物理第二章 流体的运动

合集下载

流体力学第2章流体运动学基本概念

流体力学第2章流体运动学基本概念
式中:a,b,c被称为拉格朗日变数。不同的一组(a,b,c) 表示不同的流体质点。
10




对于任一流体质点,其速度可表示为:
r x y z v i j k vx i v y j vz k t t t t 其加速度可表示为:
用拉格朗日法描述流体运动看起来比较简 单,实际上函数B(a,b,c,t)一般是不容易找到的, 往往不能用统一的函数形式描述所有质点的物
理参数的变化。所以这种方法只在少数情况下
使用,在本书中主要使用欧拉法。
13
2.2.2 欧拉法(也叫场法)
基本思想:在确定的空间点上来考察流体的流动, 将流体的运动和物理参量直接表示为空间坐标和时间的 函数,而不是沿运动的轨迹去追踪流体质点。 例:在直角坐标系的任意点(x,y,z)来考察流体流 动,该点处流体的速度、密度和压力表示为: v=v(x,y,z,t)=vx(x,y,z,t)i+ vy(x,y,z,t)j+ vz(x,y,z,t)k
15
2.2.3 质点导数
定义:流体质点的物理量对于时间的变化率。
拉格朗日法中,由于直接给出了质点的物理量的表达 式,所以很容易求得物理量的质点导数表达式。
B B(a, b, c, t ) t t
如速度的质点导数(即加速度)为:
v ( a , b, c , t ) a ( a , b, c , t ) t

v v v vy vz 又由矢量运算公式:v v vx x y z
其中矢量算子 i j k 叫哈密顿算子 x y z
18
于是质点的速度增量可以表示为:
v v ( v v )t t

1理想流体 稳定流动

1理想流体 稳定流动
龙 卷 风
缓慢的水流
2-1理想流体 稳定流动
第二章流体的运动
二、稳定流动(steady flow)(定常流动)
1.稳定流动 一般流动:v(x、y、z、t) 稳定流动: v ( x、y、z) 2.流线(streamline) 在流场中画出的一些曲线, 曲线上的任意一点的切线 方向 , 与流过该点流体质 元的速度方向一致.

连续介质 将流体看作是大量的宏观小、微观大的流体质 元组成并研究其宏观行为 ,因此可忽略物体微 观结构的量子性,这种物质模型就是连续介质.

2-1理想流体 稳定流动

第二章流体的运动
流体运动的描述方法
统计公交车的客运量时,可采用两种方法: (1)在每辆公交车上设统计员,统计其在不同时 刻(站点)上下车的人数,称为随体法.
2-1理想流体 稳定流动
第二章流体的运动
ቤተ መጻሕፍቲ ባይዱ
注意:稳定流动的流线 (1)流线不能相交
流体流过不同形状障碍物的流线
(2)流线是不随时间而
变化的曲线
(3)流线与流体粒子的 运动轨迹重合
2-1理想流体 稳定流动
第二章流体的运动
3.流管(
(stream tube)
------由流线围成的管子。(假想的管子)
2-1理想流体 稳定流动
第二章流体的运动
第二章
2 - 0
2 - 1 2 - 2 2 - 3 2 – 4
流体的运动
稳定流动
简介
理想流体
伯努利方程 粘性流体的流动 粘性流体的运动规律
2 - 5
血液在循环系统中的流动
2-1理想流体 稳定流动
物态
第二章流体的运动
物体根据存在的形态分为固态、液态和气态.

流体力学2章讲稿

流体力学2章讲稿

第二章 流体运动学只研究流体运动, 不涉及力、质量等与动力学有关的物理量。

§2.1 流体运动的描述 两种研究方法:(1)拉格朗日(Lagrange)法: 以流场中质点或质点系为研究对象, 从而进一步研究整个流体。

理论力学中使用的质点系力学方法,难测量,不适用于实用理论研究。

(2)欧拉(Euler)法: 将流过空间的流体物理参数赋予各空间点(构成流场),以空间各点为研究对象,研究其物理参数随时间t ,位置(x ,y ,z )的变化规律。

易实验研究,流体力学的主要研究方法。

两种研究方法得到的结论形式不同,但结论的物理相同。

可通过一定公式转换。

1. 拉格朗日法有关结论质点: r=r (t ) dt d rV = dtd dt d V r a ==22x=x (t ) dt dxu = 22dtx d a x =y=y (t ) dtdyv = 22dt y d a y =p=p (t ) T=T (t ) .. .. .. .. .. .. .. .. 质点系:x=x (t,a,b,c ) p=p (t,a,b,c ) T=T (t,a,b,c ) .. .. .. .. .. .. .. ..(a, b, c)是质点系各质点在t =t 0时刻的坐标。

(a, b, c)不同值表不同质点2. 欧拉法物理量应是时间t 和空间点坐标x, y,z 的函数u =u(x, y, z, t) p =p(x, y, z, t) T =T(x, y, z, t) 3. 流体质点的随体导数!!流体质点的随体导数:流体质点物理参数对于时间的变化率。

简称为质点导数。

例:质点速度的随体导数(加速度)dt d V 质点分速度的随体导数dtdu质点压力的随体导数dtdp质点温度的随体导数dt dT.. .. .. .. .. .. 质点导数是拉格朗日法范畴的概念。

流体质点随体导数式---随体导数的欧拉表达式dt d V =z wy v x u t t∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V V V V V V Vdt du =z u w y u v x u u t u u tu∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂Vdt dT =z T w y T v x T u t T T tT∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂V普遍形式: dt dF =z F w y F v x F u t F F tF∂∂+∂∂+∂∂+∂∂=∇⋅+∂∂VF t )(∇⋅+∂∂=V证其一: dt d V =V V V∇⋅+∂∂t 由 dt d V=tt ∆-→∆V V 'lim 0因 V=V (x ,y , z,t )V ’=V (x+Δx ,y+Δy ,z+Δz,t+Δt )所以 V ’=V++∆∂∂x x V +∆∂∂y y V z z∆∂∂V t t ∆∂∂+V 代入上式得dt d V==∆∆∂∂+∂∂∆+∂∂∆+∂∂∆→∆tt z z y x xt tV V y V V lim 0V V V z V y V x V t V ∇⋅+∂∂=∂∂+∂∂+∂∂+∂∂=tw v u 可见, 在欧拉法中质点速度的随体导数(即加速度)由两部分组成。

《流体力学》第二章流体静力学

《流体力学》第二章流体静力学
z4
p z C g
pa 4 3 真空 1
p2 g
p=0
z1
z3
2
z=0
p 为压强水头 g
z 为位置水头
2.3 重力场中的平衡流体 重要结论
p p0 gh
(1) 在重力作用下的静止液体中,静压强随深度按线性 规律变化,即随深度的增加,静压强值成正比增大。 (2)在静止液体中,任意一点的静压强由两部分组成: 一部分是自由液面上的压强P0;另一部分是该点到自由 液面的单位面积上的液柱重量ρgh。 (3)在静止液体中,位于同一深度(h=常数)的各点的静 压强相等,即任一水平面都是等压面。
2.2 流体平衡微分方程 一、欧拉平衡方程
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
2 3
2
3
p dx 1 p dx 1 p dx p 2 3 x 2 2 x 2 6 x 2
dA dA n
dF pdAn
F pdAn
A
流体静压力:作用在某一面积上的总压力; (矢量) 流体静压强:作用在某一面积上的平均压强或某一点的 (标量) 没有方向性 压强。
2.1 平衡流体上的作用力 证明:
z A
pn px
微元四面体受力分析
py
dx C x
dz O dy B y
y
p x p y p z pn
C x
pz
f

z
表 面 力 质 量 力
1 d yd z 2 1 Py p y d zd x 2 1 P p d yd x z z 2 P n pn d A P x px

流体力学第二章 流体运动学基础

流体力学第二章 流体运动学基础

整理课件
5
2.1.1拉格朗日方法
流体力学第二章
✓ 拉格朗日方法是着眼于流体质点来描述流体的运动状态. 如何区别流体的质点呢?
➢ 质点标识----通常是用某时刻各质点的空间坐标(a,b,c) 来表征它们。
➢ 某时刻一般取运动刚开始的时间.以初始时刻流体质点 的坐标作为区分不同流体质点的标志.
拉格朗日方法的一般表达:
流体力学第二章
第二章
流体运动学基础
2021/6/29
整理课件
1
第二章 流体运动学基础
流体力学第二章
✓ 流体运动学是运用几何的方法来研究流体的运动,通常不 考虑力和质量等因素的影响。
✓ 流体运动学是用几何学的观点来研究流体的运动规律,是 流体力学的一个组成部分。
✓ 本章的学习目标:
➢ 掌握描述流动的两种方法(拉格朗日法及欧拉法), 结合迹线,流线,流管,流体线等显示流动特性的曲 线研究流动特性。
Vr
Vr r
V r
Vr
Vz
Vr z
V
2
r
ddVt
V t
Vr
V r
V r
V
Vz
V z
VrV r
dVz
dt
Vz t
Vr
Vz r
V r
Vz
Vz
Vz z
可得平面极坐标中加速度的表达式
Vz 0
ddVtr
Vr t
Vr
Vr r
V r
Vr
V
2
r
dV dt
V t
Vr
V r
V r
V
VrV r
2021/6/29
整理课件
2
流体力学第二章

第二章 流体的运动

第二章 流体的运动

第二章流体的运动复杂的心脏流动模式可以利用速度场中假象粒子的轨迹直观地表示出来。

此图使用时间分辨三维相差磁共振成像技术通过粒子轨迹直观地表示了流入左心室的血流本章是用这些一般规律去研究适用于液体和气体流动的较为特殊的规律。

液体和气体的各部分之间可以有相对运动,因而没有固定的形状。

物体各部分之间可以有相对运动的特性,称为流动性。

具有流动性的物体,称为流体。

从具有流动性来看,液体和气体都是流体。

流体的运动规律在水利、电力、煤气和石油的输送等工程部门都有广泛的应用。

在人体生命活动中,也起着十分重要的作用。

本章研究流体运动的方法,选用欧拉法,即通过确定流体质元每一时刻在空间各点的密度和速度来描述流体的运动。

实际流体是复杂的,具有可压缩性和粘滞性,研究流体的运动时,可分为理想流体和粘性流体。

一般流体的运动也是复杂的,根据流体的运动状态可分为层流(即稳定流动)、湍流和过渡流。

实际流体及其运动都是复杂的。

实际流体具有可压缩性和粘滞性;一般实际流体运动时,流速是空间点(位置)及时间的函数,即v = f ( x ,y, z, t )。

但在某些问题中可以突出起作用的主要因素,忽略掉作用不大的次要因素,而使问题简化。

因此,提出流体的理想模型——绝对不可压缩、完全没有粘滞性的流体,称为理想流体。

把在流体中,各点质元流速不随时间改变的流动称为稳定流动(或定常流动)。

为了形象地描述流体的运动情况,引入流线和流管;为了便于描述流体在管道中运动,定义了横截面上的体积流量和平均速度等物理概念。

经分析得出不可压缩的流体、稳定流动时的运动规律——连续性方程。

可压缩性:流体的体积(或密度)随压力的大小而变化的性质,称为流体的可压缩性。

压力增大时,流体的体积减小:压力减小时,流体的体积增大。

液体的可压缩性很小;气体流动时,可压缩性可以忽略。

粘滞性:流体分层流动时,速度不同的各流层之间存在着沿分界面的切向摩擦力(即内摩擦力),流体的这种性质称为流体的粘滞性。

大学物理流体力学

大学物理流体力学

A h
理想流体在同一流管的任一处,三种水头之和是常量
利用伯努利方程研究流体时,不用研究每一质点的运动状况, 而只需研究在流管中各个几何点上运动状态参量(p,v,h);即不需研 究过程。
四、方程的应用举例
1.小孔流速
的流动方向,因而不作功; 所以外力的总功是
a2 b2
v2 h2 p2 S2
A p1s1v1t p2s2v2t
因为流体不可压缩
所以 A p1 p2 Qt
作功的结果是使液柱的能量发生变化:a1 b1
E EK EP
1 2
m(v
2
2
v2 1
)
mg (h2
h1)
p1S1
v1
1 2
Qt
(v
2
2
因而截面大处流速小截面小处流速大。
三、伯努利方程方程 (理想流体)
• 1738年,伯努利在他的《流体动力学》中引 入了“势函数”这一概念,提出了实际的下降 和位势的升高的等同原理。他把这一思想用于 理想流体的运动,得出了著名的伯努利方程, 这一系列发现,已经突破了“活力守恒”的局 限,非常接近于现在所说的机械能守恒原理。
§2.1 理想流体 一、流体力学的基本概念 1.流速场 在有流体的空间中,每一点(x,y,z)上流体都有一速度
V(x,y,z) ,整个空间的速度矢量构成了----矢量场--空间每一点均有一定的流速矢量与之相对应的空间
注:1.流速场的空间分布随时间变化v= v(x,y,z,t) -----不定常流动
第2章 流体力学
• 流体看成连续介质是由无数个质点组成的质点系,在 外观上都无固定的形状和具有流动性,或者确切地说 它们在外力作用下能连续不断地变形。 有关流体质点 的概念不能与个别分子混为一谈,经典力学中质点是 一个含有足够分子数并具有确定的分子统计特性的分 子集合。基于连续介质概念的经典力学系统可以使我 们引用数学上的连续函数来描述流体运动,并用以表 示质点状态的参数如密度、压强和温度等,在度量上 也便于量测和标定,这无论在分析研究和实用上都是 很重要的。

第2章 流体的运动

第2章 流体的运动

医学物理学
第2章 流体的运动
由两处的高度差测得(ρ 由两处的高度差测得 ’为 管中工作液体的密度): 管中工作液体的密度 :
用于实际的皮托管
P − P = (ρ − ρ)gh A M
'
1 2 又因为:PA − PM = ρυ 2
所以:υ = 所以:
2( ρ ' − ρ )gh
ρ
医学物理学
第2章 流体的运动
医学物理学
第2章 流体的运动
第二章 流体的运动
医学物理学
第2章 流体的运动
本章教学要求: 本章教学要求:
(1)理解理想流体和稳定流动的概念 ) (2)掌握流体连续性方程及伯努利方程并能熟练应用。 )掌握流体连续性方程及伯努利方程并能熟练应用。 (3)理解黏性流体的伯努利方程、层流、湍流、雷诺数 )理解黏性流体的伯努利方程、层流、湍流、 和斯托克斯公式。 和斯托克斯公式。 (4)了解牛顿黏滞性定律,心脏作功、血液速度及血管 )了解牛顿黏滞性定律,心脏作功、 中血压的分布以及血液流变学的基础知识。 中血压的分布以及血液流变学的基础知识。
SAυA = SBυB = Q
医学物理学
第2章 流体的运动
Q 0.12 -1 υA = = −2 ms = 12m/s S A 10
Q 0.12 υB = = −2 m/s = 20m/s SB 10
又由伯努利方程得: 又由伯努利方程得:
1 1 2 2 ρυ A + PA = ρυ B + PB + ρ ghB 2 2
医学物理学
第2章 流体的运动
第一节 理想流体 稳定流动 一、理想流体
• 为了突出流动性这一基本特性,引入理想 为了突出流动性这一基本特性, 流体这一概念: 流体这一概念: • 绝对不可压缩的完全没有黏性的流体。 绝对不可压缩的完全没有黏性的流体 的流体。

大学物理D-02流体力学

大学物理D-02流体力学

大学物理

S

v
S
n
Q v S 常量
大学物理
一般形式
Q

S
v dS
vS v S
☆ 物理本质:同一流管在相同时间内流过任一截 面的体积流量都相同。因而截面大处流速小截面小 处流速大。 ☆当有多条支流时 S3 S1 v3 1 1= 2 2 3 3 v2 ☆适用范围:理想流体和 v1 S2 不可压缩的粘致流体。
从功能原理得
2
它表明在同一管道中任何一点处,流体每单位体 积的动能和势能以及该处压强之和是个常量。在 工程上,上式常写成 p v2 h 常量 g 2 g
大学物理
p v2 、 、h g 2 g
三项都相当于长度,分别叫做压力头、速度头、水头。 所以伯努利方程表明在同一管道的任一处,压力头、 速度头、水头之和是一常量,对作稳定流动的理想 流体,用这个方程对确定流体内部压力和流速有很 大的实际意义,在水利、造船、航空等工程部门有 广泛的应用。
Q =S1 v1= S2 v2
Q S1 S 2 2 gh 2 S12 - S 2
大学物理
3.皮托(pitot)管原理
动画
是一种用来测量流体速度的装置
图2-10所示是一根两端开口弯 成直角的玻璃管,这是一种最 简单的测量流速的比较古老的 仪器,称为皮托管。1773年, 皮托就是利用这种简单的办法 测出法国塞纳河的流速。
p1 - p2 g (h2 - h1 )
大学物理

管涌
大学物理
体位对血压的影响
大学物理
2.等高线中流速与压强的关系-文特利流量计原理
1 1 2 2 P v1 P2 v2 1 2 2

流体的运动学基础

流体的运动学基础

流体的运动学基础流体的运动学是研究流体在没有外力作用下的运动规律和特性的学科。

它广泛应用于物理学、力学、航空航天工程、水利工程等领域。

本文将介绍流体运动学的基本概念和我们对流体运动的理解。

一、流体的运动学基本概念流体是一种特殊物质形态,它具有没有固定形状和可变容积的特点。

流体的运动学主要研究宏观量,比如流体的速度、加速度、流速等。

下面我们将介绍一些流体运动学的基本概念。

1. 流动性流动性是流体运动学的基本特性之一。

流体分为液体和气体两种,液体的分子间作用力较大,分子难以突破内聚力,因此具有较小的可压缩性;而气体的分子间距离较大,分子间作用力相对较小,因此具有较大的可压缩性。

流动性使得流体能够运动和在容器或管道中传输。

2. 流速与流量流速是指单位时间内通过某一截面的流体的体积。

在流动过程中,流体的流速可能是不均匀的,因此为了描述整个流体的流动情况,我们引入了流量的概念。

流量是指单位时间内通过某一截面的流体的质量或体积。

在实际应用中,我们通常更关注流量而不是流速。

3. 流线与流管流线是指在不同时刻,流体质点所通过的路径连成的曲线。

流线能够直观地表达出流体运动的路径和轨迹。

当流体运动具有稳定性和不可压缩性时,流线也是连续的。

流管是由流线围成的管道,它能够将流体流动的区域划分出来。

二、流体的运动学方程流体的运动学方程是描述流体在运动过程中物理量变化规律的方程。

常见的流体的运动学方程包括欧拉方程和纳维-斯托克斯方程。

1. 欧拉方程欧拉方程描述的是连续介质中的流体运动,它是基于质点的视角建立的。

欧拉方程可表达为:∂ρ/∂t + ∇·(ρv) = 0其中,ρ是流体的密度,t是时间,v是流体的流速,∇是偏微分运算符。

2. 纳维-斯托克斯方程纳维-斯托克斯方程描述的是流体在宏观尺度上的运动规律,它是基于控制体的视角建立的。

纳维-斯托克斯方程可表达为:∂v/∂t + v·∇v = -∇p/ρ + ν∇^2v + f其中,∂v/∂t是流体的加速度,v是流体的流速,p是压强,ρ是密度,ν是运动黏度,f是外力项。

医用物理学流体的运动

医用物理学流体的运动

04
CATALOGUE
粘性流体的流动现象
层流与湍流现象
层流现象
粘性流体在管道内流动时,若流速较 低,流体各层质点互不混杂,流动平 稳,呈现明显的分层流动现象,称为 层流。
湍流现象
随着流速的增加,流体各层质点开始 相互混杂,流动变得不稳定,出现涡 旋和随机脉动,这种流动状态称为湍 流。
雷诺数及其物理意义
THANKS
感谢观看
医用物理学流体的运动
CATALOGUE
目 录
• 流体运动基本概念 • 流体静力学原理 • 流体动力学基础 • 粘性流体的流动现象 • 医用物理学在流体运动中的应用 • 实验方法与技术研究
01
CATALOGUE
流体运动基本概念
流体的定义与特性
流体的定义
流体是指在外力作用下,能够连 续变形并流动的物质。它包括液 体和气体两大类。
压强
流体中某点的压力与该点处流体密 度的比值,用符号$rho$表示,单 位是千克每立方米(kg/m³)。
压力与压强的关系
$p = rho gh$,其中$g$是重力加 速度,$h$是流体中某点距参考面 的高度。
帕斯卡原理及应用
01
02
03
帕斯卡原理
在密闭容器内,施加于静 止液体上的压强可以等值 同时传到各点。
湍流
当流体流速增大到一定程度时,流体质点的运动轨迹变得不规则,出现涡旋和 剧烈的紊动,这种流动称为湍流。湍流具有流动不稳定、质点相互混杂的特点 。
粘度与流动阻力
粘度
粘度是表征流体粘滞性大小的物理量,它反映了流体内部质 点间相互作用的强弱。粘度越大,流体内部质点间的相互作 用力越强,流动阻力也越大。
用于解释和计算各种流体现象,如文 丘里管、喷雾器、飞机升力等。

医学物理学-课件--流体的运动

医学物理学-课件--流体的运动

Rf

8L R 4
泊肃叶定律另一表式: Q P Rf
返前后 回页页
例3-3(P38)
成年人主动脉的半径约为1.3×10-2m,问在
一段0.2m 距离内的流阻和压强降落ΔP为多少? 设血流量为1.00×10-4m3·s-1 ,η=
3.0×10-3pa·s.
解:
8L 83.01030.2 Rf R4 3.14(1.3102)4
即在水平管中流动的流体,
流速小的地方压强较大,
流速大的地方压强较小.
A B
喷雾器
水流抽气机
返前后 回页页
2.汾丘里流量计
∵ P11 212P21 222
S11S22
h
P1P2 gh

2gh 1 S2 S12 S22
P2 S2
P1 υ1
S1
流体的流量:
QS11 S1S2
圆柱 机翼
返前后 回页页
三、稳定流动:
流场
vB B
C vC
A
vA
稳定流动(steady flow):流体中各 点的速度都不随时 间而变化.
(1)流线形状不变; (2)流线不相交.
返前后 回页页
返前后 回页页
流管(tube of flow):流体中通过一小截面 积周边各点的流线所围成的管状区域.



特例:P1P2 E
结论:粘性流体在均匀水平管中 流动需要一定的压强差来维持.
返前后 回页页
二、泊肃叶定律 (Poiseuille,s law)
稳定流动时: P1 F f
rR
f
压力差: F(P 1P 2)r2
内摩擦力:f 2rLd

《医用物理学》教学课件:02第二章-流体的运动-3

《医用物理学》教学课件:02第二章-流体的运动-3

低速封闭风洞
飞机的风洞实验
汽车的风洞实验
运动员在进行风洞实验
• 生理流动
人体中时刻存在着各种生理流动,对生命和健康最重 要的是血液循环与呼吸系统。健康人体的血管和气管等流 动管道都具有良好的弹性,管壁可以吸收扰动能量,起着 稳定流场的作用,因而生理流动的临界雷诺数(由层流转变 为湍流时的雷诺数)要远远超过刚性管流的临界雷诺数。
x
A
x
v
v 速率
黏度的大小决定于流体的性质, 并受温度的影响
流体 温度 (℃)
流体 温度 (℃)
空气 100
2.71
水 100
0.3
20
1.82
37
0.69
0
1.71
0
1.8
氢气 251
1.30
酒精 20
1.19
20
0.88
0
1.77
液体的黏度随温度的升高而减小;气体的黏度随温度的升高而增大。
一般说来,液体的内摩擦力小于固体之间的摩擦力,古人 开凿运河,用于运输;用机油润滑机械,减少磨损,延长使 用寿命,都是这一原理的应用。气体的黏滞性则更小,气垫 船的使用就是利用了气体的这一特性。
括所需的实验器材,计算公式和实验步骤。
结合对比:实验课《液体黏滞系数的测定》及 《基本电荷的测定——密立根油滴实验》
离心机
4. 涡旋尾流,压差阻力
具有较大流速的流体流经物体,因黏性作用,物体后部 边界层的流体质元会减速并脱落,而若前方流体不能及时填 充,就会导致已流至后方的外层流体回旋,使物体后部出现 涡旋尾流。
Байду номын сангаас
讨论 1.雷诺数无量纲,它是鉴别黏性流体 流动状态的唯一参数。

大学物理学习指导第2章流体力学基础

大学物理学习指导第2章流体力学基础

⼤学物理学习指导第2章流体⼒学基础第2章流体⼒学基础2.1 内容提要(⼀)基本概念 1.流体:由许多彼此能够相对运动的流体元(物质微团)所组成的连续介质,具有流动性,常被称为流体。

流体是液体和⽓体的总称。

2.流体元:微团或流体质量元,它是由⼤量分⼦组成的集合体。

从宏观上看,流体质量元⾜够⼩,⼩到仅是⼀个⼏何点,只有这样才能确定流体中某点的某个物理量的⼤⼩;从微观上看,流体质量元⼜⾜够⼤,⼤到包含相当多的分⼦数,使描述流体元的宏观物理量有确定的值,⽽不受分⼦微观运动的影响。

因此,流体元具有微观⼤,宏观⼩的特点。

3.理想流体:指绝对不可压缩、完全没有黏滞性的流体。

它是实际流体的理想化模型。

4.定常流动:指流体的流动状态不随时间发⽣变化的流动。

流体做定常流动时,流体中各流体元在流经空间任⼀点的流速不随时间发⽣变化,但各点的流速可以不同。

5.流线:是分布在流体流经区域中的许多假想的曲线,曲线上每⼀点的切线⽅向和该点流体元的速度⽅向⼀致。

流线不可相交,且流速⼤的地⽅流线密,反之则稀。

6.流管:由⼀束流线围成的管状区域称为流管。

对于定常流动,流体只在管内流动。

流线是流管截⾯积为零的极限状态。

(⼆)两个基本原理 1.连续性原理:理想流体在同⼀细流管内,任意两个垂直于该流管的截⾯S 1、S 2,流速v 1、v 2,密度ρ1、ρ2,则有111211v v S S ρρ= (2.1a )它表明,在定常流动中,同⼀细流管任⼀截⾯处的质量密度、流速和截⾯⾯积的乘积是⼀个常数。

也叫质量守恒⽅程。

若ρ为常量,则有Q = S v = 常量(2.1b )它表明,对于理想流体的定常流动,同⼀细流管中任⼀截⾯处的流速与截⾯⾯积的乘积是⼀个常量。

也叫体积流量守恒定律或连续性⽅程。

2 伯努利⽅程:理想流体在同⼀细流管中任意两个截⾯处其截⾯积S ,流速v ,⾼度h ,压强p 之间有11222121gh p gh p ρρρρ++=++2122v v (2.2) 或写成常量=++gh p ρρ221v 。

医用物理学第02章_课后习题解答

医用物理学第02章_课后习题解答

3
如果考虑水银上方水柱的压强,则 U 形管中水银柱的高度差:
h
p1 p2 4.22 103 0.0342m ( 水银 水 )g (13.6 - 1) 103 9.8
2-8 如附图所示将两管插入流水中测水流速度, -3 设两管中的水柱高度分别为 5.0×10 m 和 -2 5.4×10 m,求水流速度。 解: 已知 h A 5.0 10 m , hB 5.4 10 m ,
v2 。 2g
2-11 设橄榄油的粘滞系数为 1.8P,流过长度为 50cm,半径为 1.0cm 的管子,管两端 的压强差为 100mmHg,求其流量。 解: 已知 0.18Pa s , L 0.5m , r 0.01m , p 100mmHg 13.3 103 Pa 。 根据泊肃叶公式得流量
6
3.0 103 m3 s 1 , S1 40 104 m 2 , S2 10 104 m 2 。
根据连续性方程: S1 v1 S 2 v 2 Q
Q 3000 106 v1 0.75m s 1 4 40 10 S1
v2
S1=40 h
Q
πr 4 p 3.14 ( 10 2 )4 13.3 103 5.8 10 4 m 3 s 1 8L 8 0.18 0.5
-3
2-12 狗的一根大动脉,内半径为 4mm,长度为 10cm,血流粘度为 2.084×10 Pa·s, 3 -1 流过这段血管的血液流量为 1.0cm ·s 。求: ①血流的平均速度和最大速度; ②这段动脉 管的流阻; ③这段血管的血压降落。 解: ①已知 r 4 10 m , Q 1.0 10 m s , 2.084 10 Pa s , L 0.10m

广东医学院 医用物理学 课后习题+答案

广东医学院 医用物理学 课后习题+答案

第二章 流体的运动2-1.一水平圆管,粗处的直径为8cm ,流速为1m ·s -1,粗处的直径为细处的2倍,求细处的流速和水在管中的体积流量.解:(1)已知:d 1=8cm ,v 1=1m ·s -1,d 1= 2d 2.求:v 2=?,Q =? 根据连续性方程1122S S =v v ,有22112244d d ππ=v v ,代入已知条件得()12144m s -==⋅v v(2)水的体积流量为()()2223311122118101 5.02410m s 44Q S S d ππ---====⋅⨯⨯=⨯⋅v v v2-2.将半径为2cm 的引水管连接到草坪的洒水器上,洒水器装一个有20个小孔的莲蓬头,每个小孔直径为0.5cm .如果水在引水管中的流速为1m ·s -1,试求由各小孔喷出的水流速度是多少?解:已知:总管的半径r 1=2cm ,水的流速v 1=1m ·s -1;支管的半径为r 2=0.25cm ,支管数目为20.求:v 2=?根据连续性方程1122S nS =v v ,有221122r n r ππ=v v ,代入数据,得()()222222101200.2510--⨯⨯=⨯⨯v从而,解得小孔喷出的水流速度()12 3.2m s -=⋅v .2-3.一粗细不均匀的水平管,粗处的截面积为30cm 2,细处的截面积为10cm 2.用此水平管排水,其流量为3×10-3 m 3·s -1.求:(1)粗细两处的流速;(2)粗细两处的压强差.解:已知:S 1=30cm 2,S 2=10cm 2,Q =3×10-3m 3·s -1.求:(1) v 1=?,v 2=?;(2) P 1-P 2=?(1)根据连续性方程1122Q S S ==v v ,得()()33111244123103101m s , 3m s 30101010Q Q S S ------⨯⨯===⋅===⋅⨯⨯v v (2)根据水平管的伯努利方程22112211++22P P ρρ=v v ,得粗细两处的压强差 ()()22322312211111031410Pa 222P P ρρ-=-=⨯⨯-=⨯v v2-4.水在粗细不均匀的管中做定常流动,出口处的截面积为10cm 2,流速为2m ·s -1,另一细处的截面积为2cm 2,细处比出口处高0.1m .设大气压强P 0≈105Pa ,若不考虑水的黏性,(1)求细处的压强;(2)若在细处开一小孔,水会流出来吗?解:(1) 已知:S 1=10cm 2,v 1=2m ·s -1,S 2=2cm 2,P 1= P 0≈105Pa ,h 2-h 1=0.1m .求:P 2=?根据连续性方程S 1v 1=S 2v 2,得第二点的流速()111212510m s S S -===⋅v v v 又根据伯努利方程2211122211+g +g 22P h P h ρρρρ+=+v v ,得第二点的压强 ()()()()()222112125322341-g 211010210109.80.12=5.10210Pa P P h h ρρ=++-=+⨯⨯-+⨯⨯-⨯v v(2) 因为()4205.10210Pa P P =⨯<,所以在细处开一小孔,水不会流出来.2-5.一种测流速(或流量)的装置如右图所示.密度为ρ的理想液体在水平管中做定常流动,已知水平管中A 、B两处的横截面积分别为S A 和S B ,B 处与大气相通,压强为P 0.若A 处用一竖直细管与注有密度为ρ'(ρ<ρ')的液体的容器C 相通,竖直管中液柱上升的高度为h ,求液体在B 处的流速和液体在管中的体积流量.解:根据水平管的伯努利方程22A AB B1122P P ρρ+=+v v 和连续性方程A A B B S S =v v ,解得B 处的流速B A B A22B A 2(()P P S S S ρ-=-)v 又由竖直管中液柱的高度差,可知B A P P gh ρ'-=,因而B 处的流速为B A22B A 2()ghS S S ρρ'=-v 进而得水平管中液体的体积流量为B B A B22B A 2()ghQ S S S S S ρρ'==-v2-6.用如下图所示的装置采集气体.设U 形管中水柱的高度差为3cm ,水平管的横截面积S 为12cm 2,气体的密度为2kg ·m -3.求2min 采集的气体的体积.解:根据水平管的伯努利方程2211221122P P ρρ+=+v v , 因弯管处流速v 2=0,因此上式可化为211212P P ρ+=v , 又由U 形管中水柱的高度差知1、2两处的压强差为21P P gh ρ-=水, 联立上面两式,解得气体的流速()32112g 2109.831017.15m s 2hρρ--⨯⨯⨯⨯===⋅水v2min 采集的气体的体积为习题2-6()4311121017.32260 2.5m V S t -=∆=⨯⨯⨯⨯=v2-7.一开口大容器底侧开有一小孔A ,小孔的直径为2cm ,若每秒向容器内注入0.8L 的水,问达到平衡时,容器中水深是多少? 解:已知: Q =0.8L ,r 2=1cm .根据连续性方程Q =S 1v 1=S 2v 2,可得小孔处的流速()()312222220.810 2.55m s 3.14110Q Q S r π---⨯====⋅⨯⨯v 又因容器的截面积S 1远大于小孔的截面积S 2,所以v 1≈0.根据伯努利方程 2211122211+g +g 22P h P h ρρρρ+=+v v 因容器上部和底部小孔均通大气,故P 1=P 2=P 0≈1.0×105Pa ,将已知条件代入上式,得21221g g 2h h ρρρ=+v解得 ()22212 2.550.332m 2g 29.8h h -===⨯v2-8.设37℃时血液的黏度η=3.4×10-3Pa ·s ,密度ρ=1.05×103kg ·m -3,若血液以72cm ·s -1的平均流速通过主动脉产生了湍流,设此时的雷诺数为1000,求该主动脉的横截面积.解:根据雷诺数的定义erR ρη=v ,可知主动脉的半径eR r ηρ=v,代入已知条件,得33323.4101000 4.510m 1.05107210e R r ηρ---⨯⨯===⨯⨯⨯⨯v , 进一步得到主动脉的横截面积()223523.14 4.510=6.3610m S r π--==⨯⨯⨯2-9.体积为20cm 3的液体在均匀水平管内从压强为1.2×105Pa 的截面流到压强为1.0×105Pa 的截面,求克服黏性力所作的功.解:根据黏性流体的伯努利方程221112221122P gh P gh ρρρρ++=+++v v w 又因为在均匀水平管中,即v 1=v 2,h 1=h 2,因此单位体积液体克服黏性力做的功12P P =-w那么体积为20cm 3的液体克服黏性力所作的功()()55612 1.210 1.01020100.4J W P P V -=-=⨯-⨯⨯⨯=2-10.某段微血管的直径受神经控制而缩小了一半,如果其他条件不变,问通过它的血流量将变为原来的多少?解:根据泊肃叶定律知,其他条件不变时,体积流量与半径的四次方成正比.因此,其他条件不变,直径缩小了一半,则通过它的血流量将变为原来的1/16.2-11.假设排尿时,尿从计示压强为5.33×103 Pa 的膀胱经过尿道后由尿道口排出,已知尿道长4cm ,体积流量为21cm 3·s -1,尿的黏度为6.9×10-4 Pa ·s ,求尿道的有效直径.解:根据泊肃叶定律,体积流量4π8r PQ Lη∆=得尿道的有效半径11426444388 6.91041021107.2610m π 3.14 5.3310LQ r P η----⎛⎫⨯⨯⨯⨯⨯⨯⎛⎫===⨯ ⎪ ⎪∆⨯⨯⎝⎭⎝⎭故尿道的有效直径为3=1.4510m d -⨯.2-12.某条狗的一根大动脉,内直径为8mm ,长度为10cm ,流过这段血管的血流流量为1cm 3·s -1,设血液的黏度为2.0×10-3Pa ·s .求:(1)血液的平均速度;(2)这段动脉管的流阻;(3)这段血管的血压降落.解:(1)根据体积流量的定义,得血液的平均速度()()61231100.02m s 3.14410Q S ---⨯===⋅⨯⨯v (2) 根据流阻的定义:R =8ηL/πr 4,可得该段动脉管的流阻()()326544388 2.010*******N s m 3.14410L R r ηπ----⨯⨯⨯⨯===⨯⋅⋅⨯⨯ (3) 根据泊肃叶定律:PQ R∆=,得这段血管的血压降落 ()661102102Pa P QR -∆==⨯⨯⨯=2-13.设某人的心输出量为8.2×10-5 m 3·s -1,体循环的总压强差为1.2×104Pa ,试求此人体循环的总流阻(也称总外周阻力).解:根据泊肃叶定律,得此人体循环的总流阻()48551.210 1.4610N s m 8.210P R Q --∆⨯===⨯⋅⋅⨯2-14.液体中有一空气泡,其直径为lmm ,密度为1.29 kg ·m -3,液体的密度为0.9×103 kg ·m -3,黏度为0.15Pa ·s .求该空气泡在液体中上升的收尾速度.解:当空气泡在液体所受的重力、黏性阻力与浮力达到平衡时,小球速率达到最大,此后它将匀速上升,即33m 44633r g r r g πρπηπρ'+=v 从而得空气泡在液体中上升的收尾速度()()()()232331m 20.51029.80.910 1.29 3.2610m s 990.15r g ρρη---⨯⨯'=-=⨯⨯⨯-=⨯⋅⨯v2-15.一个红细胞可近似看为一个直径为5.0×10-6m 、密度为1.09×103kg ·m -3的小球.设血液的黏度为1.2×10-3Pa ·s ,密度为1.03×103kg ·m -3.试计算该红细胞在37℃的血液中沉淀2cm 所需的时间.如果用一台加速度为106g 的超速离心机,问沉淀同样距离所需时间又是多少?解:(1)红细胞在液体所受的重力与黏性阻力和浮力达到平衡,速率达到最大,此后它将匀速下降,即33m 44633r g r g r πρπρπη'=+v 从而得红细胞的收尾速度()()()()262371m 32 2.5109.82 1.09 1.0310 6.810m s 99 1.210r g ρρη----⨯⨯⨯'=-=⨯-⨯=⨯⋅⨯⨯v所以该红细胞在37℃的血液中沉淀2cm 所需的时间()247210 2.9410s 6.810t --⨯==⨯⨯ (2)如果用一台加速度为106g 的超速离心机,则红细胞的收尾速度为()61m m 100.68m s -''==⋅v v所以该红细胞在37℃的血液中沉淀同样距离所需时间()6210 2.9410s t t --'==⨯第三章 振动、波动和声3-5 一物体同时参与同一直线上的两个简谐振动,)324cos(05.01π+π=t s ,)344cos(03.02π-π=t s ,求合振幅的大小是多少?解: πππϕϕϕ∆2)34(3221=--=-=)(08.003.005.021m A A A =+=+= 合振动的振幅为0.08m .3-7 两个同频率同方向的简谐振动,其合振动的振幅为20 cm ,与第一个简谐振动的相位差为61πϕϕ=-,若第一个简谐振动的振幅为310 cm = 17.3 cm ,则第二个简谐振动的振幅是多少?两个简谐振动的相位差)(21ϕϕ-是多少? 解:已知61πϕϕ=-,20=A cm, 3101=A cm由矢量关系可知:1006cos 310202310(20)cos(22)21121222=⨯⨯-+=--+=πϕϕAA A A A102=A cm)cos(2212122212ϕϕ-++=A A A A A )cos(10310210)310(2021222ϕϕ-⨯⨯++=,0)21cos(=-ϕϕ,...2,1,0,2)12(21=+±=-k k πϕϕ3-9 如图所示一平面简谐波在0=t 时刻的波形图,求 (1)该波的波动表达式;(2)P 处质点的振动方程.解:从图中可知:04.0=A m, 40.0=λm,08.0=u 1s m -⋅,2πϕ-=508.040.0===uT λ,ππω4.02==T(1) 波动表达式:]2)08.0(4.0cos[04.0ππ--=x t s (m)(2) P 处质点的振动方程.)234.0cos(04.0]2)08.02.0(4.0cos[04.0ππππ-=--=t t s (m)3-11 一波源以)9.14cos(03.0ππ-=t s m 的形式作简谐振动,并以1001s m -⋅的速度在某种介质中传播.求:① 波动方程;② 距波源40m 处质点的振动方程;③ 在波源起振后1.0s ,距波源40m 处质点的位移、速度及初相? 解:已知πϕπω9.1,100,4,03.0-====u A ,则① 波动方程为:]9.1)100(4cos[03.0ππ--=x t s (m)② 距波源40m 处质点的振动方程)24cos(03.0]9.1)10040(4cos[03.0ππππ-=--=t t s (m )③ 在波源起振后1.0s ,距波源40m 处质点的位移、速度及初相?02.02203.0)20.14cos(03.0≈⨯=-⨯=ππs (m)v =-65.1224π03.0)π20.14πsin(-≈⨯⨯-=-⨯ωA (1s m -⋅)πϕ2-=3-16 某声音声强级比声强为10-6W/m2的声音声强级大20dB 时,此声音的声强是多少? 解:第四章 分子动理论x (m) O -0.04 0.20 u = 0.08 m/sP0.400.604-2 设某一氧气瓶的容积为35L ,瓶内氧气压强为1.5×107Pa ,在给病人输氧气一段时间以后,瓶内氧气压强降为1.2×107Pa ,假定温度为20℃,试求这段时间内用掉的氧气质量是多少?解:根据理想气体物态方程RT μM pV =,可得瓶内氧气在使用前后的质量分别是TV p M R μ11=T V p M R μ22=故这段时间内用掉的氧气质量为.38kg1)kg 101.2-10(1.5293314.810321035)(R μ77332121≈⨯⨯⨯⨯⨯⨯=-=-=--p p T V M M M ∆4-4 设某容器内贮有的气体压强为1.33Pa ,温度为27℃,试问容器内单位体积气体的分子数有多少?所有这些分子的总平均平动动能是多少? 解:由温度公式,得分子的平均平动动能为J 1021.6J )27327(1038.1232321-23⨯=+⨯⨯⨯==-kT ε由压强公式εn p 32=,得单位体积内的分子数为3-203-213m 1021.3m 1021.62103233.1323⨯≈⨯⨯⨯⨯⨯==--εp n这些分子的总平均平动动能是所有分子的平动动能之和,即1.99J J 1021.61021.32120≈⨯⨯⨯==-εn E4-12 若从内径为1.35mm 的滴管中滴下100滴的液体,其重量为3.14g ,试求该液体的表面张力系数(假定液滴断开处的直径等于管的内径)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.14 (1.3102 )4
5.97 104(Pa s m3 )
P QRf 1.00104 5.97104 5.97 (Pa)
可见与平均动脉压13.3kPa相比,主动脉的血压降落是微不 足道的
2、斯托克司定律
分析:当物体在粘性流体中作匀速运动时,物体表面附着一层 流体,此层流体随物体一起运动,因而与周围流层之间存在内 摩擦力,所以物体在运动过程中必须克服这一阻力。如果物体 是球形的,且流体对于球体作层流运动,则球体所受的阻力为
s 2 h(H h)
若有相同射程,即有s=s'
解得
h'=H-h
(3)要使s最大,只要求s的极大值即可
求得
最大射程为H
h H 2
三、压强与高度的关系(体位对血压的影响)
如果流体在等截面管中流动,其流速不变,由伯努力方程可得
P1 gh1 P2 gh2
高处压强小,低处压强大
解释体位对血压的影响 可见测血压要注意体位
f 6vR
斯托克司定律
说明:R是球体的半径,v是球体相对于流体的流速, η是 流体的粘度
设在粘性流体内一半径为R的小球受重力作用而下沉,
小球所受合力为
F 4 R3 g 4 R3g 6vR
3
3
小球在合力作用下加速下沉,速度增加,同时随速度增加, 阻力也愈来愈大,最后合力为零,它将作匀速运动。此时有
3、雷诺数 雷诺数Re 说明:
Re vr
(1)Re < 1000时,流体作层流
(2)Re > 1500时,流体作湍流
(3)1000 < Re < 1500时,流体流动不稳定
例2-3 主动脉的内半径为0.01m,血液的流速、粘度、密度
分别为0.25m/s 、0.003Pa.s、1050kg/m3 ,求雷诺数并判断
第四节 粘性流体的流动
一、粘性流体的运动
1、层流和湍流
层流:粘性液体的分层流动,相邻两层之间 只作相对滑动,流层间没有横向滑动,机械 能不守恒,轴线上速度最大,管壁最小。
图2-11 粘性流体的流动
湍流:当液体在管中流速很大时,液体的流动不再保持分 层流动状态,而变成无规则的运动,这时流体的流动有垂 直管轴的分速度,而且还会出现涡流,整个流动显得杂乱 而不稳定
在稳定流动中,假设一段细流管,且任一截面上的各物理量都 可以看成均匀的,即(ρ1、S1、v1)和( ρ 2、S2、v2) 经过 t时间,通过截面S1流入流管质量为
m1 1(v1t)S1 1S1v1t
经过 t时间,通过截面S2流出流管质量为
m2 2 (v2t)S2 2S2v2t
根据质量守恒原则及稳定流动的特点有m1=m2,即
都有粘性,很多流体的粘性小,在小范 围流动时,粘性造成的影响可以忽略。
理想流体:绝对不可压缩、完全没有粘滞性
二、稳定流动
研究流体运动的方法有两种
拉格朗日法: 将流体分成许多无穷小的流体质元,跟踪并研究每一个 流体质元的运动情况,求出它们各自的运动轨迹和流动速度。 这实际上是沿用质点动力学的方法来讨论流体的运动。
P Q
Rf
式中
Rf
8L R 4
称为流阻
其物理意义是:当粘性流体流过一个水平均匀细管时,体积 流量与管子两端的压强差成正比,而与流阻成反比。
值得注意的是,流阻与管半径的四次方成反比,半径的微小 变化就会对流阻造成很大的影响。血管可以收缩和舒张,其 半径变化对血液流量的影响是很显著的。
流阻的单位: 流阻的串并联
W F1v1t F2v2t P1S1v1t P2S2v2t
W P1V P2V
故当流体从XY流到X'Y'时的机械能增量为:
E
E2
E1
(1 2
mv22
mgh2 )
(1 2
mv12
mgh1)
由功能原理有: W= E
P1V
P2V
(1 2
mv22
mgh2
)
(
1 2
mv12
mgh1)
最后整理得:
解:根据连续性方程有
SAvA SBvB
vA
Q SA
0.12 10 2
12(m / s)
vB
Q SB
0.12 0.6 102
20(m / s)
又根据伯努力方程有
PA
ghA
1 2
v A 2
PB
ghB
1 2
vB 2
PB
PA
ghA
1 2
v A2
ghB
1 2
vB 2
PA
g (h A
hB )
1 2
v A2
图2-8 文特利管
粗、细两处各物理量见图所示,根据伯努力方程有
P1
1 2
v12
P2
1 2
v2 2
由连续性方程有 S1v1 S2v2
由图可知 P1 P2 ( )gh
由以上3式,解得流量为
Q S1v1 S2v2 S1S2
2( )gh (S12 S22 )
二、流速和高度的关系(小孔流速)
实际上水柱自小孔流出时截面有所收缩,用有效截面S'代 替S,则有
Q Sv S 2gh
例2-2 一开口水槽中的水深为H,如图例2-2所示。在水面下h 深处开一小孔。问:(1)射出的水流在地板上的射程S是多 大?(2)在水槽的其他深度处,能否再开一小孔,其射出的 水流有相同的射程?(3)小孔开在水面下的深度h多大时, 射程最远?射程多长?
(6)水平管:当h1=h2,有:
P 1 v2 常量
2
即流速小的地方压强大,流速大的地方压强小。
例2-1 设有流量为0.12m3 s-1 的水流过一管子,A点的压强为 2×105Pa,A点的截面积为100cm2,B点的截面积为60cm2,B 点比A点高2 m。假设水的内摩察力可以忽略不计,求A、B点 的流速和B点压强。
第二章 流体的运动
流体:包括气体、液体
流体的基本特征:流动性,无固定形状 流体运动的学科称为流体动力学 ?理想流体、稳定流动
连续性方程、伯努利方程 ??实际流体
粘性、雷诺数、粘性流体的运动规律
第一节 理想流体 稳定流动
一、理想流体 实际流体
可缩体,体积随压强不同 而改变。液体的体 积变化小,气体的体积变化大。
3、单位时间内体积流量:
V=Sv(单位:m3/s)
4、S与v成反比,S大v小,S小v大。
5、流管有分支时:
Sv S1v1 S2v2
二、伯努力方程
1、伯努力方程的推导
利用功能原理来进行推导 截取一段流体XY作研究对象
各物理量见图所示,经过 t时 间变为X'和Y'
F1=P1S1 F2=P2S2 故当流体从XY流到X'Y'时外力所作功为:
流管:在流体中作一微小的闭合曲线,通过其上各点的流线所 围成的细管
2、稳定流动 流线上任一点速度大小、方向都不随时间变化,即流线的形
状保持不变 流线即流体质元的运动轨迹
3、性质 (1)流线不能相交 (2)在某一流管内,外面流线不能流进来,里面流线不能流
出去
第二节 连续性方程 伯努利方程
一、理想流体的连续性方程
2、牛顿粘滞定律 f S dv 牛顿粘滞定律
dx
说明:
图2-12 粘性力 速 度梯度
(1)dv/dx表示速度梯度,S表示层与层的接触面积,η为流体的粘度 (2)粘度的物理意义:速度梯度为1时,单位面积上的粘滞阻力 (3)粘度的单位:Pa.s (4)粘度的大小由流体的性质和温度决定 (5)牛顿流体和非牛顿流体:遵守牛顿粘滞定律的流体为牛顿流体,如水 和血浆;不遵守牛顿粘滞定律的流体为非牛顿流体,如血液
Pa s m3
R f R f 1 R f 2 R fn
1 1 1 1
Rf Rf1 Rf2
R fn
例2-4 成年人主动脉的半径为。问在一段距离内的流阻和压 强降落是多少?设血流量为 , 1.00104 m3 s1 3.0 10 3 Pa s
解:
Rf
8L
R 4
8 3.0 103 0.2
1 2
vB 2
5.24 104 (Pa)
第三节 伯努利方程的应用
一、压强与流速的关系
水平管中作稳定流动时
P 1 v2 常量
2
即流速小的地方压强大,流速大的地方压强小。
1、空吸作用
A处和C处的横截面积远大于B处的横截面积。在A处 加一个外力使管中流体由A向B 处流动。B处的流速必 远大于A处和C处的流速,B处的压强小。若增加流管 中流体的流速,可以使B 处的流速增到很大,而使B 处的压强很小,于是D容器中的流体因受大气压强的 作用被压缩到B处,而被水平管中的流体带走。这种 作用叫空吸作用。
图2-13 粘性流体在水平管中的压强分布
结论:要使粘性流体匀速流体,两
端必须有压强差
1、泊肃叶公式 粘性流体在等截面水平细管作稳定流动时,如果雷诺数
不大,则流动的形态是层流。
泊肃叶公式: 说明:
图2-14 泊肃叶公式的 推导
Q R 4P 8L
式中R是管子的半径,η是流体的粘度,L是管子的长度。
泊肃叶公式又可写成如下形式
图2-9 小孔流速
对于任一流线,由伯努利方程得
由上式得
p0
gh
p0
1 2
v 2
v 2gh
结果表明,小孔处流速和物体自高度h处自由下落得到的速 度是相同的。这一关系是意大利物理学理学家、数学家托里 斥利((E.Torricelli)首先发现的,又称为托里斥利定理。它 反映了压强不变时,理想流体稳定流动过程中,流体重力势 能与动能之间的转换关系。
欧拉法: 把注意力集中到各空间点,观察流体质元经过每个空间 点的流速、压强、密度等物理量,寻求它的空间分布随时 间的演化规律。
相关文档
最新文档