一种自动检测设置死区时间的电路设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一种自动检测设置死区时间的电路设计

【摘要】本文推出一种自动设置死区时间的控制器。该控制器采用栅源电压差与阈值电压相比较的工作原理,得到的输出信号分别控制彼此栅极电平,确保上下桥臂不同时导通。为加速比较信号的反应,比较器电路中运用正反馈特性。最后,在感性负载下,给出阈值电压为1.2V时,死区时间的仿真和实验结果,仿真采用华润上华0.5μm CMOS工艺实现。电路设计简单,驱动电路也不要额外设置死区时间。

【关键词】半桥电路;死区时间;阈值电压;比较器;正反馈

A kind of automatic detection and setting dead time circuit designing

HUANG Haiping,JIANG Yanfeng

(Microelectronic research center,North China University of Technology,Beijing 100144,China)

Abstract:This paper introduced a kind of controller circuit which can automaticly set dead time.The controller works in this way that compares the voltage difference between gate and source of MOS tube to threshold voltage.The results of comparing each controls another gate in order to guarantee that the half bridge can not be turned on at the same time.The circuit with positive feedback is used here as to speed up the comparison of the response signal.At last,in the perceptual load,here gives the simulation and experiment results of dead time under the threshold voltage of 1.2V.The simulat ion results was realized by CSMC 0.5μm CMOS technology.the controller circuit is designed simply,and extra dead time need not to be setted up in the driving circuit.

Key words:Half bridge circuit;Dead time;Threshold voltage;Comparator;Positive feedback

1.引言

高效率的DC-DC变换器得到已经广泛应用,比如手机,个人电脑,通讯设备等。开关的损耗包括:传导损耗、开关损耗、直通损耗等。可以通过优化和改善功率管的尺寸和驱动电路来减小前两者的损耗。为了减小第三种损耗,就必须设法缩短死区时间[1]的大小。死区时间是为了使上下桥臂不会因开关延迟而导致同时开通而设置的一个时间段。因此,死区时间的设置,可以有效消除两个开关管之间延迟效应,避免直通损坏模块。如果设置的死区时间较大,电路工作虽然安全可靠,但是会引入输出波形的失真,从而影响输出效率;死区时间较小,输出波形较好,但是降低了电路可靠性,所以死区时间一般为μs级。死区时间的设置如果由定时器或软件延时产生,会增加定时器或CPU的负担。死区时间

的存在,使占空比调节范围缩小,降低了变换器动态性能;此外,因为开关器件的关断时间随环境温度、工作电流等因素变化很大,致使死区时间大小不容易掌握。

2.电路设计

2.1 死区时间设置规则

功率MOS管有寄生的二极管,称为体二极管,其恢复时间与存储在体二极管内的多余电荷成正比。理论上,在保证电路工作可靠的情况下,死区时间越小越好,设置时间短,体二级管的导通时间就小,则其消耗的功耗也就小。死区时间大时,模块工作更加可靠,但是体二极管导通时间就大,减小了电路的输出效率。一般把死区时间的大小设置在4%到一个周期之内,遵循规则如下:

(1)

式(1)中,TD是死区设置时间,Td(off)为开关MOS管的关断延迟时间,Tf为开关管的下降时间,Td(on)为开关管的开通延迟时间[2]。由于工艺厂商的不同,器件本身结电容放电时间,驱动参数有所不同,实际电路中选择TD值为2(Td(off)+Tf)。图1为半桥基本电路结构。

2.2 RC设置的延时电路

在目前的大多数开关电源芯片电路中,设置死区时间的常用方法是:对输入驱动信号进行一定的延时,使得高电平信号或低电平信号在一个周期时间内不完全重合,然后再与先前驱动信号进行一定的逻辑运算得到所需的死区时间。由此可以得出,延时单元在设置死区时间当中,是一个很重要的环节。典型的RC电路架构如图2所示。通过设置不同和R值或C值可以得到不同的死区时间。但是设置较大电容C值时,会增加CMOS反向器的栅极的延时,为了减小这个延时的影响,一般选取的电容值较小,而只是通过较大范围改变电阻R值。

2.3 死区时间控制电路设计

图3就是控制电路的基本框架图。半桥电路驱

动的负载为由LCR组成的谐振网络。谐振阻抗的公式如下:

(2)

所以谐振网络既可以工作在容性阻抗下,也可以工作在感性阻抗下。

当(3)

驱动负载表现感性。反之,则表现为容性。上下桥臂的MOS管的栅极各加入一个开关管。当MOSFET的栅源电压小于阈值电压,MOSFET就工作在截止区,不导通的状态,此时另一个桥臂的MOS管才开始被驱动,因此就能消除上下桥臂同时导通,避免器件损坏。其具体的工作原理是:假设MOSFET的阈值电压为Vth。图3中M1,M2都是NMOS管,都选用NMOS管的原因是其阈值电压就相同,就可以避免了后面设置比较值的时候需要两个不同基准电压。VH,Vf分别为M1管的栅极,源极的电势,当VH减去Vf得到的电势差小于M1的阈值电压时,M1管就不工作。其中,VH和Vf的电势差通过图4电路中I1运算放大器搭建的减法电路来实现。因为电阻比例值为1,所以I1的输出端的V1的大小为(VH-Vf),其值作为I2比较器的正端输入,负端为半桥电路MOS管阈值电压大小的直流电压。如果(VH-Vf)电压值大于Vth,I2比较器的输出端VLc输出高电平,图3中M4开关管就导通,M2功率管就不工作。

(VH-Vf)电压小于Vth,I2比较器的输出端VLc输出低电平,M2的栅极控制信号VL就由下桥驱动电路来驱动。同理,下桥臂M2管的工作方式与M1管的一样。当VL的电势一直大于M2管的阈值电压时,VHc始终处于高电平,M1的栅极就处于低电平,不工作。仅当VL的电势小于M2管的阈值电压时,VH的电势才由上桥驱动电路来控制。综上分析的结果,M1和M2就不可能有同时导通的情况出现,这样,也没必要另外设置死区时间,从而来避免总线Vbus 和地之间短路的情况发生。

2.4 比较器加速电路的设计

基于上面的原理:要求比较器[3]的速度较快,精度较高。图5电路为一种锁存结构,其采用正反馈特性[4,5]加速比较过程。该锁存结构是由时钟控制的电路结构,时钟频率可取自半桥电路的驱动频率(振荡器的频率)。锁存电路为两级放大电路,第一级为MM3和MM4组成的差分结构,输出为b和a;第二级由MM2和MM1组成的差分结构,输出为单端输出d端。其工作原理如下:当输入信号Latch_clk低电平时,MF1,MF2两个NMOS管栅压为低电平,两管截止,不导通。a,b两点被MB2,MB1拉为高电平,MM1和MM2也不工作。由于MW3和MW4两管导通,所以d,c都为高电平。当Latch_clk信号从低电平转为高电电平后,MF1,MF2两管导通,如果此时有2nd_o2>2nd_o1,则I(2nd_o2)>I(2nd_o1),从而b点电位比a点电位下降的快,导致MB1开通的速度更快,使得a点电位上升,进而促使MN2比MN1开通的速度快,进一步的降低b点电位。这是其中的一个正反馈过程。另外,因b点电位迅速下降,MM2电流增加,a点电位上升,使得MM1电流减小,d点电位开始拉高,c点电位开始拉低,于是MW1电流开始减小,MW2电流开始增大,这又是第二个正反馈的过程。总而言之,该结构采用了两级正反馈结构加速比较过程。而比较器电路采用普通的二级比较器电路[6]。

3.仿真结果

图6代表的是MOS管的栅源电压和漏电流的关系曲线图。从图中的仿真结

相关文档
最新文档