重力测量
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重力测量
什么叫重力基准点?
指绝对重力值已知的重力点,作为相对重力测量(两点间重力差的重力测量)的起始点。中国于1956~1957年建立了全国范围的第一个国家重力基准,称为1957年国家重力基本网,该网由21个基本点和82个一等点组成。1985年,中国重新建立了国家重力基准。它由6个基准重力点,46个基本重力点和5个因点组成,称为1985年国家重力基本网。
重力测量是根据不同的目的和要求,使用重力仪测量地面某点的重力加速度。50年代中期,我国建立了由27个基本重力点和80个一等重力点构成的第一个重力控制网,该网是以苏联的阿拉木图、伊尔库茨克和赤塔为起始点,其绝对值为国际波茨坦系统。1981年,国家测绘总局在福州市溪口省测绘局外业大队北楼室内,埋设了重力基准点,根据中意科技文化合作协定,由国家测绘总局与意大利都灵计量研究所合作,用该所研制的可移动式绝对重力仪,测定了该点的绝对重力值,重力成果达到了微伽级的高精度。它是按照国务院1978年84号文件《关于重建我国高精度重力控制网的决定》而建立的“85国家重力基本网”的6个基准点之一(另5个是北京、广州、南宁、昆明、青岛)。该网还包括64个基本重力点和5个引点,充分利用全球的重力测量成果,同国际重力测量委员会建立的“1971年国际重力系统”进行了北京—日本,北京—巴黎的国际联测和北京—香港联测,联测精度为15~20微伽,平差后点重力值精度为±8微伽,新网建立后,代替了原来采用的具有较大系统误差的波茨坦重力系统。
zhongli celiang
重力测量
gravimetric survey
测定重力加速度值的工作。重力测量结果广泛地用于测绘、地质勘探、地球物理研究以及空间科学技术等方面。
重力作用在地球表面任一质点的重力□是引力□和惯性离心力□的合力(见图地球重力示意图)。根据牛顿万有引力定律,整个地球质量产生引力,地球自转则产生惯性离心力。引力的方向指向地球质心,惯性离心力的方向垂直于地球自转轴向外,而重力的方向则为两者合力的方向,即垂线的方向。
惯性离心力最大约为重力的1/300,因此地球的引力方向和重力方向非常接近。作用在单位质点上的重力称为该点的重力场强度,它同重力加速度在数值上相等。在重力测量中,重力加速度是实际所要测定的基本物理量,通常又将重力加速度简称为重力。在MKS制中,重力的单位为米/秒2;在CGS制中,则为厘米/秒2。为了纪念世界上第一个测定重力的意大利物理学家伽利略(G.Galilei),将重力的单位厘米/秒2称为伽(Gal),千分之一伽称为毫伽(mGal),千分之一毫伽称为微伽(μGal)。
由于地球表面形状不规则和地球内部质量分布不均匀,地球表面各点的引力是不同的。惯性离心力的大小又与作用点至地球自转轴的距离有关,一般在地球赤道上惯性离心力最大,在地球两极惯性离心力最小,所以,地球表面上各点的重力不是一个常数,它的数值变化约从978伽到983伽,由赤道向两极增大。重力还随时间变化,这主要是由于日、月对地球的引力变化和地球内部物理过程引起的。此外,地球周围的大气层质量同样产生引力作用,在高精度重力测量中,应当考虑这些因素。
测量方法重力值的大小可通过重力测量方法求得,而其方向则需通过天文测量方法确定。重力测量分绝对重力测量和相对重力测量。测定重力值可以利用与重力有关的许多物理现象,例如在重力作用下的自由落体、摆的摆动、弹簧伸缩、弦振动,等等。由此,重力测量方法分为两类:一类是动力法,它是根据物体受力后的运动状态测定重力;另一类是静力法,它是根据物体受力后的平衡状态测定重力。
绝对重力测量测定重力场中一点的绝对重力值,一般采用动力法。主要利用两种原理,一种是自由落体原理,这是伽利略在1590年进行世界上第一次重力测量时所提出的原理;另一种是摆的原理,这是荷兰物理学家惠更斯
(C.Huygens)在1673年提出的。这两种原理一直沿用至今。虽然自由落体原理发现较早,但为测定长度和时间的技术水平所限,首先得到发展的是利用摆的原理进行绝对重力测量的方法。为了观测摆的周期,早在1735年就出现了时间观测的符合法,并于1792年第一次用于摆的实际观测。1826~1827年,德国大地测量学家F.W.贝塞尔,利用结构近似于数学摆的线摆进行了比较完整的绝对重力测量。但是线摆并非理想的数学摆。为了解决精确测定摆长的问题,1817年英国物理学家凯特(H.Kater)创造了可倒摆,并用它进行了绝对重力测量。直到20世纪中期,可倒摆一直是绝对重力测量的主要仪器。但由于影响测量精度的许多干扰因素不易消除,到现在这种方法几乎已弃置不用。与此同时,自由落体的方法开始有了迅速的发展。1950年前后,一些国家开始采用摄影方法记录自由落体的下落距离和时间,并用长度量测仪测量距离,以此测定绝对重力。但测定精度仍受到一定限制。近几年来由于激光干涉系统和高稳定度频率标准的出现,使自由落体下落距离和时间的测定精度大大提高,所以许多国家又采用激光绝对重力仪进行绝对重力测量,其测定精度可达几个微伽。
相对重力测量测定两点的重力差值,可采用动力法和静力法
。最早的相对重力测量是奥地利测量学家施特内克(R.V.Sterneck)于1887年采用动力法的摆仪进行的。此法是用长度不变的摆在两个待测点上观测摆动周期,根据两点的周期差求重力差。从而避免了精确测量摆长的困难。此后,欧洲各国都采用这种摆仪来进行相对重力测量。以后在仪器结构和观测方法上虽作了不少改进,但测定精度只能达到毫伽级,加上摆仪观测既费时又麻烦,所以目前已很少采用。现在普遍采用静力法的弹簧重力仪测定重力差值。国际上对这种仪器研究甚多,发展很快,不论是测定精度还是使用的方便程度都已达到很高水平。一般精度可达几十微伽,甚至几微伽。野外工作时,在一个测站只需几分钟就可观测完毕。为了克服弹性重力仪因弹性疲劳而引起的零点漂移,1968年又出现了超导重力仪。这种重力仪对重力变化具有很高的分辨力,零点漂移极小,所以特别适合于固定台站上的潮汐和非潮汐重力变化观测。
地球表面约有71%的海洋,为了获得全球重力资料,必须进行海洋重力测量。通常有