人教版九年级数学 下册 全册教案(全)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第26章反比例函数

26.1.1反比例函数的意义

【学习目标】

1、经历抽象反比例函数概念的过程,体会反比例函数的含义,理解反比例函数的概念。

2、理解反比例函数的意义,根据题目条件会求对应量的值,能用待定系数法求反比例函数关系式

3、让学生经历在实际问题中探索数量关系的过程,养成用数学思维方式解决实际问题的习惯,体会数学在解决实际问题中的作用

学情分析:虽然学生在八(上)已学过一次函数及特例“正比例函数”的内容,对函数有了初步的认识。从学生接触函数所蕴含的“变化与对应”思想至今已经半年有余,学生对与函数相关的概念不可避免会有所遗忘或生疏。因此,学习本节课的关键是处理好新旧知识的联系,尽可能地减少学生接受新知识的困难。

【学习重点】理解反比例函数的意义,确定反比例函数的解析式

【学习难点】反比例函数的解析式的确定

【学法指导

26.1.2 反比例函数的图象和性质

知能准备

【学习目标】1、画反比例函数的图象,并知道该图象与正比例函数、一次函数图象的区别,能从反比例函数的图象上分析出简单的性质.

2、能用反比例函数的定义和性质解决实际问题.

【学情分析】前面已经学习了一次函数和二次函数,对研究函数有了一定的方法;即画出图像并根据图像研究其性质

【学思指导】教法:讲授法、对比法

学法:类比法、数形结合法

学科素养:通过画图象,进一步培养“描点法”画图的能力和方法,并提高对函数图象的分析能力.同时尝试用类比和特殊到一般的思路方法,归纳反比例函数一些性质特征. 【板书设计】

【课前预习】

1.若y=

(21)(1)n n x

-+是反比例函数,则n 必须满足条件 n ≠1

2或n ≠-1 .

2.用描点法画图象的步骤简单地说是 列表 、 描点 、 连线 . 3.试用描点法画出下列函数的图象:(1)y=2x ; (2)y=1-2x .

设计意图:通过回忆,学会用描点法画函数的图象

课堂引讨——【展示互动】

问题:我们已知道,一次函数y=kx+b (k ≠0)的图象是一条直线,•那么反比例函数y=k x

(k 为常数且k ≠0)的图象是什么样呢?

[尝试] 用描点法来画出反比例函数的图象. 画出反比例函数y=6x

和y=-6x

的图象.

解:列表

思考:取什么值更易描出来

(请把表中空白处填好)

描点,以表中各对应值为坐标,在直角坐标系中描出各点.

连线,用平滑的曲线把所描的点依次(从大到小或从小到大的顺序)连接起来

探究反比例函数y=6

x 和y=-6

x

的图象有什么共同特征?它们之间有什么关系?

做一做把y=6

x 和y=-6

x

的图象放到同一坐标系中,观察一下,看它们是否对称.

归纳:反比例函数y=6

x 和y=-6

x

的图象的共同特征:

(1)它们都由两条曲线组成.

(2)随着x的不断增大(或减小),曲线越来越接近坐标轴(x轴、y轴).(3)反比例函数的图象属于双曲线.

此外,y=6

x 的图象和y=-6

x

的图象关于x轴对称,也关于y轴对称.

做一做在平面直角坐标系中画出反比例函数y=3

x 和y=-3

x

的图象.

交流两个函数图象都用描点法画出?

【分析】由y=6

x 和y=-6

x

的图象及y=3

x

和y=-3

x

的图象知道,

(1)它们有什么共同特征和不同点?

(2)每个函数的图象分别位于哪几个象限?

(3)在每一个象限内,y随x的变化而如何变化?

猜想反比例函数y=k

x

(k≠0)的图象在哪些象限由什么因素决定?•在每一个象限内,y随x的变化情况如何?它可能与坐标轴相交吗?

【归纳】(1)反比例函数y=k

x

(k为常数,k≠0)的图象是双曲线.

(2)当k>0时,双曲线的两支分别位于第一、第三象限,在每个象限内,y•值随x值的增大而减小.(3)当k<0时,双曲线的两支分别位于第二、第四象限,在每个象限内,y•值随x值的增大而增大.设计意图:通过画图并研究:得到反比例函数图像的形状及其增减性

精编精练

例题指出当k>0时,下列图象中哪些可能是y=kx与y=k

x

(k≠0)在同一坐标系中的图象()

相关文档
最新文档