功率器件损耗计算(附件)

合集下载

常用器件损耗

常用器件损耗

一、常用器件损耗表
(注: 耦合器耦合口输出功率=输入功率-耦合度-插入损耗耦合器输出口输出功率=输入功率-耦合损耗-插入损耗。


(注:功分器每个输出口的输出功率=输入功率+分配比-插入损耗。

)二、常用馈线损耗表
移动通信室内路径损耗传播公式
1、自由空间传播公式:P(L)=32.4+20lgD+20lgf
D为路径(km) f为频率(MHz)
2、室内路径损耗传播公式:PL(d)=31.5+10·n·lgd+FAF
P
L
(d)为路径d的总损耗值(dB)
d为路径(m)
n为同层损耗因子(1.6~3.3)
FAF表示不同层路径损耗附加值(10~20dB)
例:假设本工程为某一宾馆的室内分布系统工程,天线输入口功率Pt=5dBm,吸顶天线增益为Gm=2.1dBi,同原预测距离为d=15米,其中n假定为2.8代入室内路径损耗传播公式,
P
L
(15m)=31.5+10×2.8×lg15+0=31.5+32.9=64.4dB
预测出距离信号源15米处的场强(设衰减储备R为10dB)
P dBm =Pt+Gm-P
L
(15m)-R=5+2.1-64.4-10=-67.3dBm
注: n=2.0为室内结构简单近似于空间
n=2.6为室内结构一般复杂
n=3.0为室内结构较为复杂
如计算隔层路径损耗则还需调整FAF值(10dB~20dB)。

IGBT损耗计算

IGBT损耗计算

IGBT损耗计算单元内部损耗主要由单元内部的IGBT、整流桥、均压电阻、电解电容等产生,算出这些器件的损耗值便能算出单元的效率。

一、IGBT损耗计算IGBT的损耗主要分为IGBT的通态损耗和开关损耗以及IGBT中续流二极管的通态损耗和开关损耗,(1)IGBT的通态损耗估算IGBT的通态损耗主要由IGBT在导通时的饱和电压Vce和IGBT的结热阻产生,IGBT通态损耗的计算公式为:2 21 Ip Ip Ip Ip Pt _ igbt = —(Vce ——+ Rthjc -------- )+ m * cos © (Vce ——+ Rthjc---------------------------------------------------- )2 兀 4 8 3兀式中:Pt-igbt----IGBT的通态损耗功率(W)Vce——IGBT通态正向管压降(V)Rthjc----IGBT 结热阻(K/W)lp----IGBT通态时的电流(A)m----正弦调制PWM输出占空比cos© ----PWM输出功率因数(2)IGBT开关损耗计算IGBT的开关损耗主要是由于IGBT开通和关断过程中电流Ic与电压Vce 有重叠,进而产生开通能耗Eon和关断能耗Eoff, IGBT的开关能耗大小与IGBT 开通和关断时的电流Ic、电压Vce和芯片的结温有关,IGBT开关能好的计算公式为:1Pk -igbt * f * (E o n Eoff)兀式中:Pk-igbt----IGBT开关热损耗值(W)f----IGBT 开关频率(Hz)Eon----IGBT单次接通脉冲的能量损耗(W)Eoff----IGBT单次关断脉冲的能量损耗(W)(3)续流二极管通态损耗计算续流二极管在导通状态下存在正向导通压降Vf,其大小由通过的电流和芯片的结温有关。

由于Vf和结热阻的存在,当有电流通过时会生成二极管在通态状态下的损耗。

功率损耗计算公式

功率损耗计算公式

功率损耗计算公式
1 功率损耗
功率损耗,也称为能量损耗,是指在进行能量传递和转换过程中有害的浪费。

简单来说,光纤线路中产生的功率损耗就是能量在传输时有害的浪费。

那么功率损耗的计算公式是怎样的呢?
2 功率损耗计算公式
功率损耗是光纤线路传输能量浪费的一个重要参数。

它给系统设计师提升能量传输效率提供了基础。

根据光纤传输损耗的原理,我们可以得出功率损耗的计算公式:
实际功率损耗=传输损耗-电路损耗
其中,传输损耗是指光纤从发射端到接收端传播时,由于原因而损失的功率。

电路损耗是指从光纤中提取光功率所消耗的能量,一般由放大器发挥作用,从而耗损一部分功率。

这两部分损耗相减,才能得出系统的实际功率损耗。

3 正确使用功率损耗计算公式
正确使用功率损耗计算公式,可以让光纤线路的传输效率更高,效率更高。

在设计光纤线路时,最好对对不同的光纤进行测量,确定传输损耗。

然后考虑放大器的损耗,确定电路损耗的值,最后再用功率损耗计算公式计算出实际功率损耗。

根据计算结果,进行传输效率的分析,并按照实际需要作出必要的改变,以使总体效率最大化。

综上所述,功率损耗计算公式是提高光纤通道效率的一个重要手段,科学计算功率损耗值,可以让光纤通信获得最佳效果。

当然,光纤线路设计中还有很多其他因素会降低传输效率,不同原因需要采用不同方法来改善和解决。

功率半导体元件的损耗计算分析方法

功率半导体元件的损耗计算分析方法

功率半导体元件的损耗计算分析方法导通损耗:导通损耗是在功率器件导通状态下消耗的功率,主要由导通电阻和开关元件的导通电压引起。

导通电流越大、导通压降越大,导通损耗也就越大。

关断损耗:关断损耗是在开关管和二极管关断时消耗的功率,主要由开关过程中的存储电荷和关断电压引起。

关断电流越大、关断压降越大,关断损耗也就越大。

2.导通损耗计算方法导通损耗的计算方法主要有两种:基于静态条件的方法和基于动态条件的方法。

基于静态条件的方法:即根据功率半导体元件的静态参数来计算导通损耗。

主要考虑的静态参数有导通电阻和导通电流。

导通损耗可以通过下式计算得到:Pcon = Rcon * Icon^2其中,Pcon为导通损耗,Rcon为导通电阻,Icon为导通电流。

基于动态条件的方法:即根据功率半导体元件的开关特性来计算导通损耗。

主要考虑的动态参数有开关时间和导通电压。

导通损耗可以通过下式计算得到:Pcon = Ucon * Icon * tsw其中,Pcon为导通损耗,Ucon为导通电压,Icon为导通电流,tsw 为开关时间。

3.关断损耗计算方法关断损耗的计算方法主要有两种:基于静态条件的方法和基于动态条件的方法。

基于静态条件的方法:即根据功率半导体元件的静态参数来计算关断损耗。

主要考虑的静态参数有关断电流和关断电压。

关断损耗可以通过下式计算得到:Psw = Isw * Vsw其中,Psw为关断损耗,Isw为关断电流,Vsw为关断电压。

基于动态条件的方法:即根据功率半导体元件的开关特性来计算关断损耗。

主要考虑的动态参数有开关时间和存储电荷。

关断损耗可以通过下式计算得到:Psw = Qrr * Urr * fsw其中,Psw为关断损耗,Qrr为存储电荷,Urr为反向恢复电压,fsw 为开关频率。

4.总损耗计算方法总损耗为导通损耗和关断损耗之和。

根据上述导通损耗和关断损耗的计算方法,可以得到总损耗的计算方法:Ptotal = Pcon + Psw其中,Ptotal为总损耗,Pcon为导通损耗,Psw为关断损耗。

如何计算电路中的功率损耗

如何计算电路中的功率损耗

如何计算电路中的功率损耗在电路中,功率损耗是一个重要的参数,它指的是电路元件或整个电路中能量转化为其他形式(如热能)而导致的能量损失。

正确计算电路中的功率损耗对于设计和维护电路至关重要。

本文将介绍如何计算电路中的功率损耗,并提供一些实际案例来帮助读者更好地理解这个概念。

在电路中,功率损耗通常通过以下公式计算:功率损耗 = 电流² ×电阻其中,功率损耗以瓦特(W)为单位,电流以安培(A)为单位,电阻以欧姆(Ω)为单位。

这个公式基于欧姆定律,即电流与电流通过的电阻成正比。

因此,当电流增加或电阻增加时,功率损耗也会增加。

通过以上公式,计算功率损耗需要两个关键参数:电流和电阻。

下面我们将分别介绍如何计算这两个参数。

1. 电流计算:电流是指电荷在单位时间内通过导体的数量,通常用安培(A)表示。

计算电流的基本公式是:电流 = 电荷 / 时间其中,电荷以库仑(C)为单位,时间以秒(s)为单位。

电流可以通过电路中的电流表或者利用欧姆定律和其他已知参数计算得到。

2. 电阻计算:电阻是指电路元件阻碍电流通过的程度,通常用欧姆(Ω)表示。

计算电阻的基本公式是:电阻 = 电压 / 电流其中,电压以伏特(V)为单位,电流以安培(A)为单位。

电阻可以通过电路中的电阻表或者利用欧姆定律和其他已知参数计算得到。

一旦我们获得了电流和电阻的数值,就可以将它们代入功率损耗的公式来计算电路中的功率损耗。

下面,我们将通过一个例子来进一步说明如何计算电路中的功率损耗。

例子:假设有一个电路,其中有一个电阻为10欧姆的电阻器,通过电阻的电流为2安培。

我们将计算该电路中的功率损耗。

首先,我们需要计算电压。

根据欧姆定律,电压等于电流乘以电阻。

因此,电压= 2A × 10Ω = 20V。

接下来,我们可以使用功率损耗的公式来计算功率损耗。

根据公式,功率损耗 = 电流² ×电阻。

代入已知值,功率损耗 = 2² × 10 = 40W。

功率损耗计算

功率损耗计算

功率损耗计算在电力系统中,功率损耗是一项重要的参数。

它代表了电能在输送和转换过程中的能量损耗,无论是传输线路上的电阻损耗,还是变压器、电机等电气设备转换能量过程中的损耗都属于功率损耗的范畴。

准确计算功率损耗对于电力系统的运行和设计至关重要。

本文将介绍功率损耗的计算方法和一些注意事项。

一、功率损耗的分类从电力系统的角度来看,功率损耗可以分为线路损耗和设备损耗。

1. 线路损耗线路损耗是指输电线路本身的电阻导致的能量损耗。

在电力输送过程中,电流通过导线时会遇到电阻产生的热量损耗,这部分损耗就是线路损耗。

线路损耗的计算一般采用欧姆定律,即功率损耗等于电阻乘以电流的平方。

2. 设备损耗设备损耗是指电气设备在能量转换过程中产生的损耗,比如变压器、电动机、发电机等。

设备损耗的计算方法因不同的设备而异,通常需要根据设备的额定功率、效率和负载率等参数进行计算。

二、功率损耗的计算方法为了准确计算功率损耗,需要掌握一些基本的计算方法和公式。

1. 线路损耗计算线路损耗的计算公式为 P = I²R,其中 P 表示功率损耗,I 表示电流,R 表示电阻。

在实际计算中,需要知道线路的长度、截面积和电阻率等参数。

此外,由于电力系统中电流往往比较大,为了方便计算,通常使用单位长度的电阻来代替总电阻,即P = I²ρl,其中ρ 表示单位长度电阻。

2. 设备损耗计算设备损耗的计算需要了解设备的额定功率和效率。

设备的损耗可以通过额定功率和效率的乘积来计算,即 P_loss = P_rated(1-η),其中P_loss 表示设备的损耗,P_rated 表示设备的额定功率,η 表示设备的效率。

三、功率损耗计算的注意事项在进行功率损耗的计算时,需要注意以下几点。

1. 参数准确性准确的参数是计算功率损耗的前提。

因此,需要根据实际情况获取准确的参数,比如电线的电阻率、设备的额定功率和效率等。

如果参数不准确,将导致计算结果的不准确性。

常见器件损耗计算

常见器件损耗计算

常见器件损耗计算方法----开关电源电磁元件类输入滤波器 差模电感器以铜损为主,器件工作频率低,故磁损忽略哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu = (工作频率低,忽略趋肤效应;对称绕制,忽略邻近效应)共模电感器以铜损为主,由于噪声的Vt 值小,故磁损忽略哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu = (工作频率低,忽略趋肤效应;对称绕制,忽略邻近效应)PFC 电路 PFC 电感器以铜损为主,磁损为副,磁芯磁导率/工作状态表现为增量磁导率,即在一定偏置磁场下叠加一振幅较小的交变磁场;磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算;哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max ,磁芯体积Ve 、电感量L哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS 、 最大电流峰值:低压输入时峰值处的纹波电流di 、工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)磁损计算:工作时的工作磁密最大值:AeN LdidB Ae dB N Ldi ∙=→∙∙= L 是工作状态时的电感量,磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:d c Fe dB af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:d c Fe dB af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz粉芯材料相当材:粉芯材料由于均匀气隙分布,我们认为损耗值与温度无关;FeSiAl 粉芯材料损耗公式--损耗与磁导率无关:46.10.2dB fP Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz附:参考损耗曲线图—推导损耗公式:查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= P core 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=DC~DC 电路 谐振电感器以磁损为主,铜损为副,不考虑邻近效应磁芯磁导率/工作状态表现为振幅磁导率,即交变磁场单向或双向振幅大的磁导率; 磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算;哪些参数来自Datasheet/承认书?---常温24℃下直流电阻值R 0 Max ,磁芯体积Ve 、电感量L哪些参数需要设计提供或实测提供?--常温24℃下直流电阻值R 0、输入有效电流值I RMS 、 (最高)工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)磁损计算:工作时的工作磁密最大值:AeN LdidB Ae dB N Ldi ∙=→∙∙= L 是工作状态时的电感量,由于谐振电感器的电感量要求基本不变化,与来料的承认书要求一致;di 取电感器输入有效电流值I RMS ;dB 是双向工作状态,故工作时的磁密取值为2Bm ,所以以下的磁芯损耗取值为Bm磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:dm c Fe B af P = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:d m c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz粉芯材料相当材:粉芯材料由于均匀气隙分布,我们认为损耗值与温度无关; MMP –26材粉芯材质:55.225.1437.5dB f P Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHzMMP –60材粉芯材质:24.241.1625.0dB f P Fe = P Fe 磁芯单位损耗mW/cm 3 dB 工作磁密kG f 工作频率kHz查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= P core 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=主变压器以磁损为主,铜损为副,考虑邻近效应磁芯磁导率/工作状态表现为振幅磁导率,即交变磁场单向或双向振幅大的磁导率; 磁芯损耗只能近似采用标准功耗测试的一定频率和工作磁密下的正弦波损耗进行计算; 由于方波的损耗要比正弦波损耗低10%,故损耗可降低10%;哪些参数来自Datasheet/承认书?---常温24℃下原副边直流电阻值R 0 Max ,磁芯体积Ve 哪些参数需要设计提供或实测提供?--常温24℃下原副边直流电阻值R 0、占空比Dmax 、(最高)工作频率f铜损计算:工作条件下的电阻值由于工作温度作用,需重新计算,最高工作温度定义为110℃,电阻值R 110为50.23424)50.234110(0110++=R R (234.5表示铜的K 值常数,铝的K 值常数是228.1)铜损为1102R I P RMS cu =附:若考虑趋肤效应的影响,按下式进行趋肤效应下的电阻计算 (圆铜线按直径,铜皮或扁平线按厚度):30038.00035.096.0x x R R dcac++= )20(00393.01-+=T fdx d 线径(inch) f 工作频率(Hz) T 工作温度(℃)邻近效应系数:为了简化计算,我们通过以下绕制方式进行系数增加损耗,条件为1. d/T=<1 (d/T 是导体直径与趋肤深度之比,d :导体直径(mm) T :趋肤深度(mm))2. 原边一次绕制完成层数<2层3. 副边一次绕制层数<3层S RMSS P RMSP cuTotal R I R I P 11021102+=磁损计算:通过法拉第定律,推导工作磁密dtdB NAe dt d NV ==φ双向磁化时的工作磁密为 Bm dB 2=NAeVTonBm 2=,移向全桥时,NAef VD Bm MAX 4=单向磁化时的工作磁密为NAeVTonBm dB ==磁芯100℃下的损耗公式,也可通过查磁芯损耗图获得相同信息(损耗公式来自于此): 铁氧体类PC40相当材:d m c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz铁氧体类PC44相当材:dm c Fe B af P = P Fe 磁芯单位损耗mW/cm 3dB 工作磁密kG f 工作频率kHz查磁芯手册中对应磁芯的体积Ve ,计算功耗Ve P P Fe Core ∙= Core P 磁芯损耗mW P Fe 磁芯单位损耗mW/cm 3 ,Ve 磁芯体积mm 3总损耗P Total 为Core Cu Total P P P +=附:邻近效应分析对计算圆形截面导体中,由邻近效应引起的损耗为:cP Gr Id B w P ρ12814159.3422=P p :邻近效应损耗;w :磁场角速度;B :磁感应强度;l :导体长度;d :导体直径; Gr :邻近效应因子;P C :导体电阻率;邻近效应因子Gr 是无量纲因子,它的变化规律仅适合于圆形截面积导体。

功率器件损耗计算

功率器件损耗计算

功率器件损耗计算于两个方面:器件内部和器件外部。

器件工作时所耗散的功率要通过发热形式耗散出去。

若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全正常工作。

在实际应用中,为了保证某些重要功率器件,在这些器件上使用散热器来控制其的工作温升。

功率器件常用的散热方式是使用散热器。

散热器设计的选用主要依靠功率器件的损耗发热量。

在计算出损耗量的前提下,对散热器的各个参数进行设计。

在开关电源系统中功率器件有7 个IGBT 和2 个整流桥,其损耗量计算如下:IGBT 的散热器有两组:其中U1、U2、U3 为一组,U4、U5、U6、U7 为一组。

U1、U2、U3 损耗:流过电流Io=228A工作电压Vcc=620V工作频率fc=3kHZ其它计算参数由CM600DU-24NFH 提供的参数表查得;通过CM600DU-24NFH 自带损耗计算软件可算得一个IGBT 模块的损耗量,如下图:由计算结果可知:P1=389.51WPo=3 乘以P1=3 乘以389.51=1168.53WU4、U5、U6、U7 损耗:流过电流Io=114A工作电压Vcc=620V工作频率fc=20kHZ其它计算参数由CM600DU-24NFH 提供的参数表查得;通过CM600DU-24NFH 自带损耗计算软件可算得一个IGBT 模块的损耗量,如下图:由计算结果可知:P1=476.82WPo=4 乘以P1=4 乘以476.82=1907.28W整流桥D1、D2 损耗计算整流桥是由四个二极管构成,主要的损耗来自二极管PN 结。

二极管的损耗包括正向导通损耗、反向恢复损耗和断态损耗。

肖特级二极管的反向时间很短,反向损耗可以忽略不计。

一般来说,二极管的截止损耗在总功耗中所占的比例很小,可以忽略不计。

在实际应用中,只考虑其的正向导通损耗。

二极管的正向导通损耗可由下式求出:v L@--防复制原创安全保护系统a),S #$`Pdiode.F=VFIFd@_bo]Kpqq]--cn-pereMHUhp|=式中VF DD 二极管正向导通压降; ujOn?&euro;}4--防复制原创安全保护系统w Yu5 4I+IF DD 二极管的正向导通电流; |W+)w F--未经许可,禁止转载Hinwl N])dDD 二极管工作的占空比根据查SKKE 310F 参数可知:VF = 2.1 V IF=400 A d = 0.25由此可得单个二极管的损耗Pdiode.FPdiode.F=VFIFd=2.1V 乘以400A 乘以0.25=210W整流桥中的四个上二极管是交替工作的,每次工作是只有两个,所以整流桥的损耗为二极管的两倍,则:P=2 乘以Po=2 乘以210W=420W整个开关电源系统中共有两个整流桥同时工作,它们共有一个散热器进行散热。

功率半导体元件的损耗计算分析方法

功率半导体元件的损耗计算分析方法

影响IGBT的损耗的损耗的因 素
导通损耗主要由以下因素决定 - 导通电流(输出特性曲线VCE=f(IC)确定) - Duty Cycles 开关损耗主要由以下因素决定 - 导通电流 - DC 关断电压 - 开关频率
相关概念
IGBT和DIODE输出特性曲线
VCE (t ) = VCE 0 + K * I CE (t )
VF (t ) = VF 0 + K * I F (t ) − −方法一
相关概念—IGBT损耗分布
IGBT总损耗
导通损耗
开关损耗
驱动损耗
开通损耗
关断损耗
Ptot / T = Pon / T + Pswon / T + Pswoff / T
F 0
F
(t )dt
DIODE的损耗—关断损耗
关断损耗主要与二极管的反向恢复电流有 关. 求得二极管平均电流,作为IF, VD为反 向恢复电压. 反向恢复电流与VD的积分为 二极管的关断损耗.
热阻分析
Ploss
Rthjunction-case Rthcase-sink Rthsink-ambient Ta
DIODE的损耗—导通损耗
第四步,根据DIODE电流波形函数,及 DIODE的输出阻抗特性计算导通损耗。
VF (t ) = VF 0 + K * I F (t ) − −方法一
VF (t ) = VF (I F (t )) − −方法二
Pon _ loss
1 = Tbf
Tbf / 2
∫ V (t ) * I
讨论题目
分析两电平逆变的主要开关管的损耗,列出 分析思路,并指出温升实验时的最大允许温 度. 分析三电平逆变的主要开关管的损耗,列出 分析思路,并指出温升实验时的最大允许温 度. 分析影响开关管损耗的主要因素

开关器件开关过程损耗计算公式

开关器件开关过程损耗计算公式

开关器件开关过程损耗计算公式开关器件开关过程损耗计算公式是电力电子学中的重要内容,它是评估开关器件性能的关键指标之一。

下面是相关的公式和计算方法。

1. 理想开关器件的损耗计算公式理想开关器件的损耗只有导通损耗和关断损耗两种,可以用下面的公式计算:$P_{SW} = V_{DS} \cdot I_D \cdot (t_{on} + t_{off}) \cdot f_{SW}$其中,$P_{SW}$ 是开关器件的总损耗,$V_{DS}$ 是开关器件的漏电压降,$I_D$ 是开关器件的平均导通电流,$t_{on}$ 是开关器件的导通时间,$t_{off}$ 是开关器件的关断时间,$f_{SW}$ 是开关器件的开关频率。

2. 实际开关器件的损耗计算公式实际开关器件的损耗比理想开关器件要复杂,因为实际开关器件存在许多非理想因素,比如开关器件的内部电阻、电感、电容等等。

因此,实际开关器件的损耗可以分为导通损耗、关断损耗、开关过渡损耗和反向恢复损耗四种,可以用下面的公式计算:$P_{SW} = P_{con} + P_{dis} + P_{tr} + P_{rr}$其中,$P_{con}$ 是导通损耗,可以用下面的公式计算:$P_{con} = V_{DS} \cdot I_D \cdot t_{on} \cdot f_{SW}$$P_{dis}$ 是关断损耗,可以用下面的公式计算:$P_{dis} = V_{DS} \cdot I_D \cdot t_{off} \cdot f_{SW}$$P_{tr}$ 是开关过渡损耗,可以用下面的公式计算:$P_{tr} = \frac{1}{2} \cdot V_{DS} \cdot I_D \cdot (t_{r} + t_{f}) \cdot f_{SW}$$P_{rr}$ 是反向恢复损耗,可以用下面的公式计算:$P_{rr} = V_{RR} \cdot I_{RR} \cdot f_{SW}$其中,$t_{r}$ 和$t_{f}$ 分别是开关器件的上升时间和下降时间,$V_{RR}$ 和$I_{RR}$ 分别是开关器件的反向恢复电压和反向恢复电流。

功率MOSFET的功率损耗公式

功率MOSFET的功率损耗公式

功率MOSFET的功率损耗公式
MOSFET(金属氧化物半导体场效应管)是一种常用的功率器件,广泛
应用于各种电子设备中。

在工作过程中,MOSFET会产生一定的功率损耗,这些损耗大部分转化为热量,需要通过适当的散热手段进行散热,以保持
器件的正常工作温度。

因此,对功率损耗的准确计算和估算是至关重要的。

首先是导通损耗。

当MOSFET处于导通状态时,导通电流通过MOSFET
的导通电阻,导致功率损耗。

导通损耗可以使用以下公式进行计算:P_cond = I^2 * R_ds_on
其中,P_cond是导通损耗,单位为瓦特(W),I是MOSFET的导通电流,单位为安培(A),R_ds_on是MOSFET的导通电阻,单位为欧姆(Ω)。

其次是开关损耗。

当MOSFET从导通状态转为截止状态(或从截止状
态转为导通状态)时,会有一定的开关过程,这会产生开关损耗。

开关损
耗可以使用以下公式进行计算:
P_sw = 0.5 * V_ds * I * f_sw * (t_r + t_f)
其中,P_sw是开关损耗,单位为瓦特(W),V_ds是MOSFET的漏极-
源极电压,单位为伏特(V),I是MOSFET的导通电流,单位为安培(A),f_sw是开关频率,单位为赫兹(Hz),t_r是MOSFET的上升时间,单位为秒(s),t_f是MOSFET的下降时间,单位为秒(s)。

综上所述,功率MOSFET的功率损耗公式包括导通损耗和开关损耗两
个主要部分,分别计算了MOSFET在导通状态和开关状态时的功率损耗。

通过准确计算和估算功率损耗,我们可以更好地设计和优化电路,确保MOSFET的正常工作和可靠性。

变频器功率器件损耗计算

变频器功率器件损耗计算

整流二极管损耗计算

输入功率因数计算
带直流电抗器,且直流侧电流连续,电容的纹波电流为

2

2
7
.72

10
U
1
.
89

10
U
in
in
IC

1
1
2
(6

L
) 2
(
12

L

)
6

C
12

C
Uin为输入线电压的有效值,L为直流电抗器的电感量,C为母线电容量
0.955Idc(AVG)
直流侧电流不连续,通过实测或仿真得到输入功率因数。
应的点(VF2,IF2),由此可得
进一步求得
rF
VF1 VF2
IF1 IF2
V
V
r
IF1
F
0
F
1
F
IGBT模块损耗计算
Lin
Ldc
Lout
R
U
S
V
T
W
IGBT模块损耗计算

IGBT模块损耗构成
IGBT通态损耗:
IGBT开关损耗:
Pfw /T
1
=
T
T
0
VCE (t) ∙ iC (t)dt

IGBT开关损耗计算
IGBT开关能量与电流近似成线性关系,当母线电压在IGBT额定工作电压(600V IGBT为300V,1200V IGBT
为600V,1700V IGBT为900V,3300V IGBT为1800V)的±20%范围内时,IGBT开关能量与母线电压近
似成线性关系,母线电压一般在这个范围内。IGBT开通能量还与驱动电阻有关,驱动电阻越大,开通能量

功率损耗的计算公式

功率损耗的计算公式

功率损耗的计算公式在我们的日常生活和学习中,经常会接触到各种各样的物理概念和公式。

今天咱们就来好好唠唠“功率损耗的计算公式”。

功率损耗啊,这可是个在电学里相当重要的知识点。

咱们先从最基础的说起,功率损耗通常可以用公式 P 损 = I²R 来表示。

这里的“P 损”就是功率损耗,“I”代表电流,“R”呢则表示电阻。

我记得之前有一次,我家里的电灯泡突然变得特别暗。

我就很好奇这到底是咋回事,难道是电路出问题了?于是我拿起工具,开始自己捣鼓。

经过一番检查,我发现是电线老化,电阻变大了。

按照功率损耗的公式,电阻增大,在电流不变的情况下,功率损耗也就跟着增大了。

那咱们再深入一点说,这个公式是怎么来的呢?其实它是由电功率的公式推导出来的。

电功率 P = UI,而在纯电阻电路中,U = IR,把 U = IR 代入 P = UI 中,就得到了 P = I²R 。

这一步步的推导,就像是解开一个神秘的谜题,每一步都充满了探索的乐趣。

在实际应用中,比如在输电线路中,由于电线本身存在电阻,电流在传输过程中就会产生功率损耗。

为了减少这种损耗,工程师们可是想尽了办法。

他们会尽量增大输电电压,因为在输送功率一定的情况下,电压越高,电流就越小,根据功率损耗的公式,电流越小,功率损耗也就越小。

还有啊,在我们使用各种电器的时候,也能用到这个公式。

比如说电暖器,它里面的电阻丝电阻比较大,通电的时候就会产生较多的功率损耗,从而转化为热能,让我们能感受到温暖。

咱们再来说说做题的时候。

假如给你一个电路,告诉你电流是 5 安培,电阻是 10 欧姆,让你算功率损耗。

那这时候你就可以直接把数字代入公式 P 损 = I²R 中,也就是 5²×10 = 250 瓦特,这就是功率损耗啦。

总之,功率损耗的计算公式虽然看起来简单,但它的应用却非常广泛。

无论是在我们的日常生活中,还是在高科技的领域里,都离不开它。

变频器功率器件损耗计算-2010020

变频器功率器件损耗计算-2010020

2 Ip Ip Ip 1 1 2 (VF 0 rF ) m cos (VF 0 rF I p ) 2 4 8 3
VF0和rF的获取方法与整流二极管相同
上下二极管互补工作,通态损耗相同。
IGBT模块损耗计算(两电平)
• 二极管关断损耗计算
二极管关断损耗与电压、结温的关系与IGBT一致,但与驱动电阻成反比,驱动电阻越 大,关断能量越小。二极管关断能量与电流不是线性关系。
Vdc Ic ∙ Vnom Inom
T
T
Vdc Ic ∙ ∙ Vnom Inom
Ic用IGBT电流在一个电源周期内的平均值代替
1 Ic = 2π
π 0
Ip sinωtdωt =
Ip π
IGBT模块损耗计算(两电平)
• IGBT开关损耗计算
Psw
T
1 = fs ∙ [Eon π
T
Vnom , Inom , R G , Tj
变频器功率器件损耗计算
唐益宏
2010-10-28
目录
• 整流二极管损耗计算 • IGBT模块损耗计算 • 电解电容损耗计算
• 电抗器损耗计算
• 反激电源主开关管损耗计算
• 反激电源变压器损耗计算
• 反激电源整流二极管损耗计算
变频器主电路
Lin R S T
Ldc
Lout U V W
整流二极管损耗计算
1 1 d IGBT 1 m sin(t ) m sin[3(t )] 2 5
IGBT模块损耗计算(两电平)
• 采用SVPWM调制时的损耗 IGBT通态损耗
Pfw
T
1 = 2π
π 0

功率半导体元件的损耗计算分析方法 ppt课件

功率半导体元件的损耗计算分析方法 ppt课件

1 2
2020/12/12
17
DIODE的损耗—导通损耗
第一步,得到输入电流波形的函数
Iin (t)Iin*sin w) (t0wt
69.415 80 60
I_T HY1(t) 40
20 00
0 0
0.005
0.01
0.015
0.02
t
0.02
2020/12/12
18
DIODE的损耗—导通损耗
I_L2
I_D 2
2020/12/12
11
以30K为例分析PFC IGBT的 损耗—导通损耗
计算条件 - 假设输入电压Vin - 负载110% R LOAD - 效率η - 考虑CHARGER 功率Pchgr
2020/12/12
12
IGBT的损耗—导通损耗
第一步,得到输入电流波形的函数
Байду номын сангаас
Vin(t)Vin 2sin w*(t)
功率半导体元件的损耗计算分析 方法
2020/12/12
1
目录
相关概念 以PFC为例分析IGBT,DIODE的损耗 热阻概念介绍 讨论题目
2020/12/12
2
精品资料
• 你怎么称呼老师?
• 如果老师最后没有总结一节课的重点的难点,你 是否会认为老师的教学方法需要改进?
• 你所经历的课堂,是讲座式还是讨论式? • 教师的教鞭
第二步,根据拓扑得到DIODE的DUTY函数
1.2 1
1D(t) Vin(t) VBUS
1Cde_INT(t1) 0.5
0
0.2
0
0.005
0.01
0.015
0.02

功率器件损耗测算方法及结温测算方法[发明专利]

功率器件损耗测算方法及结温测算方法[发明专利]

(19)中华人民共和国国家知识产权局(12)发明专利申请(10)申请公布号 (43)申请公布日 (21)申请号 201810441893.1(22)申请日 2018.05.10(71)申请人 海信(山东)空调有限公司地址 266000 山东省青岛市平度市南村镇驻地海信路1号(72)发明人 杨帅 陈建兵 牛建勇 隋明勋 (74)专利代理机构 青岛清泰联信知识产权代理有限公司 37256代理人 张媛媛(51)Int.Cl.G06F 17/50(2006.01)(54)发明名称功率器件损耗测算方法及结温测算方法(57)摘要本发明提出一种功率器件损耗测算方法和一种功率器件结温的测算方法。

功率器件损耗测算方法,对功率器件的电流和电压进行离散化采样,并基于离散化的电流计算器件功率。

功率器件结温测算方法,基于器件功率、器件壳温和器件的封装热阻,计算器件的结温。

本发明提供的方法可准确测算功率器件的结温,同时使电路热设计更方便,为功率器件的过热保护提供可提升功率器件器件的可靠性,提高产品质量。

权利要求书2页 说明书5页 附图1页CN 108647436 A 2018.10.12C N 108647436A1.一种功率器件损耗测算方法,其特征在于,包括以下步骤:对功率器件电压进行采样,获得电压瞬时值V k;对功率器件电流进行采样,获得电流瞬时值I k;计算功率器件的损耗P G:其中,n为一个工频周期内的采样总次数,k为具体的采样次数。

2.一种功率器件结温测算方法,其特征在于,所述功率器件包括封装结构,功率器件结温测算方法包括如下步骤:获取功率器件的损耗P G;获取功率器件的壳温T H;计算功率器件的结温T J,T J=T H+RθS*P G (2)其中,RθS为功率器件封装结构热阻。

3.如权利要求2所述的功率器件结温测算方法,其特征在于,所述封装结构包括多层封装层,每层封装层均具有热阻,所述封装结构热阻为各封装层热阻之和。

器件损耗计算

器件损耗计算

器件损耗计算1. 开关器件损耗计算 U inU BUS-U BUSSCR IGBT图1 PFC-BOOST 原理图输入电压wt V wt V t u in CP in sin 2sin )(⋅⋅=⋅=;输入电流wt I t i CP in sin )(⋅=;输出电压BU S out V U =1.1. IGBT 损耗1.1.1 IGBT 导通损耗IGBT 占空比wt m V wt V U t u t D BUS in out in IGBT sin 1sin 21)(1)(⋅-=⋅⋅-=-= 其中BUS in V V m ⋅=2 IGBT 导通压降,工程处理上根据datasheet 上的特性曲线拟合出导通压降u CE (t)关于i C (t)的函数式))(()(t i f t u C CE =常以一次函数式表示cond IG BT C CE CE R t i V t u _0)()(⋅+=IGBT 导通损耗⎰⎰⋅⋅⋅⋅=⋅⋅⋅⋅=ππ200_)()()(21)()()(1dwt wt D wt i wt u dt t D t i t u T P C CE T C CE cond IGBT ⎰⋅⋅⋅⋅=ππ0)()()(21dwt wt D wt i wt u C CE ⎰⋅⋅-⋅⋅⋅⋅⋅+⋅=ππ0_0)sin 1()sin ()sin (21dwt wt m wt I R wt I V CP cond IGBT CP CE )34222(2_0_0CP cond IGBT CE CP cond IGBT CE CP I m R V m I R V I ⋅⋅⋅-⋅⋅-⋅⋅+⋅=πππ 1.1.2 IGBT 开关损耗IGBT 开关损耗⎰⋅⋅⋅=T C CE SW IGBT dt t i t u T P 0_)()(1 ⎰⋅⋅⋅=ππ0)()(21dwt wt i wt u C CE ⎥⎦⎤⎢⎣⎡⋅+⋅⋅⋅⋅=SW off on test test P BUS IGBT f E E I U I V n )(21π 其中,E on 和E off 为IGBT 的datasheet 上给出U test 和I test 条件下测试得到的开通和关断损耗,n IGBT 为桥臂上并联的IGBT 数目。

功率半导体元件的损耗计算分析方法

功率半导体元件的损耗计算分析方法

功率半导体元件的损耗计算分析方法引言:功率半导体元件在各种电力电子设备中广泛应用,如电源、变频器和驱动器等。

由于功率半导体元件在工作过程中会产生一定的损耗,因此准确计算和分析功率半导体元件的损耗是非常重要的。

本文将介绍功率半导体元件的损耗计算分析方法,包括导通损耗和开关损耗的计算方法。

一、导通损耗的计算方法导通损耗是功率半导体元件在导通状态下产生的损耗,主要由通态电阻引起。

导通损耗的计算方法如下所示:1.确定导通状态的电流和电压:根据电路工作条件和元件的导通方式,确定导通状态的电流和电压。

2.计算导通状态下的功率:使用下式计算导通状态下的功率:P_on = I_on * V_on3.计算导通损耗:使用下式计算导通损耗:P_cond = I_on^2 * Rds_on其中,Rds_on为通态电阻。

二、开关损耗的计算方法开关损耗是功率半导体元件在开关状态下产生的损耗,主要由开关过程中产生的开关电压和开关电流引起。

开关损耗的计算方法如下所示:1.确定开关状态的电流和电压:根据电路工作条件和元件的开关方式,确定开关状态的电流和电压。

2.计算开关状态下的功率:使用下式计算开关状态下的功率:P_sw = V_sw * I_sw * f_sw其中,V_sw为开关电压,I_sw为开关电流,f_sw为开关频率。

3.计算开关损耗:使用下式计算开关损耗:P_sw = V_sw * I_sw * t_sw其中,t_sw为每个开关周期内的开关时间。

三、损耗的分析和优化方法对于功率半导体元件的损耗分析和优化,以下是几种常用的方法:1.模拟仿真:使用电路仿真软件,将元件的导通和开关过程模拟为电路模型,进行电路仿真,得到元件的导通损耗和开关损耗。

2.实验测量:使用实验仪器,如功率分析仪和示波器,测量元件在实际工作条件下的导通损耗和开关损耗。

3.确定损耗最大的元件:通过计算和分析,确定在实际工作条件下损耗最大的元件,针对该元件进行优化设计。

IGBT损耗计算

IGBT损耗计算

IGBT 损耗计算单元内部损耗主要由单元内部的IGBT 、整流桥、均压电阻、电解电容等产生,算出这些器件的损耗值便能算出单元的效率。

一、IGBT 损耗计算IGBT 的损耗主要分为IGBT 的通态损耗和开关损耗以及IGBT 中续流二极管的通态损耗和开关损耗,(1)IGBT 的通态损耗估算IGBT 的通态损耗主要由IGBT 在导通时的饱和电压Vce 和IGBT 的结热阻产生, IGBT 通态损耗的计算公式为:)38(cos )4(21_22ππIp Rthjc Ip Vce m Ip Rthjc Ip Vce igbt Pt +*++=φ式中:Pt-igbt----IGBT 的通态损耗功率(W )Vce----IGBT 通态正向管压降(V )Rthjc----IGBT 结热阻(K/W )Ip----IGBT 通态时的电流(A )m----正弦调制PWM 输出占空比cos φ----PWM 输出功率因数(2)IGBT 开关损耗计算IGBT 的开关损耗主要是由于IGBT 开通和关断过程中电流Ic 与电压Vce 有重叠,进而产生开通能耗Eon 和关断能耗Eoff ,IGBT 的开关能耗大小与IGBT 开通和关断时的电流Ic 、电压Vce 和芯片的结温有关, IGBT 开关能好的计算公式为:)(**1Eoff Eon f igbt Pk +=-π式中:Pk-igbt----IGBT 开关热损耗值(W )f----IGBT 开关频率(Hz )Eon----IGBT 单次接通脉冲的能量损耗(W )Eoff----IGBT 单次关断脉冲的能量损耗(W )(3)续流二极管通态损耗计算续流二极管在导通状态下存在正向导通压降Vf ,其大小由通过的电流和芯片的结温有关。

由于Vf 和结热阻的存在,当有电流通过时会生成二极管在通态状态下的损耗。

二极管在通态时的损耗计算公式为:)38(cos )4(21_22ππIp Rthjk Ip Vf m Ip Rthjk Ip Vf diode Pt +*-+=φ 式中:Pt-diode----续流二极管开关热损耗(W )Vf----续流二极管通态正向管压降(V )Ip----IGBT 通过续流二极管的运行电流(A )m----正弦调制PWM 输出占空比cos φ----PWM 输出功率因数Rthjk----二极管结热阻(K/W )(4)续流二极管开关损耗计算续流二极管的开关损耗主要由续流二极管恢复关断状态产生,其大小与正向导通时的电流、电流的变化率di/dt 、反向电压和芯片的结温有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

功率器件应用时所受到的热应力可能来源于两个方面:器件内部和器件外部。

器件工作时所耗散的功率要通过发热形式耗散出去。

若器件的散热能力有限,则功率的耗散就会造成器件内部芯片有源区温度上升及结温升高,使得器件可靠性降低,无法安全正常工作。

在实际应用中,为了保证某些重要功率器件,在这些器件上使用散热器来控制其的工作温升。

功率器件常用的散热方式是使用散热器。

散热器设计的选用主要依靠功率器件的损耗发热量。

在计算出损耗量的前提下,对散热器的各个参数进行设计。

在开关电源系统中功率器件有7个IGBT和2个整流桥,其损耗量计算如下:
IGBT的散热器有两组:其中U1、U2、U3为一组,U4、U5、U6、U7为一组。

U1、U2、U3损耗:
流过电流Io=228A
工作电压Vcc=620V
工作频率fc=3kHZ
其它计算参数由CM600DU-24NFH提供的参数表查得;
通过CM600DU-24NFH自带损耗计算软件可算得一个IGBT模块的损耗量,如下图:
由计算结果可知:P1=389.51W
Po=3×P1=3×389.51=1168.53W
U4、U5、U6、U7损耗:
流过电流Io=114A
工作电压Vcc=620V
工作频率fc=20kHZ
其它计算参数由CM600DU-24NFH提供的参数表查得;
通过CM600DU-24NFH自带损耗计算软件可算得一个IGBT模块的损耗量,如下图:
由计算结果可知:P1=476.82W
Po=4×P1=4×476.82=1907.28W
整流桥D1、D2损耗计算
整流桥是由四个二极管构成,主要的损耗来自二极管PN结。

二极管的损耗包括正向导通损耗、反向恢复损耗和断态损耗。

肖特级二极管的反向时间很短,反向损耗可以忽略不计。

一般来说,二极管的截止损耗在总功耗中所占的比例很小,可以忽略不计。

在实际应用中,只考虑其的正向导通损耗。

二极管的正向导通损耗可由下式求出:
P diode.F=V F I F d
式中V F ――二极管正向导通压降;
I F ――二极管的正向导通电流;
d――二极管工作的占空比
根据查SKKE 310F参数可知:
V F = 2.1 V I F=400 A d = 0.25
由此可得单个二极管的损耗P diode.F
P diode.F=V F I F d=2.1V×400A×0.25=210W
整流桥中的四个上二极管是交替工作的,每次工作是只有两个,所以整流桥的损耗为二极管的两倍,则:
P=2×Po=2×210W=420W
整个开关电源系统中共有两个整流桥同时工作,它们共有一个散热器进行散热。

所以,在设计散热器时要考虑到两个整流桥的损耗,则整流桥这部分的总损耗Q为:Q=2×P=2×420W=840W
得到了IGBT和整流桥的损耗后,就可以根据损耗来计算和设计散热器的具体参数。

相关文档
最新文档