完全二叉树,树上每个节点对应数组中的一个元素。除最底层外,该树是满的。 二叉堆中,有两个与所维护数组相关的属性。Length表示数组的元素个数,而HeapSize则表示二叉堆中所维护的数组中的元素的个数(并不是数组中的所有元素都一定是二叉堆的有效元素)。因此,根据上述定义有: 0 = HeapSize = Length。 二叉堆可分为最大堆和最小堆两种类型。在最大堆中,二叉树上所有的节点都不大于其父节点,即 A[Parent(i)] = A[i]。最小堆正好相反:A[Parent(i)] = A[i]。 为维护一个二叉堆是最大(小)堆,我们调用一个叫做MaxHeapify (MinHeapify)的过程。以MaxHeapify,在调用MaxHeapify时,先假定根节点为Left(i)和Right(i)的二叉树都是最大堆,如果A[i]小于其子节点中元素,则交换A[i]和其子节点中的较大的元素。但这样一来,以被交换的子节点为根元素的二叉堆有可能又不满足最大堆性质,此时则递归调用MaxHeapify方法,直到所有的子级二叉堆都满足最大堆性质。如下图所示: 因为在调用MaxHeapify(MinHeapify)方法使根节点为A[i]的

二叉堆满足最大(小)堆性质时我们有其左右子堆均已满足最大(小)堆性质这个假设,所以如果我们在将一个待排序的数组构造成最大(小)堆时,需要自底向上地调用 MaxHeapify(MinHeapify)方法。 在利用最大堆进行排序时,我们先将待排序数组构造成一个最大堆,此时A[0](根节点)则为数组中的最大元素,将A[0]与A[n - 1]交换,则把A[0]放到了最终正确的排序位置。然后通过将HeapSize 减去1,将(交换后的)最后一个元素从堆中去掉。然后通过MaxHeapify方法将余下的堆改造成最大堆,然后重复以上的交换。重复这一动作,直到堆中元素只有2个。则最终得到的数组为按照升序排列的数组。 二算法实现 1 注意到在C#中数组的起始下标为0,因此,计算一个给定下标的节点的父节点和左右子节点时应该特别小心。 private static int Parrent(int i) return (i - 1) - 2; private static int Left(int i) return 2 * i + 1; private static int Right(int i) return 2 * i + 2; 2 算法的核心部分是MaxHeapify(MinHeapify)方法,根据算法描述中的说明,一下代码分别实现了对整数数组的最大堆化和最小堆化方法,以及一个泛型版本。

数据结构实验

数据结构实验指导书

实验一线性表的顺序存储结构 一、实验学时 4学时 二、背景知识:顺序表的插入、删除及应用。 三、目的要求: 1.掌握顺序存储结构的特点。 2.掌握顺序存储结构的常见算法。 四、实验内容 1.从键盘随机输入一组整型元素序列,建立顺序表。(注意:不可将元素个数和元素值写死在程序中) 2.实现该顺序表的遍历(也即依次打印出每个数据元素的值)。 3.在该顺序表中顺序查找某一元素,如果查找成功返回1,否则返回0。 4.实现把该表中某个数据元素删除。 5.实现在该表中插入某个数据元素。 6.实现两个线性表的归并(仿照课本上P26 算法2.7)。 7. 编写一个主函数,调试上述6个算法。 五、实现提示 1.存储定义 #include #include #define MAXSIZE 100 //表中元素的最大个数

typedef int ElemType;//元素类型 typedef struct list{ ElemType *elem;//静态线性表 int length; //表的实际长度 int listsize; //表的存储容量 }SqList;//顺序表的类型名 2.建立顺序表时可利用随机函数自动产生数据。 3.为每个算法功能建立相应的函数分别调试,最后在主函数中调用它们。 六、注意问题 插入、删除元素时对于元素合法位置的判断。 七、测试过程 1.先从键盘输入元素个数,假设为6。 2.从键盘依次输入6个元素的值(注意:最好给出输入每个元素的提示,否则除了你自己知道之外,别人只见光标在闪却不知道要干什么),假设是:10,3,8,39,48,2。 3.遍历该顺序表。 4.输入待查元素的值例如39(而不是待查元素的位置)进行查找,因为它在表中所以返回1。假如要查找15,因为它不存在,所以返回0。 5.输入待删元素的位置将其从表中删掉。此处需要注意判断删位置是否合法,若表中有n个元素,则合法的删除位

数据结构二叉树实验报告

实验三二叉树的遍历 一、实验目的 1、熟悉二叉树的结点类型和二叉树的基本操作。 2、掌握二叉树的前序、中序和后序遍历的算法。 3、加深对二叉树的理解,逐步培养解决实际问题的编程能力。 二、实验环境 运行C或VC++的微机。 三、实验内容 1、依次输入元素值,以链表方式建立二叉树,并输出结点的值。 2、分别以前序、中序和后序遍历二叉树的方式输出结点内容。 四、设计思路 1. 对于这道题,我的设计思路是先做好各个分部函数,然后在主函数中进行顺序排列,以此完成实验要求 2.二叉树采用动态数组 3.二叉树运用9个函数,主要有主函数、构建空二叉树函数、建立二叉树函数、访问节点函数、销毁二叉树函数、先序函数、中序函数、后序函数、范例函数,关键在于访问节点 五、程序代码 #include #include #include #define OK 1 #define ERROR 0 typedef struct TNode//结构体定义 {

int data; //数据域 struct TNode *lchild,*rchild; // 指针域包括左右孩子指针 }TNode,*Tree; void CreateT(Tree *T)//创建二叉树按,依次输入二叉树中结点的值 { int a; scanf("%d",&a); if(a==00) // 结点的值为空 *T=NULL; else // 结点的值不为空 { *T=(Tree)malloc(sizeof(TNode)); if(!T) { printf("分配空间失败!!TAT"); exit(ERROR); } (*T)->data=a; CreateT(&((*T)->lchild)); // 递归调用函数,构造左子树 CreateT(&((*T)->rchild)); // 递归调用函数,构造右子树 } } void InitT(Tree *T)//构建空二叉树 { T=NULL; } void DestroyT(Tree *T)//销毁二叉树 { if(*T) // 二叉树非空 { DestroyT(&((*T)->lchild)); // 递归调用函数,销毁左子树 DestroyT(&((*T)->rchild)); // 递归调用函数,销毁右子树 free(T); T=NULL; } } void visit(int e)//访问结点 { printf("%d ",e); }

数据结构实验报告代码

线性表 代码一 #include "stdio.h" #include "malloc.h" #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define LIST_INIT_SIZE 100 #define LISTINCREMENT 10 typedef struct { int * elem; int length; int listsize; }SqList; int InitList_Sq(SqList *L) { L->elem = (int*)malloc(LIST_INIT_SIZE*sizeof(int)); if (!L->elem) return ERROR; L->length = 0; L->listsize = LIST_INIT_SIZE; return OK; } int ListInsert_Sq(SqList *L, int i,int e) { int *p,*newbase,*q; if (i < 1 || i > L->length+1) return ERROR; if (L->length >= L->listsize) { newbase = (int *)realloc(L->elem,(L->listsize+LISTINCREMENT)*sizeof (int)); if (!newbase) return ERROR; L->elem = newbase; L->listsize += LISTINCREMENT; } q = &(L->elem[i-1]); //插入后元素后移for(p=&(L->elem[L->length-1]);p>=q;p--) *(p+1)=*p; *q=e; L->length++; return OK; } int ListDelete_Sq(SqList *L, int i, int *e) {

数据结构_实验六_报告

实验报告 实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOV网、AOE网在邻接表上的实现以及解决简单的应用问题。 二、实验内容 一>.基础题目:(本类题目属于验证性的,要求学生独立完成) [题目一]:从键盘上输入AOV网的顶点和有向边的信息,建立其邻接表存储结构,然后对该图拓扑排序,并输出拓扑序列. 试设计程序实现上述AOV网 的类型定义和基本操作,完成上述功能。 [题目二]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 测试数据:教材图7.29 【题目五】连通OR 不连通 描述:给定一个无向图,一共n个点,请编写一个程序实现两种操作: D x y 从原图中删除连接x,y节点的边。 Q x y 询问x,y节点是否连通 输入 第一行两个数n,m(5<=n<=40000,1<=m<=100000) 接下来m行,每行一对整数 x y (x,y<=n),表示x,y之间有边相连。保证没有重复的边。 接下来一行一个整数 q(q<=100000) 以下q行每行一种操作,保证不会有非法删除。 输出 按询问次序输出所有Q操作的回答,连通的回答C,不连通的回答D 样例输入

3 3 1 2 1 3 2 3 5 Q 1 2 D 1 2 Q 1 2 D 3 2 Q 1 2 样例输出 C C D 【题目六】 Sort Problem An ascending sorted sequence of distinct values is one in which some form of a less-than operator is used to order the elements from smallest to largest. For example, the sorted sequence A, B, C, D implies that A < B, B < C and C < D. in this problem, we will give you a set of relations of the form A < B and ask you to determine whether a sorted order has been specified or not. 【Input】 Input consists of multiple problem instances. Each instance starts with a line containing two positive integers n and m. the first value indicated the number of objects to sort, where 2 <= n<= 26. The objects to be sorted will be the first n characters of the uppercase alphabet. The second value m indicates the number of relations of the form A < B which will be given in this problem instance. 1 <= m <= 100. Next will be m lines, each containing one such relation consisting of three characters: an uppercase letter, the character "<" and a second uppercase letter. No letter will be outside the range of the first n letters of the alphabet. Values of n = m = 0 indicate end of input. 【Output】 For each problem instance, output consists of one line. This line should be one of the following three: Sorted sequence determined: y y y… y. Sorted sequence cannot be determined. Inconsistency found.

数据结构实验一的源代码

#include #include typedef struct Node { int key;//密码 int num;//编号 struct Node *next;//指向下一个节点 } Node, *Link; void InitList(Link &L) //创建一个空的链表{ L = (Node *)malloc(sizeof(Node)); if (!L) exit(1); L->key = 0; L->num = 0; L->next = L; } void Creatlinklist(int n, Link &L) //初始化链表{ Link p, q; q = L; for (int i = 1; i <= n; i++) { p = (Node *)malloc(sizeof(Node)); if (!p) exit(1); scanf("%d", &p->key); p->num = i; L->next = p; L = p; } L->next = q->next; free(q); } Link Locate_m(Link &p, int m)//找到第m个 { Link q; for (int j = 1; jnext; q = p->next; m = q->key;

return q; } void Delete_m(Link &L, Link p, Link q)//删除第m个{ p->next = q->next; free(q); } void main() { Link L, p, q; int n, m; L = NULL; InitList(L);//构造出一个只有头结点的空链表 printf("请输入初始密码人数每个人的密码:\n"); scanf("%d", &m);//初始密码为m scanf("%d", &n);// Creatlinklist(n, L);//构建 p = L; for (int i = 1; i <= n; i++) { q = Locate_m(p, m);//找到第m个 printf("%d", q->num); Delete_m(L, p, q);//删除第m个 } system("pause"); }

数据结构实验报告-二叉树的实现与遍历

《数据结构》第六次实验报告 学生姓名 学生班级 学生学号 指导老师

一、实验内容 1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序 以及按层次遍历的操作,求所有叶子及结点总数的操作。 2) 输出树的深度,最大元,最小元。 二、需求分析 遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。 递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。直到递归全部结束。 下面重点来讲述非递归方法: 首先介绍先序遍历: 先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。 再次介绍中序遍历: 中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。如此循环直至结点指针和栈均为空,遍历结束。 最后介绍后序遍历: 后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。 三、详细设计 源代码:

数据结构实验程序

顺序表的基本操作 #include using namespace std; typedef int datatype; #define maxsize 1024 #define NULL -1 typedef struct { datatype *data; int last; }sequenlist; void SETNULL(sequenlist &L) { L.data=new datatype[maxsize]; for(int i=0;i>https://www.360docs.net/doc/a013214903.html,st; cout<<"请输入"<>L.data[i]; } int LENGTH(sequenlist &L) { int i=0; while(L.data[i]!=NULL) i++; return i; } datatype GET(sequenlist &L,int i) { if(i<1||i>https://www.360docs.net/doc/a013214903.html,st) { cout<<"error1"<

int j=0; while(L.data[j]!=x) j++; if(j==https://www.360docs.net/doc/a013214903.html,st) { cout<<"所查找值不存在!"<=maxsize-1) { cout<<"overflow"; return NULL; } else if(i<1||(i>https://www.360docs.net/doc/a013214903.html,st)) { cout<<"error2"<=i-1;j--) L.data[j+1]=L.data[j]; L.data[i-1]=x; https://www.360docs.net/doc/a013214903.html,st++; } return 1; } int DELETE(sequenlist &L,int i) { int j; if((i<1)||(i>https://www.360docs.net/doc/a013214903.html,st+1)) { cout<<"error3"<

数据结构第六章实验

#include #include #include typedef struct{ unsigned int weight; unsigned int parent,lchild,rchild; }HTNode,*HuffmanTree; typedef char * *HuffmanCode; /*void Select(HuffmanTree &HT,int n,int &s1,int &s2) { s1=1;int j; for(j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s1].weight>HT[j].weight) s1=j; } } HT[s1].parent=1; if(s1!=1)s2=1;else s2=2; for( j=1;j<=n;j++) { while(HT[j].parent==0) { if(HT[s2].weight>HT[j].weight) s2=j; } } }错误,未查出原因*/ int min(HuffmanTree t,int i) { int j,flag; unsigned int k; for(j=1;j<=i;j++) if(t[j].weight

数据结构实验-二叉树的操作

******************************* 实验题目:二叉树的操作 实验者信息:班级13007102,姓名庞文正,学号1300710226 实验完成的时间3:00 ****************************** 一、实验目的 1,掌握二叉树链表的结构和二叉树的建立过程。 2,掌握队列的先进先出的运算原则在解决实际问题中的应用。 3,进一步掌握指针变量、指针数组、动态变量的含义。 4,掌握递归程序设计的特点和编程方法。 二、实验内容 已知以二叉链表作存储结构,试编写按层次遍历二叉树的算法。(所谓层次遍历,是指从二叉树的根结点开始从上到下逐层遍历二叉树,在同一层次中从左到右依次访问各个节点。)调试程序并对相应的输出作出分析;修改输入数据,预期输出并验证输出的结果。加深对算法的理解。 三、算法设计与编码 1.本实验用到的理论知识 总结本实验用到的理论知识,实现理论与实践相结合。总结尽量简明扼要,并与本次实验密切相关,最好能加上自己的解释。 本算法要采用一个循环队列que,先将二叉树根结点入队列,然后退队列,输出该结点;若它有左子树,便将左子树根结点入队列;若它有右子树,便将右子树根结点入队列,直到队列空为止。因为队列的特点是先进先出,从而达到按层次顺序遍历二叉的目的。2.算法概要设计 给出实验的数据结构描述,程序模块、功能及调用关系 #include #include #define M 100 typedef struct node //二叉链表节点结构 {int data; //数据域 struct node *lchild,*rchild; //左孩子右孩子链 }bitree; bitree *que[M]; //定义一个指针数组,说明队列中的元素bitree 指针类型 int front=0, rear=0; //初始化循环列队 bitree *creat() //建立二叉树的递归算法 {bitree *t; int x; scanf("%d",&x); if(x==0) t=NULL; //以x=0 表示输入结束 else {t=malloc(sizeof(bitree)); //动态生成节点t,分别给节点t 的数据域,t->data=x; //左右孩子域赋值,给左右孩子赋值时用到 t->lchild=creat(); // 了递归思想 t->rchild=creat(); }

数据结构实验报告全集

数据结构实验报告全集 实验一线性表基本操作和简单程序 1.实验目的 (1)掌握使用Visual C++ 上机调试程序的基本方法; (2)掌握线性表的基本操作:初始化、插入、删除、取数据元素等运算在顺序存储结构和链表存储结构上的程序设计方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)认真阅读和掌握本章相关内容的程序。 (3)上机运行程序。 (4)保存和打印出程序的运行结果,并结合程序进行分析。 (5)按照你对线性表的操作需要,重新改写主程序并运行,打印出文件清单和运行结果 实验代码: 1)头文件模块 #include >验目的 掌握顺序栈的基本操作:初始化栈、判栈空否、入栈、出栈、取栈顶数据元素等运算以及程序实现方法。 2.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)分析问题的要求,编写和调试完成程序。 (3)保存和打印出程序的运行结果,并分析程序的运行结果。 3.实验内容 利用栈的基本操作实现一个判断算术表达式中包含圆括号、方括号是否正确配对的程序。具体完成如下:

(1)定义栈的顺序存取结构。 (2)分别定义顺序栈的基本操作(初始化栈、判栈空否、入栈、出栈等)。 (3)定义一个函数用来判断算术表达式中包含圆括号、方括号是否正确配对。其中,括号配对共有四种情况:左右括号配对次序不正确;右括号多于左括号;左括号多于右括号;左右括号匹配正确。 (4)设计一个测试主函数进行测试。 (5)对程序的运行结果进行分析。 实验代码: #include < > #define MaxSize 100 typedef struct { ??? int data[MaxSize]; ??? int top; }SqStack; void InitStack(SqStack *st) 验目的 (1)进一步掌握指针变量的用途和程序设计方法。 (2)掌握二叉树的结构特征,以及链式存储结构的特点及程序设计方法。 (3)掌握构造二叉树的基本方法。 (4)掌握二叉树遍历算法的设计方法。 3.实验要求 (1)认真阅读和掌握和本实验相关的教材内容。 (2)掌握一个实际二叉树的创建方法。 (3)掌握二叉链存储结构下二叉树操作的设计方法和遍历操作设计方法。 4.实验内容 (1)定义二叉链存储结构。

数据结构 堆排序

佛山科学技术学院 实验报告 课程名称数据结构 实验项目实现典型的排序算法 专业班级 09计算机(1)班姓名梁志恒学号________2009314138________ 指导教师黄营成绩____________ 日期________ _______ 题目:请编程实现堆排序算法。 #include #define maxsize 100 typedef struct { int key[maxsize]; int length; }SqList; //堆排序大根堆 void HeapAdjust(SqList *L,int s,int m) { int j; L->key[0]=L->key[s]; for(j=2*s;j<=m;j=2*j) { if(jkey[j]>L->key[j+1]) j++; if(!(L->key[0]>L->key[j])) break; L->key[s]=L->key[j]; s=j; } L->key[s]=L->key[0]; } void HeapSort(SqList *L) { //对顺序表key进行堆排序 int i; for(i=L->length/2;i>0;i--) HeapAdjust(L,i,L->length); for(i=L->length;i>1;i--)

{ L->key[0]=L->key[1]; L->key[1]=L->key[i]; L->key[i]=L->key[0]; HeapAdjust(L,1,i-1); } } void main() { SqList L; int i,s=1; printf("元素的个数length="); scanf("%d",&(L.length)); for(i=1;i<=L.length;i++) { scanf("%d",&(L.key[i])); } HeapSort(&L,s,L.length); printf("排序后:\n"); for(i=1;i<=L.length;i++) printf("%d ",L.key[i]); printf("\n"); } 1.请为所建立的堆选择适合的数据结构。 链式存储结构 typedef struct BiTNode { int data; struct BiTNode *lchild,* rchild; }BiTNode , *BiTree; 顺序存储结构 #define maxsize 100 typedef struct { int key[maxsize]; int length; }SqList;

数据结构实验六 图的应用及其实现

实验六图的应用及其实现 一、实验目的 1.进一步功固图常用的存储结构。 2.熟练掌握在图的邻接表实现图的基本操作。 3.理解掌握AOE网在邻接表上的实现及解决简单的应用问题。 二、实验内容 [题目]:从键盘上输入AOE网的顶点和有向边的信息,建立其邻接表存储结构,输出其关键路径和关键路径长度。试设计程序实现上述AOE网类型定义和基本操作,完成上述功能。 三、实验步骤 (一)、数据结构与核心算法的设计描述 本实验题目是基于图的基本操作以及邻接表的存储结构之上,着重拓扑排序算法的应用,做好本实验的关键在于理解拓扑排序算法的实质及其代码的实现。 (二)、函数调用及主函数设计 以下是头文件中数据结构的设计和相关函数的声明: typedef struct ArcNode // 弧结点 { int adjvex; struct ArcNode *nextarc; InfoType info; }ArcNode; typedef struct VNode //表头结点 { VertexType vexdata; ArcNode *firstarc; }VNode,AdjList[MAX_VERTEX_NUM]; typedef struct //图的定义 { AdjList vertices; int vexnum,arcnum; int kind; }MGraph; typedef struct SqStack //栈的定义 { SElemType *base; SElemType *top; int stacksize;

}SqStack; int CreateGraph(MGraph &G);//AOE网的创建 int CriticalPath(MGraph &G);//输出关键路径 (三)、程序调试及运行结果分析 (四)、实验总结 在做本实验的过程中,拓扑排具体代码的实现起着很重要的作用,反复的调试和测试占据着实验大量的时间,每次对错误的修改都加深了对实验和具体算法的理解,自己的查错能力以及其他各方面的能力也都得到了很好的提高。最终实验结果也符合实验的预期效果。 四、主要算法流程图及程序清单 1、主要算法流程图: 2、程序清单: 创建AOE网模块: int CreateGraph(MGraph &G) //创建有向网 { int i,j,k,Vi,Vj; ArcNode *p; cout<<"\n请输入顶点的数目、边的数目"<

数据结构实验报告之树与二叉树

学生实验报告 学院:软通学院 课程名称:数据结构与算法 专业班级:软件142 班 姓名:邹洁蒙 学号: 0143990

学生实验报告 (二) 一、实验综述 1、实验目的及要求 目的:1)掌握树与二叉树的基本概念; 2)掌握二叉树的顺序存储,二叉链表的先序遍历中序遍历和后序遍历算法; 3)掌握树的双亲表示法。 要求:1)编程:二叉树的顺序存储实现; 2)编程:二叉链表的先序遍历中序遍历和后序遍历实现; 3)编程:树的双亲表示法实现。 2、实验仪器、设备或软件 设备:PC 软件:VC6 二、实验过程(编程,调试,运行;请写上源码,要求要有注释) 1.编程:二叉树的顺序存储实现 代码: BiTree::BiTree()//建立存储空间 { data = new int[MAXSIZE]; count = 0; } void BiTree::AddNode(int e)//加结点 { int temp = 0; data[count] = e; count++;//从编号0开始保存 }

运行截图: 2.编程:二叉链表的先序遍历中序遍历和后序遍历实现代码: void InOrderTraverse(BiTree* Head)//中序遍历 { if (Head) { InOrderTraverse(Head->LeftChild); cout << Head->data<<" "; InOrderTraverse(Head->RightChild); } } void PreOrderTraverse(BiTree* Head)//先序遍历 { if (Head) { cout << Head->data << " "; PreOrderTraverse(Head->LeftChild); PreOrderTraverse(Head->RightChild); } } void PostOrderTraverse(BiTree* Head)//后序遍历 { if (Head) { PostOrderTraverse(Head->LeftChild); PostOrderTraverse(Head->RightChild); cout << Head->data << " "; } } 运行截图:

堆排序算法的基本思想及算法实现示例

堆排序算法的基本思想及算法实现示例 堆排序 1、堆排序定义 n个关键字序列Kl,K2,…,Kn称为堆,当且仅当该序列满足如下性质(简称为堆性质): (1) ki≤K2i且ki≤K2i+1 或(2)Ki≥K2i且ki≥K2i+1(1≤i≤ ) 若将此序列所存储的向量R[1..n]看做是一棵完全二叉树的存储结构,则堆实质上是满足如下性质的完全二叉树:树中任一非叶结点的关键字均不大于(或不小于)其左右孩子(若存在)结点的关键字。 【例】关键字序列(10,15,56,25,30,70)和(70,56,30,25,15,10)分别满足堆性质(1)和(2),故它们均是堆,其对应的完全二叉树分别如小根堆示例和大根堆示例所示。 2、大根堆和小根堆 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最小者的堆称为小根堆。 根结点(亦称为堆顶)的关键字是堆里所有结点关键字中最大者,称为大根堆。 注意: ①堆中任一子树亦是堆。 ②以上讨论的堆实际上是二叉堆(Binary Heap),类似地可定义k叉堆。 3、堆排序特点 堆排序(HeapSort)是一树形选择排序。 堆排序的特点是:在排序过程中,将R[l..n]看成是一棵完全二叉树的顺序存储结构,利用完全二叉树中双亲结点和孩子结点之间的内在关系【参见二叉树的顺序存储结构】,在当前无序区中选择关键字最大(或最小)的记录。 4、堆排序与直接插入排序的区别 直接选择排序中,为了从R[1..n]中选出关键字最小的记录,必须进行n-1次比较,然后在R[2..n]中选出关键字最小的记录,又需要做n-2次比较。事实上,后面的n-2次比较中,有许多比较可能在前面的n-1次比较中已经做过,但由于前一趟排序时未保留这些比较结果,所以后一趟排序时又重复执行了这些比较操作。 堆排序可通过树形结构保存部分比较结果,可减少比较次数。5、堆排序 堆排序利用了大根堆(或小根堆)堆顶记录的关键字最大(或最小)这一特征,使得在当前无序区中选取最大(或最小)关键字的记录变得简单。 (1)用大根堆排序的基本思想

数据结构实验报告图实验

邻接矩阵的实现 1. 实验目的 (1)掌握图的逻辑结构 (2)掌握图的邻接矩阵的存储结构 (3)验证图的邻接矩阵存储及其遍历操作的实现2. 实验内容 (1)建立无向图的邻接矩阵存储 (2)进行深度优先遍历 (3)进行广度优先遍历3.设计与编码MGraph.h #ifndef MGraph_H #define MGraph_H const int MaxSize = 10; template class MGraph { public: MGraph(DataType a[], int n, int e); ~MGraph(){ void DFSTraverse(int v); void BFSTraverse(int v); private: DataType vertex[MaxSize]; int arc[MaxSize][MaxSize]; }

int vertexNum, arcNum; }; #endif MGraph.cpp #include using namespace std; #include "MGraph.h" extern int visited[MaxSize]; template MGraph::MGraph(DataType a[], int n, int e) { int i, j, k; vertexNum = n, arcNum = e; for(i = 0; i < vertexNum; i++) vertex[i] = a[i]; for(i = 0;i < vertexNum; i++) for(j = 0; j < vertexNum; j++) arc[i][j] = 0; for(k = 0; k < arcNum; k++) { cout << "Please enter two vertexs number of edge: " cin >> i >> j; arc[i][j] = 1; arc[j][i] = 1; } }

相关文档
最新文档