优化设计Matlab程序
完整版优化设计Matlab编程作业

化设计hl4HU©0⑥ 3 hlu 凹内r d X1州fci-rU-fFF卢F ♦ 忡下¥为+1 —*— S-ll-« F41:Si —MATLABoftiHMirjirCfiffliiiiJ PHI■1**■ 温不平?」11,・—喜M - 〜FT 文词一时y 片 34ml 3F*L9TR0i. Jill!-LkftLgWf 1S1CSI掰f 1 ■ >A A A »W I % :k Dnfl w I ■ J k^lXMprfaMk tjn nn Alflhw初选 x0=[1,1] 程序:Step 1: Write an Mfle objfunl.m.function f1=objfun1(x)f1=x(1)人2+2*x(2)入2-2*x(1)*x(2)-4*x(1);Step 2: Invoke one of the unconstrained optimization routinesx0=[1,1];>> options = 0Ptimset('LargeScale','off);>> [x,fval,exitflag,output] = fminunc(@objfun1,x0,options)运行结果: x =4.0000 2.0000 fval = -8.0000exitflag =1 output = iterations: 3 funcCount: 12 stepsize: 1 firstorderopt: 2.3842e-007algorithm: 'medium-scale: Quasi-Newton line search message: [1x85 char]非线性有约束优化1. Min f(x)=3 x : + x 2+2 x 1-3 x 2+5 Subject to:g 2(x)=5 X 1-3 X 2 -25 < 0 g (x)=13 X -41 X 2 < 0 3 12g 4(x)=14 < X 1 < 130无约束优化 min f(x)=X 2 + x 2-2 x 1 x 2-4 x 1g5 (x)=2 < X 2 < 57初选x0=[10,10]Step 1: Write an M-file objfun2.mfunction f2=objfun2(x)f2=3*x(1)人2+x(2)人2+2*x(1)-3*x(2)+5;Step 2: Write an M-file confunl.m for the constraints. function [c,ceq]=confun1(x) % Nonlinear inequality constraints c=[x(1)+x(2)+18;5*x(1)-3*x(2)-25;13*x(1)-41*x(2)人2;14-x(1);x(1)-130;2-x(2);x(2)-57];% Nonlinear inequality constraints ceq=[];Step 3: Invoke constrained optimization routinex0=[10,10]; % Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun2,x0,[],[],[],[],[],[],@confun1,options)运行结果:x =3.6755 -7.0744 fval =124.14952.min f (x) =4x2 + 5x2s.t. g 1(x) = 2X] + 3x2- 6 < 0g (x) = x x +1 > 0初选x0=[1,1]Step 1: Write an M-file objfun3.m function f=objfun3(x) f=4*x(1)人2 + 5*x(2)人2Step 2: Write an M-file confun3.m for the constraints. function [c,ceq]=confun3(x) %Nonlinear inequality constraints c=[2*x(1)+3*x(2)-6;-x(1)*x(2)-1];% Nonlinear equality constraints ceq口;Step 3: Invoke constrained optimization routinex0=[1,1];% Make a starting guess at the solution>> options = optimset('LargeScale','off);>> [x, fval]=...fmincon(@objfun,x0,[],[],[],[],[],[],@confun,options)运行结果:Optimization terminated: no feasible solution found. Magnitude of search direction less than2*options.TolX but constraints are not satisfied.x =11fval =-13实例:螺栓连接的优化设计图示为一压气机气缸与缸盖连接的示意图。
机械优化设计

机械优化设计matlab优化设计程序学校:班级:学号:姓名:指导老师:一.进退法求最优点所在区间1.算例:函数:f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;初始参数:x0=0,step=0.01,st=[0,0],sd=[1,1];2.编程代码:function [lb,ub]=jintuifa(x0,step0,st,sd)% lb为区间下限,up为区间上限% x0初始探测点,step0是初始探测步长,st初始搜索点,sd是初始搜索方向step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=x(1)^3+x(2)^2-10*x(1)*x(2)+1;end3.运行结果二.黄金分割法求最求最优值1.eg:函数:f=x^2+2*x;初始参数:a=-3,b=5,e=0.0001;2.编程代码:function [ans,sp]=golden(a,b,e)%[a,b]初始区间,e为最小区间长度要求%ans为最优解,sp为所需迭代次数a(1)=a;b(1)=b;L=e;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;m(1)=feval('f1',t(1));n(1)=feval('f1',u(1));while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endm(k+1)=feval('f1',t(k+1));n(k+1)=feval('f1',u(k+1));ans=feval('f1',t(k+1));k=k+1;endans=(a(k)+b(k))/2;sp=k-1;end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function y=f1(x)y=x^2+2*x;end3.运行结果三.无约束优化方法——坐标轮换法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9];2.编程代码:function [x,f]=lunhuan(x0)%输入初始点x0[8,9]%输出最优解点x,与最优解值fp=1;h=0.000001;x=x0;while(p>h)%做精度比较w=x(1);q=x(2);d1=[1,0];a1=golden('objfun',x,d1);%黄金分割法求最佳步长 x=x+a1*d1;d2=[0,1];a2=golden('objfun',x,d2);x=x+a2*d2;p=sqrt((x(1)-w)^2+(x(2)-q)^2);endf=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)%函数名f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)%进退法函数x0=0;step0=0.000001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd); %进退法求最佳步长区间a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endt(k)=0;u(k)=0;m(k)=0;n(k)=0;p=[a',b',t',u',m',n'];ans=(a(k)+b(k))/2;end3.运行结果四.无约束优化方法——鲍威尔法1.eg:函数:min f(x)=4*(x(1)-5)^2+(x(2)-6)^2;初始参数:初始点x为[8,9],初始搜索方向[0,1],[1,0];2.编程代码:function [x,f]=powill(x0,d1,d2)%输入x0为初始点,d1,d2为两个线性无关向量for k=1:2w=x0(1);q=x0(2);a1=golden('objfun',x0,d1);x1=x0+a1*d1;a2=golden('objfun',x1,d2);x2=x1+a2*d2;d1=d2;d2=x2-x0;a3=golden('objfun',x2,d2);x3=x2+a3*d2;x0=x3;endx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=objfun(x)f=4*(x(1)-5)^2+(x(2)-6)^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd)x0=0;step0=0.0001;step=step0;f0=jintui(x0,st,sd);x1=x0+step0;f1=jintui(x1,st,sd);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2;f1=f0;f0=f2;endendend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd)f=objfun(st+a.*sd);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(f_name,st,sd)[a,b]=jintuifa(st,sd);a(1)=a;b(1)=b;L=0.1;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd;q=st+u(1)*sd;m(1)=feval(f_name,p);n(1)=feval(f_name,q);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd;z=st+u(k+1)*sd;m(k+1)=feval(f_name,w);n(k+1)=feval(f_name,z);ans=feval(f_name,w);k=k+1;endend3.运行结果五.有约束优化方法——复合形法1.eg:函数:min f(x)=x1^2+x2^2-x1*x2-10*x1-4*x2+60 St:g1(x)=-x1≤0g2(x)=-x2≤0g3(x)=x1-6≤0g4(x)=x2-8≤0g5(x)=x1+x2-11≤02.编程代码:function fuhexing(n,b,h,xb1,xb2)%元素数n,初始可行点b,精度h,xb1横坐标上下界,xb2为纵坐标上下界if (rem(n,2)==0)k=n+n/2;elsek=n+(n+1)/2;end%取k值A=kexingdian(k,xb1,xb2,b');%确定可行点A=mubiao(A,n,k,h);%求出目标函数并排序比较,得出最优解End %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=mubiao(A,n,k,h)for i=1:kA(3,i)=objfun(A(:,i));endB=A';%根据目标函数值排序A=sortrows(B,3)';p=0;for j=1:kx=(objfun(A(:,j))-objfun(A(:,1)))^2;p=p+x;endo=sqrt(p/(k-1));%收敛条件if(o<h)%判断所求点是否为最优点disp('最优点为')xz(1)=A(1,1);xz(2)=A(2,1);disp(xz);disp('其函数值为')f=A(3,1);disp(f);elsexr=Xcpanduan(A,k,n,h,1.3);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function A=kexingdian(k,xb1,xb2,b)A=zeros(3,k);A(1,1)=b(1);A(2,1)=b(2);for i=2:kA(1,i)=xb1(1)+rand(1)*(xb1(2)-xb1(1));A(2,i)=xb2(1)+rand(1)*(xb2(2)-xb2(1));%产生j个顶点endt=0;for j=1:kif(A(1,j)+A(2,j)<=11&&A(1,j)<=6&&A(2,j)<=8)%判断是否有不可行点t=t+1;T(:,t)=A(:,j);endendif(t<k)%计算出可行点的中心位置xcxc=zhongxindian(T,t);endt=0;for j=1:k%利用中心点将原不可行点逼近为可行点while(A(1,j)+A(2,j)>11||A(1,j)>6||A(2,j)>8)A(:,j)=xc+0.5*(A(:,j)-xc);endendendx=x0;f=objfun(x);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=objfun(x)f= x1^2+x2^2-x1*x2-10*x1-4*x2+60;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=Xcpanduan(A,k,n,h,a)for i=1:k-1T(:,i)=A(:,i);endxc=zhongxindian(T,k-1);%计算除最坏点以外的可行点中心坐标if(xc(1)+xc(2)<=11&&xc(1)<=6&&xc(2)<=8)%判断xc是否可行xr=Xrpanduan(xc,A,a,n,k,h);A(:,k)=xr;else%不可行时,即重新确定初始可行点fuhexing(n,h,A(:,1),xr);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xc=zhongxindian(T,t)xc=[0;0;0];for i=1:txc=xc+T(:,i);endxc=xc/t;%求解中心点end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function xr=Xrpanduan(xc,A,a,n,k,h)xr=xc+a*(xc-A(:,k));while(xr(1)+xr(2)>11||xr(1)>6||xr(2)>8)%判断xr 是否可行若不可行,则持续迭代a=0.5*a;xr=xc+a*(xc-A(:,k));endxr=ercipanduan(a,xr,A(:,k),A,n,k,xc,h,xr);%可行时进入下一判断end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function xr=ercipanduan(a,p,b,A,n,k,xc,h,t)if(objfun(p)>=objfun(b))%判断反射点和最坏点函数值的大小if(a<=1e-10)A(:,k)=A(:,k-1);xr=Xcpanduan(A,k,n,h,a);disp(xr);elsea=0.5*a;xr=Xrpanduan(xc,A,a,n,k,h);%返回中心点判断,持续迭代endelseA(:,k)=p;%以反射点取代最坏点进行循环mubiao(A,n,k,h);xr=t;endend3.运行结果五.有约束优化方法——混合惩罚法1.eg:函数:min f(x)=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;St:g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);2.编程代码function [x,f]=hunhechengfa(x0,r0,c,h1,h2)k=1;z=0;A(:,1)=x0;r(1)=r0;while (z==0)k=k+1;x=lunhuan(x0,r(k-1));A(:,k)=x;r(k)=c*r(k-1);z=shoulian(A,r,h1,h2,k);if(z==1)break;endx0=x;enddisp('最优解点x=');disp(x);disp('最优值=');f=fhanshu(x);disp(f);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function z=shoulian(A,r,h1,h2,k)%判断收敛条件U=abs(objfun(A(:,k),r(k))-objfun(A(:,k-1),r(k-1))/obj fun(A(:,k-1),r(k-1)));V=0;for i=2:kV=V+(A(1,k)-A(1,k-1))^2;endV=sqrt(V);if(U<=h1&&V<=h2)z=1;elsez=0;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function p=objfun(x,r)%φ函数g1=x(1)^2+x(2)^2+x(3)^2-5;g2=(x(4)-3)^2+x(5)^2-1;g3=x(6)-8;g4=4-x(6);j=sqrt(r);u=r*(1/g1+1/g2+1/g3+1/g4);v=(g1^2+g2^2+g3^2+g4^2)/j;p=fhanshu(x)-u+v;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function f=fhanshu(x)%目标函数f=(x(4)-x(1))^2+(x(5)-x(2))^2+(x(6)-x(3))^2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%function x=lunhuan(x0,r)%轮换法p=1;h=0.01;d=zeros(6,6);a=zeros(6,1);x=x0;for i=1:6for j=1:6if(i==j)d(i,j)=1;endendendwhile(p>h)t=x;v=0;for k=1:6a(k)=golden(x,d(:,k),r);c=d(:,k);x=x-a(k)*c';v=v+(x(k)-t(k))^2;endp=sqrt(v);endend %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function ans=golden(st,sd,r)%黄金分割法求最佳步长 [g,h]=jintuifa(st,sd,r);a(1)=g;b(1)=h;L=0.01;t(1)=a(1)+0.382*(b(1)-a(1));u(1)=a(1)+0.618*(b(1)-a(1));k=1;p=st+t(1)*sd';q=st+u(1)*sd';m(1)=objfun(p,r);n(1)=objfun(q,r);while(b(k)-a(k)>L)if(m(k)>n(k))a(k+1)=t(k);b(k+1)=b(k);t(k+1)=u(k);u(k+1)=a(k+1)+0.618*(b(k+1)-a(k+1));elsea(k+1)=a(k);b(k+1)=u(k);u(k+1)=t(k);t(k+1)=a(k+1)+0.382*(b(k+1)-a(k+1));endw=st+t(k+1)*sd';z=st+u(k+1)*sd';m(k+1)=objfun(w,r);n(k+1)=objfun(z,r);k=k+1;endans=(a(k)+b(k))/2;end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function f=jintui(a,st,sd,r)%代入步长f=objfun(st+a.*sd',r);end %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% function [lb,ub]=jintuifa(st,sd,r)%进退法求最佳步长区间x0=0;step0=0.001;step=step0;f0=jintui(x0,st,sd,r);x1=x0+step0;f1=jintui(x1,st,sd,r);if f1<=f0while truestep=2*step;x2=x1+step;f2=jintui(x2,st,sd,r);if f1<=f2lb=x0;ub=x2;break;elsex0=x1;x1=x2;f0=f1;f1=f2;endendelsewhile truestep=2*step;x2=x0-step;f2=jintui(x2,st,sd,r);if f0<=f2lb=x2;ub=x1;break;elsex1=x0;x0=x2; f1=f0; f0=f2;endendend3.运行结果。
最优化方法及其matlab程序设计

最优化方法及其matlab程序设计
最优化方法是一种利用各种技术,以提高某项工作,工程或系统
的效率为目标,并让其在某些给定基准测试中改善性能的过程。
它可
以用来提高计算机系统的性能,减少加工时间,提高生产率,等等。
Matlab是一种非常适用于最优化的程序设计语言,它拥有许多强
大的分析功能,例如数值分析、线性规划、非线性规划、二次规划、
优化算法、深度学习、图形处理和仿真等。
因此,Matlab可以帮助用
户找到最优解决方案,比如解决所谓的NP难问题,这些问题很难在
“合理”时间内找到最优解。
要在matlab中实现最优化方法,首先要定义和描述优化问题。
然后,选择合适的优化器。
一般来说,FMINCON函数可以满足大多数最优
化问题的要求,因为它可以通过求解约束和非线性问题来实现最优化。
在函数中,用户可以指定具体的约束条件、目标函数、初始解和其他
一些参数,以便更好地进行最优化。
此外,matlab中还提供了其他一些有用的优化函数,可以用于解
决更复杂的问题,包括FMINUNC、FMINBND等。
这些函数都可以实现更
高级的最优化算法,例如迭代算法、模拟退火算法、遗传算法等。
最后,用户还可以使用matlab自带的toolbox来进行最优化,例
如Optimization Toolbox。
这个工具包可以帮助用户调整参数,从而
实现最优解。
同时,它还提供了有关具体优化策略的解释,以便了解
该策略的实现方法以及它的应用范围。
总的来说,matlab可以实现各种最优化方法,无论是简单的还是
复杂的,都可以通过它找到最佳解决方案。
如何优化Matlab代码效率

如何优化Matlab代码效率一、引言Matlab是一种广泛用于科学计算和工程数据分析的编程语言和环境。
尽管Matlab具有易学易用的优势,但在处理大规模数据和复杂算法时,其执行效率可能受到限制。
本文旨在探讨如何优化Matlab代码的效率,以提高程序执行速度和资源利用率。
二、算法优化在编写Matlab代码时,合理选择和设计算法是提高效率的关键。
以下是一些常见的算法优化方法:1. 向量化操作:利用Matlab对向量和矩阵运算的优化支持,尽量避免使用循环。
通过向量化操作,可以将多个操作并行执行,减少运算次数。
2. 预分配内存空间:在循环中频繁使用动态分配内存的操作会导致效率下降。
可以通过预先分配足够的内存空间来避免频繁的内存分配和释放操作。
3. 减少不必要的计算:分析算法流程,去除不必要的计算步骤和重复计算,减少程序运行时间。
4. 选择高效的数据结构:根据实际需求选择合适的数据结构,例如使用矩阵代替多维数组,使用稀疏矩阵进行存储和计算等。
5. 并行计算:利用Matlab的并行计算工具箱,将计算任务分解为多个子任务,并利用多核或集群资源并行执行,以加速程序运行。
三、内存管理合理的内存管理是优化Matlab代码效率的重要一环。
以下是一些内存管理的技巧:1. 及时释放不再使用的变量:及时清除不再使用的变量,以释放内存空间,避免因内存不足而引起的性能下降。
2. 使用稀疏矩阵:对于大规模的稀疏数据,使用稀疏矩阵可以大幅减少内存占用和计算时间。
3. 内存预分配:通过预估计算所需内存空间,提前分配足够的内存,减少内存分配的开销。
4. 尽量避免频繁的复制操作:在Matlab中,大部分变量传递和复制都是按值传递,会占用额外的内存。
在处理大规模数据时,尽量避免频繁的变量复制操作,以减少内存开销。
四、调试和性能分析工具Matlab提供了一系列的调试和性能分析工具,可以帮助开发者发现代码中的潜在性能瓶颈。
以下是一些常用的工具:1. Profiler:通过运行Profiler,可以收集代码的性能数据,包括函数的执行时间、内存占用等信息。
基于matlab的平面连杆机构优化设计

基于matlab的平面连杆机构优化设计
基于Matlab的平面连杆机构优化设计是指利用Matlab软件平台,对平面连杆机构进行优化设计的过程。
平面连杆机构是一种常见的机械传动机构,广泛应用于各种机械系统中,如机械手、凸轮机构等。
优化设计是指通过数学建模、计算和分析,寻求满足一定性能要求的最优设计方案。
在基于Matlab的平面连杆机构优化设计中,通常需要建立机构的数学模型,包括几何模型和运动学模型。
几何模型描述机构的几何形状和尺寸,而运动学模型则描述机构的位置、速度和加速度等运动参数。
然后,利用Matlab 进行数值计算和分析,以确定最优的设计参数。
具体来说,基于Matlab的平面连杆机构优化设计可以分为以下几个步骤:1.建立数学模型:根据实际问题,建立平面连杆机构的几何模型和运动学模
型,将实际问题转化为数学问题。
2.定义优化目标:根据设计要求,定义优化目标函数,如最小化某个性能参
数、最大程度满足某个约束条件等。
3.确定设计变量:选择影响优化目标的主要参数作为设计变量,如连杆长度、
角度等。
4.约束条件:根据实际应用需求和机构运动特性,定义约束条件,如角度范
围、位移范围等。
5.求解优化问题:利用Matlab的优化工具箱进行数值计算,求解优化问题,
得到最优设计方案。
6.结果分析和验证:对优化结果进行分析和验证,确保最优设计方案的有效
性和可行性。
总之,基于Matlab的平面连杆机构优化设计是一种通过数学建模和数值计算来寻求最优设计方案的方法。
它可以帮助设计师快速找到满足性能要求的设计方案,提高设计效率和产品质量。
matlab程序优化的常用方法

matlab程序优化的常用方法
Matlab程序优化的常用方法有许多种,其中包括以下几种:
1. 向量化:使用向量和矩阵来代替循环,可以大大提高程序的执行速度。
2. 预分配变量空间:在循环前预先分配变量空间,避免程序在循环中频繁开辟空间。
3. 避免过多的变量复制:减少变量的复制次数,可以减少内存占用和运行时间。
4. 注意变量类型:使用更加高效的变量类型,如uint8和int8,可以减少内存占用和提高程序运行速度。
5. 减少I/O操作:尽量减少文件读写和图形绘制的操作,可以提高程序的执行速度。
6. 利用矩阵运算:使用矩阵运算代替单个数值的运算,可以大大提高程序的运行速度。
7. 简化代码逻辑:简化代码逻辑和减少冗余计算,可以提高程序的
运行速度和减少内存占用。
8. 选择最优算法:选择最优算法可以使程序更加高效,并且减少程序的执行时间。
9. 并行计算:使用并行计算可以提高程序的执行速度,尤其是在大规模数据处理和计算中。
10. 利用Matlab工具箱:Matlab提供了许多工具箱,如优化工具箱和图像处理工具箱等,可以减少程序的开发时间和提高程序的执行效率。
机械优化设计MATLAB程序

机械优化设计MATLAB程序
1.建立目标函数和约束条件
在机械优化设计中,目标函数是需要最小化或最大化的量,可以是机械结构的重量、成本、应力等。
约束条件是指机械结构必须满足的条件,例如最大应力、最小挠度等。
在MATLAB中通过函数来定义目标函数和约束函数。
2.选择优化算法
MATLAB提供了多种优化算法,例如遗传算法、粒子群算法、模拟退火算法等。
根据实际情况选择合适的优化算法。
3.设计参数和变量范围
机械结构的优化设计通常涉及到多个参数和变量,如尺寸、材料等。
在MATLAB中通过定义参数和变量范围来限制优化过程中的空间。
4.编写优化程序
在MATLAB中,可以使用优化工具箱的相关函数来编写机械优化设计程序。
程序的基本结构包括定义目标函数、约束函数、参数和变量范围,并选择合适的优化算法进行求解。
5.运行优化程序
在编写完成程序后,可以通过运行程序来开始优化过程。
MATLAB会根据设定的目标函数和约束条件进行,并最终得到最优解。
6.分析优化结果
优化程序运行完成后,可以通过MATLAB提供的分析工具对优化结果进行评估。
可以通过绘制图表、计算相关指标等方式对结果进行分析和比较。
7.进一步优化和改进
根据优化结果,可以对机械结构进行进一步优化和改进。
可以调整参数和变量范围,重新运行优化程序,直到得到满意的结果。
总之,以上是一种用MATLAB编写机械优化设计程序的基本流程。
通过合理地利用MATLAB提供的工具和函数,可以帮助工程师进行机械结构的优化设计,提高设计效率和准确性。
第8章 MATLAB优化设计

首先将原线性规划问题转换为线性规划的MATLAB标 准型,如下所示:
MIN : Y f X 4 x1 5 x2 x3 MIN : Y C T X 3x1 2 x2 x3 17 AX b 2 x1 x2 9 s.t. x x x 10 s . t . Aeq X Beq 3 1 2 x1 , x2 , x3 0 lb X ub
options=optimset('TolX',1e-7, 'TolFun',1e-7, 'TolCon',1e-7);
%优化设置
[X,Y,exitflag,output,lambda] = linprog(C,A,b,Aeq,beq,lb,ub,X0,options)%解算
第8单元 MATLAB优化设计
第8单元 MATLAB优化设计
确定目标函数(总利润):
f X 1.25 0.25 0.05 5 x1 1.25 0.25 0.03 7 x2 0.06 6 x3 0.11 4 x4 0.05 7 x5 2 0.35 0.05 10 x6 2 0.35 0.03 9 x7 0.06 8 x8 2.8 0.5 0.03 12 x9 0.11 11 x10 0.75 x1 0.79 x2 0.36 x3 0.44 x4 0.35 x5 1.15 x6 1.38 x7 0.48 x8 1.94 x9 1.21x10
第8单元 MATLAB优化设计
(2) 将原线性规划问题转换为线性规划的MATLAB标准型:
机械优化设计MATLAB程序

机械优化设计MATLAB程序机械优化设计MATLAB程序引言机械优化设计是现代工程领域中的重要课题,通过采用数值方法和优化算法,可以实现对机械产品设计的自动化和优化。
MATLAB 作为一种功能强大的科学计算软件,为机械优化设计提供了丰富的工具和函数。
本文将介绍如何使用MATLAB编写机械优化设计程序,并讨论如何应用MATLAB进行机械优化设计。
MATLAB的优势与其他科学计算软件相比,MATLAB具有许多优势:1. 丰富的工具箱:MATLAB包含了各种各样的工具箱,涵盖了数值计算、优化、曲线拟合、数据可视化等领域,这些工具箱为机械优化设计提供了强大的支持。
2. 简单易用的编程语言:MATLAB使用的编程语言是一种高级语言,语法简单易懂,对于初学者而言非常友好。
即使没有编程经验,用户也能够快速上手。
3. 丰富的函数库:MATLAB拥有丰富的函数库,用户可以直接调用这些函数来完成各种任务,无需从零开始编写代码。
4. 广泛的应用领域:MATLAB在工程、科学、金融等领域得到了广泛的应用,拥有一个庞大的用户社区。
用户可以通过查看官方文档、参与用户社区等途径获取帮助和支持。
机械优化设计的步骤机械优化设计一般包括以下几个步骤:1. 建立数学模型:首先需要建立机械系统的数学模型,该模型可以基于物理原理或实验数据。
通过建立数学模型,可以将机械系统的性能指标与设计变量进行数学描述。
2. 确定优化目标:根据机械系统的需求和限制条件,确定优化目标。
优化目标可以是多个,如最小化能量损失、最小化材料使用量等。
3. 选择优化算法:基于问题的性质选择合适的优化算法。
常用的优化算法包括遗传算法、粒子群算法、梯度下降算法等。
4. 编写MATLAB代码:根据以上步骤,编写MATLAB代码实现机械优化设计。
MATLAB提供了丰富的工具箱和函数来辅助编写优化算法的代码。
编写机械优化设计MATLAB程序的步骤以下是编写机械优化设计MATLAB程序的一般步骤:1. 导入必要的工具箱和函数库:% 导入优化工具箱import optim.% 导入其他必要的函数库import matlab.2. 建立数学模型:根据机械系统的特点和要求,建立相应的数学模型。
优化方法MATLAB编程——大连理工大学

优化方法上机大作业学院:姓名:学号:指导老师:肖现涛第一题源程序如下:function zy_x = di1ti(x)%di1ti是用来求解优化作业第一题的函数。
x0=x; yimuxulong=0.000001;g0=g(x0);s0=-g0;A=2*ones(100,100);k=0;while k<100lanmed=-(g0)'*s0/(s0'*A*s0);x=x0+lanmed*s0;g=g(x);k=k+1;if norm(g)<yimuxulongzy_x=x;fprintf('After %d iterations,obtain the optimal solution.\n \n The optimal solution is \n %f.\n\nThe optimal "x" is "ans".',k,f(x) )break;endmiu=norm(g)^2/norm(g0)^2;s=-g+miu*s0;g0=g; s0=s;x0=x;endfunction f=f(x)f=(x'*ones(100,1))^2-x'*ones(100,1);function g=g(x)g=(2*x'*ones(100,1))*ones(100,1)-ones(100,1);代入x0,运行结果如下:>> x=zeros(100,1);>> di1ti(x)After 1 iterations,obtain the optimal solution.The optimal solution is-0.250000.The optimal "x" is "ans".ans =0.005*ones(100,1).第二题1.最速下降法。
转向梯形优化设计matlab程序2023简版

转向梯形优化设计matlab程序转向梯形优化设计matlab程序简介转向梯形是一种常见的机械传动装置,广泛应用于工业机械、汽车、船舶等领域。
在设计转向梯形时,优化设计是一个关键的环节,可以提高装置的性能和效率。
本文将介绍如何使用Matlab编写转向梯形优化设计程序,以实现快速、准确的设计过程。
转向梯形的原理转向梯形是一种通过变速器或传动带来实现转速、扭矩转换的装置。
它由两个不同直径的齿轮组成,一个被称为驱动轮,另一个被称为从动轮。
当驱动轮转动时,从动轮会以不同的速度和扭矩进行旋转。
优化设计的目标在转向梯形的设计中,我们的目标是优化其性能指标,这通常包括转速比、传动效率和装置的尺寸等。
通过优化设计程序,我们可以找到最佳的参数组合,以满足设计需求。
Matlab程序编写步骤以下是编写转向梯形优化设计程序的基本步骤:1. 定义设计变量,我们需要定义转向梯形的设计变量。
这些变量可能包括驱动轮和从动轮的直径、齿数等等。
根据设计要求,我们可以设置这些变量的范围和步长。
2. 建立优化模型根据转向梯形的原理和目标,我们可以建立相应的数学模型。
通常,我们可以使用驱动轮和从动轮的几何关系、齿轮传动理论等进行建模。
这个模型将成为优化设计的基础。
3. 设定目标函数根据设计目标,我们可以定义一个目标函数来评估设计方案的优劣。
这个目标函数可以是转速比的误差、传动效率的最大化等等,根据具体情况来确定。
注意,目标函数的表达式必须与优化模型相对应。
4. 设定约束条件除了目标函数外,我们还需要考虑一些约束条件,以满足设计要求。
这些约束条件可以包括最小值、最大值限制、等式约束、不等式约束等等。
在Matlab程序中,我们可以使用约束函数来表示这些条件。
5. 运行优化算法在程序中,我们可以使用Matlab中的优化函数来执行优化算法。
根据实际情况,我们可以选择不同的优化算法,如遗传算法、粒子群算法、模拟退火算法等。
这些算法可以在设计空间中寻找最佳的参数组合。
机械优化设计MATLAB程序

机械优化设计MATLAB程序正文:⒈前言⑴研究背景机械优化设计是一种在机械工程领域中被广泛应用的方法,旨在通过使用数学模型和优化算法来改进机械系统的性能。
MATLAB是一种强大的数值计算和编程工具,可以用于开发机械优化设计程序。
⑵目的和范围⒉问题描述⑴设计需求在开始编写机械优化设计程序之前,需要明确设计需求,即需要实现的机械系统的性能指标或目标。
这些需求可以包括系统的功率、效率、噪声、振动等方面。
⑵优化目标根据设计需求,确定最终优化目标。
例如,通过调整机械系统的参数来最大化系统的效率、最小化系统的振动等。
⒊数学模型⑴设计变量设计变量是机械系统中可以调整的参数。
需要对设计变量进行定义和范围设定,以确保优化算法能够在合理的范围内搜索最优解。
⑵约束条件约束条件是在进行优化时必须满足的条件。
这些条件可以包括设计变量的边界条件、约束函数等。
在编写MATLAB程序时,需要将这些约束条件作为输入参数。
⒋算法选择与实现⑴优化算法选择根据优化目标和系统的特点,选择合适的优化算法。
常见的优化算法包括遗传算法、粒子群优化算法、模拟退火算法等。
⑵优化算法实现根据选择的优化算法,编写MATLAB程序实现优化过程。
程序应包括目标函数的定义、算法的参数设置、迭代过程和终止条件等。
⒌算法验证与结果分析⑴数据采集与处理在进行机械优化设计实验时,需要采集相应的实验数据,并对数据进行处理。
这些数据可以包括设计变量的调整情况、系统性能指标的变化等。
⑵结果分析基于采集到的数据,分析和比较不同优化算法的性能。
可以绘制图表展示优化过程和结果的变化,以便于进一步分析和优化。
⒍结论与展望总结机械优化设计MATLAB程序的设计过程和结果,对实验结果进行分析,并提出未来改进和研究的方向。
1、本文档涉及附件:附件1:MATLAB程序代码示例附件2:数据采集记录表2、本文所涉及的法律名词及注释:机械优化设计:指利用数学模型和优化算法改善机械系统性能的方法。
轴承 优化算法 matlab 程序

轴承优化算法 matlab 程序轴承优化算法的Matlab程序在机械领域中,轴承是一种用于减少摩擦和支撑转动运动的重要元件。
轴承的性能直接影响到机械设备的运行效率和寿命。
为了提高轴承的性能,并解决实际工程问题,优化算法是一种常用的工具。
本文将介绍一种使用Matlab编写的轴承优化算法程序。
轴承优化算法的设计目标是通过调整设计参数以达到最佳性能。
优化算法基于数学模型和计算机算法,通过迭代寻找最佳的解。
对于轴承而言,常见的设计参数包括几何尺寸、材料、润滑方式等。
首先,我们需要创建一个Matlab函数来定义轴承的数学模型。
例如,我们可以使用Reynolds方程来描述轴承的润滑情况。
根据Reynolds方程,轴承的载荷和润滑剂的粘度将影响到摩擦和热平衡。
函数的输入参数可以包括轴承的几何参数、载荷、转速和润滑剂的粘度等。
接下来,我们可以选择一个适当的优化算法来解决轴承的优化问题。
常见的优化算法包括遗传算法、粒子群算法、模拟退火算法等。
对于大规模优化问题,遗传算法通常是较好的选择。
在Matlab中,可以使用Global Optimization Toolbox来实现这些算法。
以遗传算法为例,需要定义目标函数、约束条件和遗传算法的参数。
然后,我们可以使用Matlab编写主程序来调用上述的函数和算法。
主程序负责设置优化问题的目标函数和约束条件,以及调用遗传算法进行求解。
在每次迭代之后,程序将输出当前的最佳解以及对应的目标函数值。
在轴承优化算法程序中,还可以加入一些其他的功能和模块,以提高其实用性和可扩展性。
例如,可以添加一个用户界面模块,使用户可以方便地输入轴承的参数和运行优化算法。
还可以添加一个结果分析模块,用于评估不同参数组合的性能,并提供可视化的结果展示。
最后,需要对程序进行验证和优化。
可以通过比较优化算法的结果和现有的经验数据来验证程序的正确性。
如果发现程序存在性能问题,可以通过调整参数或改进算法来进行优化。
matlab 实验三 matlab程序设计与优化

matlab 实验三 matlab程序设计与优化Matlab是一种高级的计算机编程语言,广泛应用于科学、工程、金融和其他领域。
在Matlab实验三中,我们将学习Matlab程序设计与优化。
本文将介绍Matlab实验三的内容和要求,并提供一些有用的技巧和建议,帮助读者更好地完成实验。
实验三的主要内容包括:1. Matlab程序设计基础2. Matlab程序优化技巧3. Matlab代码调试方法4. Matlab性能分析工具5. 实例分析与练习题下面我们将逐个介绍这些内容。
1. Matlab程序设计基础在本节中,我们将学习如何使用Matlab编写简单的程序。
以下是一些重要的概念和技巧:1)变量和数据类型:在Matlab中,变量可以存储不同类型的数据,如数字、字符串、逻辑值等。
常见的数据类型包括double、char、logical等。
2)运算符:Matlab支持各种数学运算符,包括加减乘除、幂运算等。
此外,还有逻辑运算符(如and、or)和比较运算符(如==、~=)。
3)控制结构:控制结构可以控制程序执行流程。
常见的控制结构包括if语句、for循环和while循环。
4)函数:函数是一种可重复使用的代码块,可以接受输入参数并返回输出结果。
Matlab中有很多内置函数,也可以编写自己的函数。
2. Matlab程序优化技巧在本节中,我们将学习如何优化Matlab程序以提高其性能。
以下是一些重要的技巧:1)向量化:向量化是一种将循环操作转换为矩阵操作的技术。
这样可以减少程序执行时间,并且使代码更简洁。
2)预分配数组:在编写Matlab程序时,应尽可能避免动态数组分配。
相反,应该预先分配所需大小的数组。
3)使用内置函数:Matlab中有许多内置函数,它们通常比用户自定义函数更快。
因此,在编写程序时应尽可能使用内置函数。
4)避免不必要的计算:在编写程序时,应尽可能避免不必要的计算。
例如,在循环中进行重复计算或计算已知结果等。
matlab程序优化的常用方法

matlab程序优化的常用方法MATLAB是一款广泛应用于科学计算和工程计算的软件。
由于其灵活性和易用性,可以用于许多领域的研究,如信号处理、图像处理、数值计算、控制系统等。
但是,随着数据量和问题复杂度的增加,MATLAB程序的运行效率会变得越来越低,这时需要使用一些优化方法来提高程序的性能。
以下是MATLAB程序优化的常用方法:1. 向量化:MATLAB是一种向量化的语言,使用向量化的操作可以极大地提高程序的性能。
向量化可以避免使用循环,减少 MATLAB 内置函数的调用次数,从而提高程序的效率。
例如,使用矩阵运算来代替循环,使用向量化的函数来代替 for 循环等。
2. 预分配:在运行一个循环时,MATLAB 会动态分配内存来存储结果。
如果在循环中多次分配内存,程序的运行时间会很慢。
因此,在循环之前预分配足够的内存是非常重要的。
可以使用 MATLAB 的函数repmat, zeros 或 ones 来预分配内存。
3. 函数调用:MATLAB 的函数调用很方便,但是,函数调用也会带来一定的开销。
因此,减少函数调用次数可以提高程序的效率。
可以将一些简单的操作放在主程序中,而不是使用函数来实现。
4. 编译程序:MATLAB的编译器可以将MATLAB代码编译成本地机器代码,从而提高程序的执行速度。
可以使用 MATLAB 的编译器将程序编译成可执行文件或者 MEX 文件。
5. 矩阵分解:在大规模矩阵计算中,矩阵分解可以大大提高程序的效率。
常用的矩阵分解方法包括奇异值分解(SVD)、QR 分解、LU 分解等。
6. 并行计算:MATLAB支持并行计算,可以使用并行计算工具箱来将计算分配到多个 CPU 或 GPU 上,从而提高程序的效率。
7. 代码优化工具:MATLAB的代码优化工具可以帮助识别并提高程序性能问题,可以使用优化工具箱中的函数来诊断 MATLAB 代码的性能问题,从而找到性能瓶颈并优化代码。
综上所述,以上是MATLAB程序优化的常用方法,通过优化程序可以提高程序的性能和效率,使得程序在处理大量数据和复杂问题时更加高效。
转向梯形优化设计matlab程序精简版

转向梯形优化设计 Matlab 程序介绍转向梯形是一种常见的机械部件,在许多工程中都得到了广泛应用。
在设计转向梯形时,优化其性能和准确性非常重要。
为了实现这一目标,可以使用 Matlab 进行转向梯形的优化设计。
基本原理转向梯形可以通过调整其参数来优化性能。
其中,主要的参数包括梯形的长度、宽度和高度。
通过调整这些参数,可以使得转向梯形的准确性和运行效率得到优化。
设计步骤以下是使用 Matlab 进行转向梯形优化设计的一般步骤:1. 定义转向梯形的参数。
这些参数包括长度、宽度和高度等。
2. 创建一个目标函数,该函数根据转向梯形的参数计算出性能指标。
常见的性能指标有准确性、运行效率等。
3. 使用 Matlab 的优化函数,如 fmincon,来最小化目标函数。
这将得到转向梯形的最优参数。
4. 使用最优参数来创建最终的转向梯形设计。
示例代码以下是一个使用 Matlab 进行转向梯形优化设计的示例代码:matlab% 定义转向梯形的参数length = 10; % 梯形长度width = 5; % 梯形宽度height = 2; % 梯形高度% 定义目标函数function [performance] = objective_function(parameters) % 计算转向梯形的性能指标,例如准确性、运行效率等% 此处省略具体计算步骤,假设计算结果为 performance end% 使用 fmincon 函数进行优化parameters0 = [length, width, height]; % 初始参数值[x, fval] = fmincon(objective_function,parameters0, , , , , , , constrnts);% 创建最终的转向梯形设计final_length = x(1);final_width = x(2);final_height = x(3);final_trapizoid = create_trapizoid(final_length,final_width, final_height);使用 Matlab 进行转向梯形优化设计可以帮助我们得到最优的转向梯形设计。
优化设计Matlab实例解析

优化设计Matlab实例解析MATLAB是一种基于矩阵运算的高级编程语言和环境,被广泛应用于各个领域的科学计算和工程问题。
在实际应用中,我们经常面临优化设计的任务,即在给定的限制条件下,寻找最优的解决方案。
优化设计可以应用于诸如控制系统设计、信号处理、图像处理、机器学习等问题中。
下面我们以一个简单的例子来说明如何使用MATLAB进行优化设计。
假设我们有一个矩形花园,每边有一定的长度,我们希望找到一个长和宽使得花园的面积最大化。
令矩形花园的长和宽分别为x和y,由于边长有限制条件,即x的范围为0到20,y的范围为0到10,同时花园的长度之和不得超过30。
我们的目标是找到一组合适的x和y,使得面积A 最大。
在MATLAB中,我们可以使用优化工具箱中的函数fmincon来求解这个问题。
以下是具体的实现步骤:1.创建目标函数首先,我们需要定义一个目标函数来评估每组x和y的解决方案。
在这个例子中,我们的目标是最大化矩形花园的面积,因此我们的目标函数可以简单地定义为A=x*y。
```matlabfunction A = objective(x)A=-x(1)*x(2);%最大化面积,取负号end```2.设置限制条件接下来,我们需要定义限制条件。
在这个例子中,我们需要考虑两个限制条件,即x和y的范围以及长度之和的限制。
我们可以使用函数fmincon提供的constr函数来定义这些限制条件。
```matlabfunction [c, ceq] = constr(x)c=[x(1)-20;%x的上限x(2)-10;%y的上限x(1)+x(2)-30];%长度之和的限制ceq = []; % 无等式限制end```3.求解问题有了目标函数和限制条件,我们可以使用fmincon函数来求解问题。
```matlabx0=[10,5];%初始猜测lb = [0, 0]; % x和y的下限ub = [20, 10]; % x和y的上限options = optimoptions('fmincon', 'Display', 'iter'); % 设置选项```在这里,我们使用了初始猜测x0、x和y的上下限lb和ub以及其他选项。
MATLAB关于Powell优化设计程序

f0 = X0_1(1)^2+2*X0_1(2)^2-4*X0_1(1)-2*X0_1(1)*X0_1(2); % 初始点的函数值.
Dt1_1 = f0-f1; % 计算本轮相邻两点函数值的下降量. Dt2_1 = f1-f2; Dtm_1 = max(Dt1_1,Dt2_1); % 进行收敛判断(是否用得到的第一个共轭方向替换上一轮中的第一个一维搜索方向). if (F3<F1&&(F1+F3-2*F2)*(F1-F2-Dtm_1)^2<0.5*Dtm_1*(F1-F3)^2) S1_2 = S2_1; S2_2 = S_1; else S1_2 = S2_1; S2_2 = S1_1; end syms a3 % 以下语句是求出沿S_1方向进行一维搜索的最佳步长因子以及第二轮迭代的初始点X0_2. X_1 = X2_1+a3*S_1; f3 = X_1(1)^2+2*X_1(2)^2-4*X_1(1)-2*X_1(1)*X_1(2); ff3 = diff(f3); a3 = solve(ff3,0); % 求得沿S_1方向进行一维搜索的最优步长 a3. X_1 = X2_1+a3*S_1; f3 = eval(X_1(1)^2+2*X_1(2)^2-4*X_1(1)-2*X_1(1)*X_1(2)); % 得到第二轮迭代的初始点X_1处的函数值. X0_2 =eval(X_1); F_1 = f3; % 进行迭代终止检验 d1 = sqrt((X0_2(1)-X0_1(1))^2+(X0_2(2)-X0_1(2))^2); if (d1>E) % 得到d1 = 2.886173937932362 fprintf('第一轮迭代完成过后的精度检验值为:d1 = %4f\n',d1) % 进行迭代终止检验是否继续进行下一轮迭代 % 第二轮迭代(K=2!) % 沿S2_1方向进行第二轮迭代第一次一维搜索 syms a4 % 以下语句是求出沿S1_2方向进行一维搜索的最佳步长因子 X1_2 = X0_2+a4*S1_2; f4 = X1_2(1)^2+2*X1_2(2)^2-4*X1_2(1)-2*X1_2(1)*X1_2(2); ff4 = diff(f4); a4 = solve(ff4,0);% 得到第二轮迭代第一次一维搜索的最优步长因子a4. fprintf('第二轮迭代第一次一维搜索的最优步长因子为: a4 = %4f\n',eval(a4)) X1_2 = X0_2+a4*S1_2; f4 = eval(X1_2(1)^2+2*X1_2(2)^2-4*X1_2(1)-2*X1_2(1)*X1_2(2)); % 得到第二轮迭代点X1_2处的函数值f4. % 沿S2_2方向进行第二轮迭代第二次一维搜索 syms a5 X2_2 = X1_2 + a5*S2_2; f5 = X2_2(1)^2+2*X2_2(2)^2-4*X2_2(1)-2*X2_2(1)*X2_2(2); ff5 = diff(f5); % 得到第二轮的迭代初始点X0_2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
进退法步骤:1. 给定初始点(0)x ,初始步长0h ,令(1)(0)0,,0h h x x k ===2.令(4)(1),1x x h k k =+=+ 3.若(4)(1)()()f x f x <,则转4,否则转5 4.(2)(1)(1)(4)(2)(1)(1)(4),,()(),()()x x x x f x f x f x f x ====,令h =2h ,转2 5.若k =1,则转6,否则转,7 6.令h =-h ,(2)(4)(2)(4),()()x x f x f x ==,转2 7. 令(3)(2)(2)(1)(1)(4),,x x x x x x ===,停止计算,极小点包含于区间(1)(3)[,]x x 或(3)(1)[,]x x%目标函数:f%初始点:x0%初始步长:h0%精度:eps%目标函数取包含极值的区间左端点:minx%目标函数取包含极值的区间右端点:maxxfunction [minx,maxx] = minJT(f,x0,h0,eps)format long ;if nargin == 3eps = 1.0e-6;endx1 = x0;k = 0;h = h0;while 1x4 = x1 + h;k = k+1;f4 = subs(f, findsym(f),x4); ! subs : Symbolic substitution in symbolic expression or matrixf1 = subs(f, findsym(f),x1); ! findsym : Determine variables in symbolic expression or matrixif f4 < f1x2 = x1;x1 = x4;f2 = f1;f1 = f4;h = 2*h;elseif k==1h = -h;x2 = x4;f2 = f4;elsex3 = x2;x2 = x1;x1 = x4;break;endendendminx = min(x1,x3); maxx = x1+x3 - minx; format short;syms t;f=t^4-t^2-2*t+5;[x1,x2]=minJT(f,0,0.1)黄金分割法:% 目标函数:f% 极值区间左端点:a% 极值区间右端点:b% 精度:eps% 目标函数取最小值时的自变量值:x % 目标函数的最小值:minffunction [x,minf] = minHJ(f,a,b,eps) format long;if nargin == 3eps = 1.0e-6;endl = a + 0.382*(b-a);u = a + 0.618*(b-a);k=1;tol = b-a;while tol>eps && k<100000fl = subs(f , findsym(f), l);fu = subs(f , findsym(f), u);if fl > fua = l;l = u;u = a + 0.618*(b - a);elseb = u;u = l;l = a + 0.382*(b-a);endk = k+1;tol = abs(b - a);endif k == 100000disp('找不到最小值');x = NaN;minf = NaN;return;endx = (a+b)/2;minf = subs(f, findsym(f),x);format short;抛物线法:% 目标函数:f% 极值区间左端点:a% 极值区间右端点:b% 精度:eps% 目标函数取最小值时的自变量值:x% 目标函数的最小值:minffunction [x,minf] = minPWX(f,a,b,eps)format long;if nargin == 3eps = 1.0e-6;endt0 = (a+b)/2;k = 0;tol = 1;while tol>epsfa = subs(f,findsym(f),a);fb = subs(f,findsym(f),b);ft0 = subs(f,findsym(f),t0);tu = fa*(b^2 - t0^2)+fb*(t0^2 - a^2)+ft0*(a^2 - b^2);td = fa*(b - t0)+fb*(t0 - a)+ft0*(a - b);t1 = tu/2/td;ft1 = subs(f,findsym(f),t1);tol = abs(t1 - t0);if ft1 <= ft0if t1<= t0b = t0;t0 = t1;elsea = t0;t0 = t1;endk = k+1;elseif t1<= t0a = t1;elseb = t1;endk = k+1;endendx = t1;minf = subs(f,findsym(f),x); format short;一维牛顿法:% 目标函数:f% 初始点:x0% 精度:eps% 目标函数取最小值时的自变量值:x % 目标函数的最小值:minffunction [x,minf] = minNewton(f,x0,eps) format long;if nargin == 2eps = 1.0e-6;enddf = diff(f);d2f = diff(df);k = 0;tol = 1;while tol>epsdfx = subs(df,findsym(df),x0);d2fx=subs(d2f,findsym(d2f),x0;x1=x0-dfx/d2fx;k = k + 1;tol = abs(dfx);x0 = x1;endx = x1;minf = subs(f,findsym(f),x);format short;最速下降法:%: 目标函数:f%: 初始点:x0%: 自变量向量:var%: 精度:eps%: 目标函数取最小值时的自变量值:x%: 目标函数的最小值:minffunction [x,minf] = minFD(f,x0,var,eps)format long;if nargin == 3eps = 1.0e-6;endsyms l;tol = 1;gradf = - jacobian(f,var);while tol>epsv = Funval(gradf,var,x0);!Objective function value of the current point tol = norm(v); ! Vector and matrix normsy = x0 + l*v;yf = Funval(f,var,y);[a,b] = minJT(yf,0,0.1); %初始点0,步长为0.1xm = minHJ(yf,a,b);x1 = x0 + xm*v;x0 = x1;endx = x1;minf = Funval(f,var,x);format short;用共轭梯度法求无约束问题minf(x),n x R ∈的算法步骤如下:1. 给定初始点(0)x ,及精度ε2. 若(0)()f x ε∇≤,停止,极小点为(0)x ,否则转3.3. 取(0)(0)()d f x =-∇,且置k=04. 用一维搜索法求k α,使得()()()()()min ()k k k k k f x d f x d αα+=+令(1)()()k k k x x d α+=+,转55. 若(1)()k f x ε+∇≤,停止,极小点为(1)k x +,否则转66. 若k+1=n ,令(0)()n x x =转3,否则转77. 令2(1)(1)(1)()2()()(),()k k k k k k k f x d f x d f x λλ+++∇=-∇+=∇,置1k k =+,转4程序举例:function [x,minf] = minGETD(f,x0,var,eps) format long ;if nargin == 3eps = 1.0e-6;endx0 = transpose(x0);n = length(var);syms l ;gradf = jacobian(f,var);v0 = Funval(gradf,var,x0);d = -transpose(v0);k = 0;while 1v = Funval(gradf,var,x0);tol = norm(v);if tol<=epsx = x0;break;endy = x0 + l*d;yf = Funval(f,var,y);[a,b] = minJT(yf,0,0.1);xm = minHJ(yf,a,b);x1 = x0 + xm*d;vk = Funval(gradf,var,x1);tol = norm(vk);if tol<=epsx = x1;break;endif k+1==nx0 = x1;continue;elselamda = dot(vk,vk)/dot(v,v);d = -transpose(vk) + lamda*d;k = k+1;x0 = x1;endendminf = Funval(f,var,x);format short;用牛顿法求无约束问题,步骤:1. 给定初始点(0)x ,及精度ε2. 若(0)(f x ε∇≤,停止,极小点为(0)x ,否则转3.3. 计算12()()k f x -⎡⎤∇⎣⎦,令2()1()[()]();k k k d f x f x -=-∇∇ 4. 令(1)()(),1k k k x x d k k +=+=+,转2程序举例:function [x,minf] = minNT(f,x0,var,eps) format long ;if nargin == 3eps = 1.0e-6;endtol = 1;x0 = transpose(x0);gradf = jacobian(f,var);jacf = jacobian(gradf,var);while tol>epsv = Funval(gradf,var,x0); tol = norm(v);pv = Funval(jacf,var,x0);p = -inv(pv)*transpose(v);p = double(p);x1 = x0 + p;x0 = x1;endx = x1;minf = Funval(f,var,x);format short;syms t s;f=(t-4)^2+(s+2)^2+1;[x, mf]=minNewton(f, [0 0],[t s])。